Strong distortion in transformation groups

Frédéric Le Roux and Kathryn Mann

Abstract

We show that the groups $\operatorname{Diff}{ }_{0}^{r}\left(\mathbb{R}^{n}\right)$ and $\operatorname{Diff}^{r}\left(\mathbb{R}^{n}\right)$ have the strong distortion property, whenever $0 \leqslant r \leqslant \infty, r \neq n+1$. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429440). With related techniques we show that, for M a closed manifold or homeomorphic to the interior of a compact manifold with boundary, the diffeomorphism groups Diff ${ }_{0}^{r}(M)$ satisfy a relative Higman embedding type property, introduced by Schreier. In the simplest case, this answers a problem asked by Schreier in the famous Scottish Book.

1. Introduction

It is a classical theorem of Higman, Neumann and Neumann [18] that every countable group can be realized as a subgroup of a group generated by two elements. In this paper, we are concerned with a relative version of this property, inspired by the following question of Schreier.

Question 1.1 (Schreier (1935), Problem 111 in the Scottish Book [25]). Does there exist an uncountable group with the property that every countable sequence of elements of this group is contained in a subgroup which has a finite number of generators? In particular, does the group S_{∞} of permutations of an infinite set, and the group of all homeomorphisms of the interval have this property?

The first part of this question was answered positively, and using the example of S_{∞}, by Galvin [15], although the existence of such a group also follows easily from the earlier work of Sabbagh in [28]. A few other examples of groups with this property have been found, see, for example, $[8]$ and references therein. However, as of the 2nd (2015) edition of the Scottish Book, the question concerning the group of homeomorphisms of the interval remains open. Here we give a positive answer to Schreier's question for the group of homeomorphisms of the interval, and show that the property in question holds for many other transformation groups as well. For concreteness, say that a group G has the Schreier property if every countable subset of G is contained in a finitely generated subgroup of G. We prove:

Theorem 1.2. Let $0 \leqslant r \leqslant \infty$, and let M be a C^{r} manifold with $\operatorname{dim}(M) \neq r-1$, either closed or homeomorphic to the interior of a compact manifold with boundary. Then the group Diff ${ }_{0}^{r}(M)$ of isotopically trivial diffeomorphisms of M has the Schreier property.

Consequently, the group $\operatorname{Diff}^{r}(M)$ has the Schreier property if and only if the mapping class group $\operatorname{Diff}^{r}(M) / \operatorname{Diff}_{0}^{r}(M)$ is finitely generated.

The answer to Schreier's question is the special case $\operatorname{Diff}^{0}(\mathbb{R})=\operatorname{Homeo}(\mathbb{R}) \cong \operatorname{Homeo}(I)$. The assumption $\operatorname{dim}(M) \neq r-1$ in this theorem comes from the fact that the group $\operatorname{Diff}_{c}^{r}(M)$ of compactly supported diffeomorphisms of a manifold M is known to be simple in this case, but the algebraic structure of $\operatorname{Diff}_{c}^{r}(M)$ is not understood when $\operatorname{dim}(M)=r-1$. In particular, it

[^0]is not known whether such a group admits a surjective homomorphism to \mathbb{R}, if so, it would fail to have the Schreier property.

In many cases, it turns out that Schreier's property follows from a stronger dynamical property called strong distortion.

Definition 1.3. A group is strongly distorted ${ }^{\dagger}$ if there exists an integer m and an integervalued sequence w_{n} such that, for every sequence g_{n} in G, there exists a finite set S of cardinality m, such that each element g_{n} can be expressed as a word of length w_{n} in S.

In particular, strong distortion implies that every element of G is arbitrarily distorted in the usual sense of distortion of group elements or subgroups. This fact has important dynamical implications when G is a group of homeomorphisms or diffeomorphisms of a manifold or more general metric space, as distortion places constraints on the dynamics of such transformations. For example, the case of distorted diffeomorphisms of surfaces is studied in [14].

Closely related to strong distortion are the notions of strong boundedness, also called property $(O B)$ or the Bergman property, and uncountable cofinality.

Definition 1.4. A group G is strongly bounded if every function $\ell: G \rightarrow \mathbb{R} \geqslant 0$, satisfying $\ell\left(g^{-1}\right)=\ell(g), \ell(\mathrm{id})=0$, and the triangle inequality $\ell(g h) \leqslant \ell(g)+\ell(h)$, is bounded.

Definition 1.5. A group G has uncountable cofinality if it cannot be written as the union of a countable strictly increasing sequence of subgroups.

It is not hard to see that the Schreier property implies uncountable cofinality, that strong distortion implies both strong boundedness and the Schreier property (we give quick proofs at the end of this introduction), and that strong boundedness is equivalent to the dynamical condition that every isometric action of G on a metric space has bounded orbits (see the appendix to $[7]$). Our second main result is the following.

Theorem 1.6. The groups Diff ${ }_{0}^{r}\left(\mathbb{R}^{n}\right)$ and $\operatorname{Diff}^{r}\left(\mathbb{R}^{n}\right)$ are strongly distorted, for all n and all $r \neq n+1$.

This is particularly surprising since $\operatorname{Diff}_{c}^{r}\left(\mathbb{R}^{n}\right)$, as well as the groups Diff ${ }_{0}^{r}(M)$ for compact M, are never strongly distorted, nor even strongly bounded, whenever $r \geqslant 1$. This is also true of $\operatorname{Diff}_{0}^{0}(M)=\operatorname{Homeo}_{0}(M)$ provided that M has infinite fundamental group - this follows from [7, Example 6.8], or more explicitly from [22, Proposition 20] which implies that all maximal metrics on $\mathrm{Homeo}_{0}(M)$ are unbounded length functions. In particular, for these examples, there is no hope to improve Theorem 1.2 to a proof of strong boundedness or distortion.

Interestingly the question of strong boundedness and strong distortion for homeomorphism groups of manifolds with finite fundamental group, other than the spheres, remains open.

The following table summarizes the results mentioned above.

	Strongly distorted	Strongly bounded	Schreier property	Uncountable cofinality
$\operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{n}\right), r \neq n+1$	\checkmark	\checkmark	\checkmark	\checkmark
$\mathrm{Homeo}_{0}\left(S^{n}\right)$	\checkmark	\checkmark	\checkmark	\checkmark
(Cornulier [7, Appendix])				
$\operatorname{Homeo}_{0}(M),\left\|\pi_{1}(M)\right\|<\infty$?	?	\checkmark	\checkmark
Homeo $_{0}(M),\left\|\pi_{1}(M)\right\|=\infty$	X [7], [22]	X	\checkmark	\checkmark
$\operatorname{Diffr}_{0}^{r}(M) r \geqslant 1$,	X	X	\checkmark *	\checkmark *
M compact				

*Under the hypotheses of Theorem 1.2.

[^1]Despite the results mentioned above, one should not expect that most transformation groups have Schreier's property. For instance, we have the following.

Example 1.7 (Failure of Schreier's property). The group PL(M) of piecewise-linear homeomorphisms of a PL manifold M does not have the Schreier property. To see this directly, fix a system of PL charts for M, and note that for any finite symmetric set $S \subset G$, the set of all jacobians (at all points where defined) of elements of S is a finite subset, say $F \subset \operatorname{GL}(n, \mathbb{R})$. Thus, for any element g generated by S and any point $x \in M$, the jacobian of g at x has each entry an algebraic expression in the (finite) set of entries of elements of F. Thus, if g_{n} agrees with dilation by λ_{n} near some fixed point x, where λ_{n} is a sequence of algebraically independent real numbers, then the sequence $\left\{g_{n}\right\}$ cannot be generated by any finite set.

As an easier example, suppose G is the group of compactly supported homeomorphisms or diffeomorphisms of a noncompact manifold M. Let K_{n} be an exhaustion of M by compact sets, with K_{n} contained in the interior of K_{n+1}. Then G is the countable increasing union of the subgroups $G_{n}:=\left\{g: g(x)=x\right.$ for all $\left.x \notin K_{n}\right\}$. Thus, G has countable cofinality, and hence does not have the Schreier property.

Example 1.8 (Open question). We do not know whether either of the groups Homeo $_{0}\left(\mathbb{S}^{2}\right.$, area) or Diff ${ }_{0}^{r}\left(\mathbb{S}^{2}\right.$, area $), r \geqslant 1$ of area preserving homeomorphisms or diffeomorphism of the sphere have the Schreier property. We do know that they are not strongly bounded. In the case of diffeomorphisms, this follows from the fact that norm of the derivative gives an unbounded length function. However, there is also another (conjugation-invariant) norm, the Viterbo norm on $\operatorname{Diff}_{0}\left(\mathbb{S}^{2}\right.$, area), and by work of $[\mathbf{2 9}]$ it extends to a norm on $\mathrm{Homeo}_{0}\left(\mathbb{S}^{2}\right.$, area).

On the other hand, the groups Diff ${ }_{0}^{r}\left(\mathbb{T}^{2}\right.$, area) do not have Schreier's property. Indeed, the rotation number of the area is a morphism from these groups to \mathbb{R}; if a group G has Schreier's property then it is also the case of its image under a morphism; and \mathbb{R} does not have Schreier's property. The question is again open if we restrict to the kernels of these morphisms (that is, to the groups of Hamiltonian diffeomorphisms or homeomorphisms).

Remark 1.9 (A stronger property). As pointed out by G. Bergman, the proof of Theorem 1.6 shows that the group $G=\operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{n}\right)$ has a stronger property; namely the following: There is an integer m and a sequence W_{N} of words in m letters (elements of the free group on m generators) with the property that, for any sequence $\left\{f_{n}\right\}$ in G, there exists $s_{1}, \ldots, s_{m} \in G$ such that $f_{n}=W_{n}\left(s_{1}, s_{2}, \ldots s_{m}\right)$.

Bergman asks if this property is equivalent to strong boundedness. We do not know a counterexample.

Implications between properties

We conclude these introductory remarks with some implications between properties that are not evident from the table given above. Further discussion of these and related properties can be found in [4], and, in the context of topological groups, also [9, Section 4.E].

Strong boundedness and uncountable cofinality do not imply Schreier. This comes from the following example of a group with the strong boundedness property, due to Cornulier [8].

Example 1.10. Let G be a finite, simple group, and let H be the infinite direct product of countably many copies of G. It is shown in [8] that such a group H is strongly bounded. We show that H does not have the Schreier property. Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$ be a finite subset of H, and write $s_{i}=\left(s_{i, 1}, s_{i, 2}, \ldots\right)$ where $s_{i, j} \in G$. Since G is finite, there exists $g_{1} \in G$ such that $s_{1, j}=g_{1}$ for infinitely many j. Passing to a further infinite subset of indices, we can find
$g_{2} \in G$ such that $s_{2, j}=g_{2}$ and $s_{1, j}=g_{1}$ for all such j. Similarly, one finds $g_{1}, g_{2}, \ldots g_{k}$ such that $s_{i, j}=g_{i}$ holds for each i for infinitely many j. Thus any word in the generators projects to the same element of G in all of these infinitely many places. In particular, a sequence such as $(g, \mathrm{id}, \mathrm{id}, \mathrm{id} \ldots),(\mathrm{id}, g, \mathrm{id}, \mathrm{id}, \ldots),(\mathrm{id}, \mathrm{id}, g, \mathrm{id} \ldots)$, where $g \neq \mathrm{id} \in G$, cannot be written as a word in S.

Since every strongly bounded group has uncountable cofinality (see [9, Remark 4.E.11]), Example 1.10 also gives an example of a group with uncountable cofinality that fails to have Schreier's property.

Strong distorsion implies strong boundedness. Assume that G is a strongly distorted group. That G has the Schreier property is immediate from the definition. For strong boundedness, suppose for contradiction that ℓ is an unbounded length function on G. Let g_{n} be a sequence of elements in G such that $\ell\left(g_{n}\right)>w_{n}^{2}$, where w_{n} is the sequence given by the definition of strong distortion. Then there is a finite set S such that g_{n} can be written as a word of length w_{n} in S. However, this implies that $\ell\left(g_{n}\right) \leqslant K w_{n}$, where $K=\max \{\ell(s) \mid s \in S\}$, giving a contradiction.

Schreier implies uncountable cofinality. We show the contrapositive. Suppose that $G_{1} \subsetneq G_{2} \subsetneq G_{3} \ldots$ is an increasing union of subgroups with $\bigcup_{n} G_{n}=G$. Choose $f_{n} \in G_{n} \backslash$ G_{n-1}. If $S \subset G$ is any finite set, then there is a maximum i such that $S \cap G_{i} \neq \emptyset$, hence $S \subset G_{i}$ and does not generate $\left\{f_{n}\right\}$.

Contents and outline of paper

Section 2 gives a direct proof of strong distortion for $\operatorname{Homeo}_{0}(\mathbb{R})$, and therefore a quick answer to Schreier's question. In Section 3 we introduce further technical tools to prove Theorem 1.2 for closed manifolds. The proofs of strong distortion of $\operatorname{Diff}^{r}\left(\mathbb{R}^{n}\right)$ and Theorem 1.2 are given in Sections 4 and 5, respectively.

2. Strong distortion for $\operatorname{Homeo}(\mathbb{R})$

The purpose of this section is to give a quick answer to Schreier's question, and introduce some strategies to be used later in the proof of Theorem 1.6. Note that strong distortion is inherited from finite index subgroups, so it suffices to work with the index two subgroup of orientation-preserving homeomorphisms of the interval, Homeo ${ }_{0}(\mathbb{R})$.

Given a generating set S for a group G, word length of $g \in G$ with respect to S is denoted $\ell_{S}(g)$.

Proposition 2.1 (Strong distortion for $\operatorname{Homeo}_{0}(\mathbb{R})$). Given a sequence $\left\{f_{n}\right\} \subset \operatorname{Homeo}_{0}(\mathbb{R})$, there exists a set $S \subset \operatorname{Homeo}_{0}(\mathbb{R})$ with $|S|=10$, such that $\ell_{S}\left(f_{n}\right) \leqslant 14 n+12$ holds for all n.

The first step in the proof is a simple factorization lemma for homeomorphisms. Say that a set X is a standard infinite union of intervals if it is the image of $\bigcup_{n \in \mathbb{Z}}\left[n+\frac{1}{3}, n-\frac{1}{3}\right]$ under some $f \in \operatorname{Homeo}_{0}(\mathbb{R})$. We denote by $\operatorname{supp}(h)$ the support of a homeomorphism h.

Lemma 2.2. Let $\left\{f_{n}\right\} \subset \operatorname{Homeo}_{0}(\mathbb{R})$. There exist sets $X, Y \subset \mathbb{R}$, each a standard infinite union of intervals, and for each n a factorization $f_{n}=g_{n} h_{n} k_{n}$, where k_{n} has compact support, $\operatorname{supp}\left(g_{n}\right) \subset X$, and $\operatorname{supp}\left(h_{n}\right) \subset Y$.

Proof. This is a special (easier) case of Lemma 4.4, this case can be done by hand as follows. We denote by $[a \pm \varepsilon]$ the interval $[a-\varepsilon, a+\varepsilon]$. First, we inductively define the endpoints of the
intervals in X. Assume without loss of generality that $f_{0}=\mathrm{id}$, and let $X_{0}=[-3,-1] \sqcup[1,3]$. Inductively, suppose we have defined $X_{k}=\left[-x_{k}^{+},-x_{k}^{-}\right] \sqcup\left[x_{k}^{-}, x_{k}^{+}\right]$and points z_{k-1} for all $k<n$. Let $x_{n}^{-}=x_{n-1}^{+}+1$. Choose z_{n} large enough, so that the interval $\left[z_{n} \pm \frac{1}{2}\right]$ and all its images under f_{0}, \ldots, f_{n} are located on the right-hand side of x_{n}^{-}, and the interval $\left[-z_{n} \pm \frac{1}{2}\right]$ and all its images under f_{0}, \ldots, f_{n} are located on the left-hand side of $-x_{n}^{-}$. For instance, one could take $z_{n}=\max \left\{\left(x_{n}^{-}, f_{j}^{-1}\left(x_{j}^{-}\right),-f_{j}^{-1}\left(-x_{j}^{-}\right): j \leqslant n\right\}+1\right.$. Now choose x_{n}^{+}large enough so that $\left[-x_{n}^{+}, x_{n}^{+}\right]$contains all the intervals $f_{j}\left(\left[-z_{n} \pm \frac{1}{2}\right]\right), f_{j}\left(\left[-z_{n} \pm \frac{1}{2}\right]\right)$ for $j \leqslant n$. Let $X_{n}=$ $\left[-x_{n}^{+},-x_{n}^{-}\right] \cup\left[x_{n}^{+}, x_{n}^{-}\right]$.

The purpose of this construction is to guarantee that, for every $j<n$, there exists a homeomorphism of \mathbb{R} supported on X_{n} that agrees with f_{j} on $\left[-z_{n} \pm \frac{1}{2}\right] \cup\left[z_{n} \pm \frac{1}{2}\right]$. Such a homeomorphism exists because X_{n} contains an interval containing both $\left[-z_{n} \pm \frac{1}{2}\right]$ and its image under f_{j} (and similarly for $\left[z_{n} \pm \frac{1}{2}\right]$ and its image).

Let $X:=\sqcup X_{j}$, let $Y^{\prime}=\bigcup_{n \geqslant 1}\left[-z_{n} \pm \frac{1}{2}\right] \cup\left[z_{n} \pm \frac{1}{2}\right]$, and let $Y=\mathbb{R} \backslash Y^{\prime}$. Then X and Y both are standard infinite unions of intervals. The observation in the previous paragraph says that, for each n, we can find $g_{n} \in \operatorname{Homeo}_{0}(\mathbb{R})$ supported on X that coincides with f_{n} on the subset

$$
\bigcup_{m \geqslant n}\left[-z_{m} \pm \frac{1}{2}\right] \cup\left[z_{m} \pm \frac{1}{2}\right]
$$

of Y^{\prime}, so $g_{n}^{-1} f_{n}$ is the identity there. In particular $g_{n}^{-1} f_{n}$ fixes $\pm z_{n}$ and we may write $g_{n}^{-1} f_{n}=h_{n} k_{n}$ with k_{n} supported on $\left[-z_{n}, z_{n}\right]$ and h_{n} supported on the complement. Actually h_{n} is supported on

$$
\mathbb{R} \backslash\left(\left[-z_{n}, z_{n}\right] \cup \bigcup_{m \geqslant n}\left[-z_{m} \pm \frac{1}{2}\right] \cup\left[z_{m} \pm \frac{1}{2}\right]\right)
$$

which is a subset of Y, and we have $f_{n}=g_{n} h_{n} k_{n}$ as required by the lemma.

Now to prove Proposition 2.1, take the sequences k_{n}, g_{n} and h_{n} given by the lemma. We will build sets S_{1}, S_{2} and $S_{3} \subset \operatorname{Homeo}_{0}(\mathbb{R})$ with $\left|S_{1}\right|=4$ and $\left|S_{2}\right|=\left|S_{3}\right|=3$ such that $\ell_{S_{1}}\left(k_{n}\right) \leqslant 6 n+4, \ell_{S_{2}}\left(g_{n}\right) \leqslant 4 n+4$, and $\ell_{S_{3}}\left(h_{n}\right) \leqslant 4 n+4$.

Proof. Given that each k_{n} has compact support, we may take compact intervals K_{n} with $\operatorname{supp}\left(k_{n}\right) \subset K_{n}$, such that K_{i} is contained in the interior of K_{i+1}, and such that $\bigcup_{n} K_{n}=\mathbb{R}$. Let $d: \mathbb{R} \rightarrow \mathbb{R}$ be a homeomorphism such that $d\left(K_{i}\right)$ contains K_{i+1} for all i. Then $\operatorname{supp}\left(d^{n} k_{n} d^{-n}\right) \subset K_{1}$.

We now use a classical trick. It appears, perhaps first, in Fisher [13], but also in a related form in [15] and later in [7] (and probably elsewhere!).

Construction 2.3. Suppose $\left\{a_{n}\right\}$ is a sequence of homeomorphisms supported on a set Z, and there exist homeomorphisms T and S such that

1. the sets $Z, S(Z), S^{2}(Z) \ldots$ are pairwise disjoint;
2. the sets $\operatorname{supp}(S), T(\operatorname{supp}(S)), T^{2}(\operatorname{supp}(S)) \ldots$ are pairwise disjoint; and
3. the maximum diameter of the connected components of $T^{n}(\operatorname{supp}(S))$ and of $S^{n}(Z)$ converges to 0 as $n \rightarrow \infty$.

Denote $a^{b}=b a b^{-1}$. Since the map $a_{n}^{T^{n}} S^{m}$ is supported on $T^{n} S^{m}(Z)$, the three above properties entail that the function

$$
A(x):=\prod_{n \geqslant 0, m \geqslant 0} a_{n}^{T^{n} S^{m}}(x)
$$

defines a homeomorphism. Moreover, it is easily verified that the commutator

$$
\left[A^{T^{-n}}, S\right]=A^{T^{-n}}\left(A^{-1}\right)^{S T^{-n}}=a_{n}
$$

by checking this equality separately on each set $T^{n} S^{m}(Z)$.
REMARK 2.4. Other variants of condition 3 can also be used in this construction. For example, it can be replaced by either of
3^{\prime} the collection of sets $Z, S(Z), S^{2}(Z) \ldots$ and $\operatorname{supp}(S), T(\operatorname{supp}(S)), T^{2}(\operatorname{supp}(S)) \ldots$ are locally finite;
$3^{\prime \prime}$ the maximum diameter of a connected component of $S^{n}(Z)$ converges to 0 , and $\operatorname{supp}(S)$, $T(\operatorname{supp}(S)), T^{2}(\operatorname{supp}(S)) \ldots$ is locally finite.

We will apply Construction 2.3 to the sequence $a_{n}:=d^{n} k_{n} d^{-n}$ supported on K_{1}. To do this, we may take T to be supported on a neighborhood of K_{1}, and to satisfy $T\left(K_{1}\right) \cap K_{1}=\emptyset$. Then let S be a homeomorphism supported on a smaller neighborhood N of K_{1}, small enough so that $T(N) \cap N=\emptyset$, and again satisfying $S\left(K_{1}\right) \cap K_{1}=\emptyset$. We can choose T and S such that Property 3 of the construction is satisfied. Let $S_{1}=\{d, A, S, T\}$, then $k_{n}=d^{-n} a_{n} d^{n}$ is a word of length $6 n+4$ in S_{1}.

Similarly, given the sequence $\left\{g_{n}\right\}$ supported on X (a standard union of disjoint intervals), we can find a homeomorphism T^{\prime} supported on a neighborhood N_{X} of X that consists of pairwise disjoint neighborhoods of the intervals comprising X, and satisfying $T^{\prime}(X) \cap X=\emptyset$. Then take S^{\prime} to be supported on a smaller neighborhood, say N_{X}^{\prime} of X, so that translates of N_{X}^{\prime} by T^{\prime} are also disjoint. Choose T^{\prime} and S^{\prime} that satisfies Property 3 . Together with the construction, this gives a set S_{2} of cardinality 3 so that each g_{n} is a word of length $4 n+4$ in S_{2}.

Finally, as Y is also a standard union of disjoint intervals, this same argument applies verbatim to the sequence $\left\{h_{n}\right\}$ supported on Y.

Remark 2.5. This proof can be generalized directly to $\operatorname{Homeo}_{0}\left(\mathbb{R}^{n}\right)$ using collections of disjoint concentric annuli in the place of our sets X and Y of disjoint intervals. However, the strategy does not immediately apply to $\operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{n}\right)$ for any n and any $r \geqslant 1$, since the 'infinite product' of conjugates of compactly supported diffeomorphisms, as in Construction 2.3, will not generally be differentiable.

We conclude this section by noting an interesting application to orderable groups.
Corollary 2.6. Let G be a countable left-ordered group. Then there exists a finitely generated left-orderable group H containing G. Moreover, one can order H such that the inclusion $H \rightarrow G$ is order preserving.

Proof. Given G, realize G as a subgroup of $\operatorname{Homeo}_{+}(\mathbb{R})$; this can be done so that the linear order on G agrees with that on the orbit $G(0) \subset \mathbb{R}$ under the usual order on \mathbb{R}. (This is standard, see, for example, [10, Proposition 1.1.8]). Proposition 2.1 implies that $G \subset H$, for some finitely generated group $H \subset \operatorname{Homeo}_{+}(\mathbb{R})$. Now H can be given a left-invariant order that agrees with the given order on G - in fact all of $\operatorname{Homeo}_{+}(\mathbb{R})$ can be given such an order, following $[\mathbf{1 0}, \S$ 1.1.3].

Remark 2.7. Related to order structures, we also note that the strategy of the proof of Proposition 2.1 appears to give an alternative proof of results in [11]. Droste and Holland
show there that that the automorphism group of a doubly homogeneous chain (meaning a totally ordered set where the set of order-preserving bijections acts transitively on pairs) has uncountable cofinality. Interpreting $[a, b]$ as $\{c: a \leqslant c \leqslant b\}$ in our proof allows one to extend it to a more general setting.

3. Schreier's property for $\operatorname{Diff}_{0}^{r}(M), M$ closed

In this section we prove Theorem 1.2 for the case of diffeomorphism groups of closed manifolds. We defer the case of open manifolds until after the proof of strong boundedness for $\operatorname{Diff}{ }_{0}^{r}\left(\mathbb{R}^{n}\right)$.

The proof uses the following two classical results.
Theorem 3.1 (Simplicity of diffeomorphism groups [1, 23, 24, 30]). Let M be a connected manifold (without boundary), and $r \neq \operatorname{dim}(M)+1$. Then the identity component of the group of compactly supported C^{r} diffeomorphisms of M, denoted $\operatorname{Diff}_{c}^{r}(M)$, is a simple group.

Here, the C^{∞} case is due to Thurston [30], and the C^{r} case, for $1 \leqslant r<\infty$ is from Mather $[\mathbf{2 3}, \mathbf{2 4}]$. Mather and Thurston's proofs use different arguments, but both deal with group homology and are quite deep. The C^{0} case of the theorem, modulo the next 'fragmentation lemma', is much easier and originally due to Anderson [1].

Lemma 3.2 (Fragmentation). Let M be a compact (not necessarily closed) manifold, and \mathcal{U} a finite open cover of M. Then $\operatorname{Diff}_{0}^{r}(M)$ is generated by the set

$$
\left\{f \in \operatorname{Diff}_{0}^{r}(M): \operatorname{supp}(f) \subset U \text { for some } U \in \mathcal{U}\right\}
$$

The proof of Lemma 3.2 for groups of homeomorphisms is a major result of Edwards and Kirby, it uses the topological torus trick [12]. The proof for C^{r}-diffeomorphisms is much easier: it uses only the fact that each C^{r} diffeomorphism near the identity can be written as the time one map of a time-dependent vector field; one then 'cuts off' such vector fields by suitable bump functions. See $[\mathbf{3}, \mathbf{5}]$ for an exposition.

We will also use a lemma on affine subgroups.
Lemma 3.3 (Existence of affine subgroups). Let $B \subset \mathbb{R}^{n}$ be a compact ball. There exist one-parameter families of smooth diffeomorphisms f^{t} and g^{s} supported on B and satisfying the relations $f^{t} g^{s} f^{-t}=g^{s e^{t}}$ for all s, t.

The idea of the proof in the one-dimensional case is to conjugate the standard affine group in $\operatorname{Diff}_{0}^{\infty}(\mathbb{R})$ generated by the flows $f^{t}(x)=e^{t} x$ and $g^{s}(x)=x+s$ by a suitable homeomorphism from \mathbb{R} to $(0,1)$ so as to 'flatten' derivatives at the endpoints; this is generalized to higher dimensional manifolds by embedding a family of copies of $(0,1)$ inside a ball.

Proof. For the one-dimensional case, we follow [26, §4.3]. Fix $\epsilon<\frac{1}{2}$, and define homeomorphisms $f_{1}:(0,1) \rightarrow \mathbb{R}$ and $f_{2}:(0,1) \rightarrow(0,1)$ by

$$
f_{1}(x)=\left\{\begin{array} { r l }
{ - 1 / x } & { \text { for } x \in (0 , \epsilon) } \\
{ e ^ { - 1 / x } } & { \text { for } x \in (\epsilon , 1) }
\end{array} \quad f _ { 2 } (x) \left\{\begin{array}{rl}
1 /(1-x) & \text { for } x \in(0, \epsilon) \\
1-e^{1 /(x-1)} & \text { for } x \in(\epsilon, 1)
\end{array}\right.\right.
$$

and let $f:(0,1) \rightarrow \mathbb{R}$ be the composition $f=f_{1} \circ f_{2}^{2}$.
The standard affine group in $\operatorname{Diff}^{\infty}(\mathbb{R})$ is has its Lie algebra generated by the vector fields $\frac{\partial}{\partial x}$ and $x \frac{\partial}{\partial x}$. Thus, $f^{*}\left(\frac{\partial}{\partial x}\right)$ and $f^{*}\left(x \frac{\partial}{\partial x}\right)$ generate an affine subgroup of $(0,1)$. One checks that these extend to smooth vector fields on $[0,1]$ that are infinitely flat at the endpoints, hence extend to smooth vector fields on $(-\delta, 1+\delta)$ supported on $[0,1]$. These generate an
affine subgroup $G \subset \operatorname{Diff}^{\infty}([-\delta, 1+\delta])$ supported on $[0,1]$. Let $G(n)$ be the affine subgroup of $\operatorname{Diff}^{\infty}\left([-\delta, 1+\delta] \times S^{n-1}\right)$ given by the product action of G on the $[-\delta, 1+\delta]$ factor, and trivial action on the S^{n-1} factor.

Finally, given a manifold M of dimension n and open ball B, we can take ϕ to be a smooth embedding of $(-\delta, 1+\delta) \times S^{n-1}$ in M, and consider the affine subgroup given by extending each element of $\phi G(n) \phi^{-1}$ to agree with the identity outside of the image of ϕ.

Although Theorem 3.1 means that every $f \in \operatorname{Diff}_{c}^{r}(M)$ can be written as a product of commutators, Mather's proof is nonconstructive, so gives no control on the norms of the elements in these commutators and the number of commutators in terms of the norm of f. (It is however possible to control the norm and number in the $r=\infty$ and $r=0$ cases; see [16] for the C^{∞} case, the C^{0} case is an exercise.) The benefit to working inside of affine subgroups is that elements close to the identity can always be written as commutators of elements close to the identity. Precisely, we have the following corollary of Lemma 3.3, giving control on norms of elements that will be used later on.

Corollary 3.4. Let r be arbitrary, and let G be an affine subgroup of $\operatorname{Diff}_{c}^{r}(M)$ generated by C^{r} flows f^{t} and g^{s} satisfying relations as in Lemma 3.3. For any neighborhood \mathcal{U} of id in $\operatorname{Diff}_{c}^{r}(M)$, there exists a neighborhood \mathcal{V} of id such that, if $g^{s} \in \mathcal{V}$, then g^{s} can be written as a single commutator of elements of $\mathcal{U} \cap G$.

Proof. Since the flows f^{t} and g^{s} are continuous in t and s, it suffices to show that, given $\epsilon>0$, there exists $\delta_{0}>0$ such that if $\delta<\delta_{0}$, then g^{δ} can be written as a commutator $\left[f^{t}, g^{s}\right]$ with $t, s<\epsilon$. This is immediate from the relation in affine group, which gives $f^{t} g^{s}\left(f^{t}\right)^{-1}\left(g^{s}\right)^{-1}=$ $g^{s\left(e^{t}-1\right)}$.

The next proposition is the main result of this section.
Proposition 3.5 (Theorem 1.2, closed manifold case). Let M be a closed manifold, and $\left\{f_{n}\right\} \subset \operatorname{Diff}_{0}^{r}(M)$. Assume $r \neq \operatorname{dim}(M)+1$. Then there exists a finite set $S \subset \operatorname{Diff}_{0}^{r}(M)$ such that $\left\{f_{n}\right\} \subset\langle S\rangle$

We start with an obvious lemma.
Lemma 3.6. Let G be a group, and let X be a generating set for G. Then G has the Schreier property if and only if, for every sequence $x_{n} \in X$, there exists a finite set $\mathcal{S} \subset G$ such that $\left\{x_{n}\right\} \subset\langle\mathcal{S}\rangle$.

Proof. Let G be a group generated by a subset X. The condition on sequences in X is an immediate consequence of the Schreier property. For the converse, assume X has the property in the lemma. Now if f_{n} is an arbitrary sequence in G, we may write $f_{n}=f_{n, 1} \ldots f_{n, j(n)}$ where each $f_{n, i} \in X$. Now apply the assumption from the lemma to the countable set $\left\{f_{n, i}\right\}$. This provides a set that \mathcal{S} that generates each f_{n}.

Now to prove the proposition.
Proof. Fix a finite cover of M by open balls. The fragmentation lemma states that the set of diffeomorphisms whose support lies in a single element of the cover is a generating set for Diff ${ }_{0}^{r}(M)$. By Lemma 3.6 and the fact that the cover is finite, it suffices to show that for an
open ball B and any sequence $\left\{f_{n}\right\} \subset \operatorname{Diff}_{c}^{r}(B)$, there exists a finite set $S \subset \operatorname{Diff}^{r}(M)$ such that $\left\{f_{n}\right\} \subset\langle S\rangle$.

Since $\operatorname{Diff}_{c}^{r}(B)$ is simple, Lemma 3.3 implies that it is generated by the set
$\left\{g: g\right.$ is the time 1 map of a flow g^{s} from an affine subgroup $\}$.
Thus, again using Lemma 3.6, we can reduce to the case where each f_{n} is the time one map of a flow g_{n}^{s} from some affine subgroup.

The next short lemma is based on an idea of Avila [2]. To fix terminology, let M be a C^{r} manifold, and let B^{\prime} be an embedded Euclidean ball in M, that is, the image of a standard Euclidean ball by some C^{r} diffeomorphism ϕ. This allows us to push forward the standard C^{r} norm on $\operatorname{Diff}_{c}^{r}\left(\mathbb{R}^{n}\right)$ to $\operatorname{Diff}_{c}\left(B^{\prime}\right)$, the subset of $\operatorname{Diff}_{c}(M)$ consisting of diffeomorphisms supported on the interior of B^{\prime}. Abusing notation somewhat, we denote this push-forward C^{r} norm by $\|f\|_{r}$. Note that the induced left-invariant distance $d_{r}(f, g):=\left\|f^{-1} g\right\|_{r}$ on Diff ${ }_{c}\left(B^{\prime}\right)$ generates the topology of $\operatorname{Diff}_{c}\left(B^{\prime}\right) \subset \operatorname{Diff}_{c}(M)$.

Lemma 3.7. Let $Z \subset M$ be an open set, and $T \in \operatorname{Diff}_{0}^{r}(M)$ such that the translates $T^{n}(Z)$ are pairwise disjoint and contained in an embedded ball B^{\prime}. Then there exist $\epsilon_{n} \rightarrow 0$ (depending on T) such that, if a_{n} is a sequence of diffeomorphisms with $\left\|a_{n}\right\|<\epsilon_{n}$ and support on Z, then the infinite product $\prod_{n} T^{n} a_{n} T^{-n}$ is a C^{r} diffeomorphism.

Proof. Fix $T \in \operatorname{Diff}_{0}^{r}(M)$ such that the translates $T^{n}(Z)$ are pairwise disjoint. For each n, conjugation by T^{n} is a continuous automorphism of $\operatorname{Diff}_{0}^{r}(M)$, so there exists ϵ_{n} such that, if a_{n} has C^{r}-norm less than ϵ_{n}, then $T^{n} a_{n} T^{-1}$ has C^{r} norm less than 2^{-n}. Thus, for any such sequence a_{n}, the sequence

$$
A_{k}:=\prod_{i=1}^{k} T^{n} a_{n} T^{-1}
$$

is Cauchy, so converges in the C^{r} topology to the diffeomorphism $\prod_{n \in \mathbb{N}} T^{n} a_{n} T^{-n}$.
To apply this to our situation, let $Z \subset M$ be an open ball, and let T and $S \in \operatorname{Diff}_{0}^{r}(M)$ be such that the translates $T^{n}(Z), S^{m}(Z)$ for $n \in \mathbb{Z}$ and $m \in \mathbb{Z} \backslash\{0\}$ are all pairwise disjoint. If $\operatorname{dim}(M)=1$, one can take S and T as in the proof of Proposition 2.1, the higher dimensional case is entirely analogous. Using Lemma 3.7, let ϵ_{n} be such that if a_{n} and b_{n} are sequences of diffeomorphisms with $\left\|a_{n}\right\|_{r}<\epsilon_{n}$ and $\left\|b_{n}\right\|_{r}<\epsilon_{n}$, then the infinite compositions $\prod S^{n} a_{n} S^{-n}$ and $\prod T^{n} b_{n} T^{-n}$ are C^{r} diffeomorphisms. By Corollary 3.4, if we fix $k=k(n)$ sufficiently large, then we can write $g_{n}^{1 / k}$ as a commutator $\left[a_{n}, b_{n}\right]$, such that the $\left\|a_{n}\right\|_{r}<\epsilon_{n}$ and $\left\|b_{n}\right\|_{r}<\epsilon_{n}$. In this case, $g_{n}=\left[a_{n}, b_{n}\right]^{k(n)}$.

Now we apply Lemma 3.7. Define C^{r}-diffeomorphisms A and B by

$$
\begin{aligned}
A & :=\prod S^{n} a_{n} S^{-n} \\
B & :=\prod T^{n} b_{n} T^{-n}
\end{aligned}
$$

Note that the intersection of the supports of the maps $S^{-n} A S^{n}$ and $T^{-n} B T^{n}$ is contained in Z, and on that set they coincide, respectively, with a_{n} and b_{n}. Thus $\left[a_{n}, b_{n}\right]=\left[S^{-n} A S^{n}, T^{-n} B T^{n}\right]$ which shows that the sequence g_{n} is generated by the set $\mathcal{S}=\{A, B, T, S\}$. This completes the proof.

3.1. Mapping class groups, extensions and quotients

To finish the proof of Theorem 1.2 for closed manifolds, we need to show Diff ${ }^{r}(M)$ has the Schreier property if and only if the mapping class group is finitely generated. This is a direct consequence of the following observation.

Proposition 3.8. If G is a group with the Schreier property, then any quotient of G has the Schreier property. If A and C are groups with the Schreier property, then any extension $1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$ has the Schreier property.

The same statements hold when the Schreier property is replaced by strong distortion.

Proof. The first statement is immediate from the definition of the property. For the second statement, given a sequence $b_{n} \in B$, let $S_{1} \subset C$ be a finite set generating the images of b_{n} in C, and let S_{1}^{\prime} be a transversal for S_{1} in B. Then, for each n there exists $a_{n} \in A$ such that $a_{n} b_{n} \in\left\langle S_{1}^{\prime}\right\rangle$. Let $S_{2} \subset A \subset B$ be a finite set generating $\left\{a_{n}\right\}$, and let $S=S_{1}^{\prime} \cup S_{2}$.

In the case where A and C have strong distortion (say with sequences w_{n}^{A} and w_{n}^{C}, respectively), choosing S_{1}^{\prime} such that the images of b_{n} in C have length at most w_{n}^{C} in S_{1}, and S_{2} such that a_{n} has length at most w_{n}^{A} in S_{2}, shows that B is strongly distorted with sequence $w_{n}^{A}+w_{n}^{C}$.

Now our claim about mapping class groups follows from the fact that a countable group has the Schreier property if and only if it is finitely generated, and that the mapping class group is the quotient of $\operatorname{Diff}^{r}(M)$ by $\operatorname{Diff}_{0}^{r}(M)$.

Note that examples where mapping class groups cannot be finitely generated do indeed occur: for one concrete example, Hatcher [17] and Hsiang-Sharpe [19] have independently computed the mapping class group $\operatorname{Diff}{ }^{\infty}\left(\mathbb{T}^{5}\right) / \operatorname{Diff}_{0}^{\infty}\left(\mathbb{T}^{5}\right)$, and it is not finitely generated.

4. Strong distortion for $\operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{n}\right)$

In this section we will prove the following result.

TheOrem 4.1 (Strong distortion for $\operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{d}\right)$). Let $0 \leqslant r \leqslant \infty, r \neq d+1$, and let $\left\{f_{n}\right\} \subset \operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{d}\right)$. Then there exists a set $\mathcal{S} \subset \operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{d}\right)$ with 17 elements, such that each f_{n} can be written as a word of length $50 n+24$ in \mathcal{S}.

Since $\operatorname{Diff}{ }_{0}^{r}\left(\mathbb{R}^{d}\right)$ is the index two subgroup of orientation preserving C^{r} diffeomorphisms in $\operatorname{Diff}{ }^{r}\left(\mathbb{R}^{d}\right)$, an argument as in Section 3.1 implies that $\operatorname{Diff}^{r}\left(\mathbb{R}^{d}\right)$ is strongly distorted also.

To prove Theorem 4.1, we additionally need the following theorem of Burago, Ivanov, and Polterovich.

Theorem [6, Theorem 1.18]. Let M be a manifold diffeomorphic to a product $M^{\prime} \times \mathbb{R}^{n-1}$. If $\operatorname{Diff}_{c}^{r}(M)$ is perfect, then any element may be written as the product of two commutators.

This theorem applies in the more general context where M is a 'portable manifold', but we only need this special case here. The statement in [6] is given for C^{∞} diffeomorphisms, but the proof does not use smoothness and applies directly to the C^{r} case, for any r.

The uniform bound on commutator length from Burago-Ivanov-Polterovich will help us control word length in the proof of strong boundedness. The other major tool towards this end is a variant of Lemma 3.7 avoiding the earlier hypothesis that the norms of diffeomorphisms a_{n} are bounded by a sequence tending to zero. Instead, we will use the unboundedness of \mathbb{R}^{d} to

Figure 1. Configuration of cubes in \mathbb{R}^{2} satisfying the properties of Lemma 4.2.
displace supports so as to avoid accumulation points. This is the purpose of the next technical lemma.

Lemma 4.2. There exist $S, T \in \operatorname{Diff}_{0}^{\infty}(\mathbb{R})$ that are the identity on $(-\infty, 0]$, and a sequence $\left\{I_{k}\right\}_{k \geqslant 0}$ of intervals in $(0,+\infty)$, such that

1. the family $\left\{S^{i} I_{k_{1}}, T^{j} I_{k_{2}}, i, j, k_{1}, k_{2} \geqslant 0\right\}$ is locally finite, and
2. the intervals $S^{i} I_{k_{1}}, T^{j} I_{k_{2}}$ for $i, j \in \mathbb{Z}$ and $k_{1}, k_{2} \geqslant 0$ are pairwise disjoint (with the trivial exception of $S^{0} I_{k}=T_{1}^{0} I_{k}=I_{k}$ for all k).

Figure 1 gives a graphical description of properties 1 and 2 from Lemma 4.2. The figure shows a configuration of rectangles I_{k} in \mathbb{R}^{2}, and their images under diffeomorphisms S and T, that satisfy both properties. It is much harder to achieve this configuration for intervals in \mathbb{R}; this is the technical work in proof of the lemma.

Proof. Let S be a smooth diffeomorphism of the line which is the identity on $(-\infty, 0]$, and which coincides with an affine map fixing 2 , say $x \mapsto 2(x-2)+2$, on $[2,+\infty)$. Similarly, let T_{0} be a smooth diffeomorphism of the line which is the identity on $(-\infty, 0]$, which coincides with S on $[3,+\infty)$, fixes 1 , and has no fixed point in $(1,+\infty)$. Note that for every point $x>2$, the sequence $S^{-n}(x)$ converges to 2 as $n \rightarrow \infty$, while the sequence $T_{0}^{-n}(x)$ converges to 1 .

We will define the intervals $I_{0}, I_{1}, I_{2}, \ldots$ iteratively, modifying T_{0} at each step to produce diffeomorphisms $T_{0}^{\prime}, T_{1}^{\prime}, T_{2}^{\prime}, \ldots$, designed to converge to a diffeomorphism T with our desired properties.

Take any point $x_{0} \geqslant 3$ such that $x_{0} \notin\left\{T_{0}^{k}(2): k>0\right\}$. I_{0} will be the closure of a small neighborhood of x_{0}, of size to be determined after the construction of T_{0}^{\prime}. For this, we consider the backward iterates of x_{0} under T_{0} and S. If there is no common iterate, that is, $\left\{S^{-n}\left(x_{0}\right)\right.$: $n>0\} \cap\left\{T_{0}^{-n}\left(x_{0}\right): n>0\right\}=\emptyset$, then we let $T_{0}^{\prime}=T_{0}$. Otherwise, we modify T_{0} as follows. Choose x_{0}^{\prime} close to x_{0} outside the countable set $\left\{T_{0}^{m} S^{-n}\left(x_{0}\right): n, m>0\right\}$, so that the backward iterates of x_{0}^{\prime} under T_{0} are disjoint from the backward iterates of x_{0} under S. Then modify T_{0} near $T_{0}^{-1}\left(x_{0}^{\prime}\right)$ to obtain a map T_{0}^{\prime} such that $T_{0}^{\prime}\left(T_{0}^{-1}\left(x_{0}^{\prime}\right)\right)=x_{0}$. This can be done, for instance,
by taking a diffeomorphism h with support on a small neighborhood of $T_{0}^{-1}\left(x_{0}^{\prime}\right)$ disjoint from $\left\{T_{0}^{-m}\left(x_{0}\right): m>1\right\}$, and setting $T_{0}^{\prime}=h \circ T_{0}$.

Now the backward iterates of x_{0} under T_{0}^{\prime} coincide with the backward iterates of x_{0}^{\prime} under T_{0}, and thus are disjoint from the backward iterates of x_{0} under S. Note that by choosing x_{0}^{\prime} sufficiently close to x_{0} we may keep the property that $x_{0} \notin\left\{T_{0}^{\prime k}(2): k>0\right\}$.

Since $\left\{T_{0}^{\prime-n}\left(x_{0}\right): n>0\right\} \cap\left[2, x_{0}\right]$ is finite and does not contain 2 , and since $\left[2, x_{0}\right]$ contains $\left\{S^{-n}\left(x_{0}\right): n>0\right\}$, if I_{0} is a sufficiently small neighborhood of x_{0}, then every image $T_{0}^{\prime-n}\left(I_{0}\right)$ will be disjoint from $\bigcup_{n>0} S^{-n}\left(I_{0}\right)$. Fix any such interval I_{0}.

At this point, the T_{0}^{\prime}-forward iterates $\left\{T_{0}^{\prime n}\left(I_{0}\right): n>0\right\}$ of I_{0} coincide with its S-forward iterates. We now further modify T_{0}^{\prime} so that they are pairwise disjoint from the iterates under S. To do this, fix a small neighborhood U of $S\left(I_{0}\right)$ so that $U \cap S(U)=\emptyset$, and let I_{0}^{\prime} be a small interval in U disjoint from $S\left(I_{0}\right)$. Then all the S-forward iterates of I_{0}^{\prime} and $S\left(I_{0}\right)$ are disjoint. Now modify T_{0}^{\prime} by postcomposing it with a diffeomorphism h supported on U and such that $h\left(I_{0}\right)=I_{0}^{\prime}$. Call this new map T_{1}, and note that $T_{1}\left(I_{0}\right)=I_{0}^{\prime}$. We have achieved the following properties:
(i) the family $\left\{S^{i} I_{0}, T_{1}^{j} I_{0}: i, j \geqslant 0\right\}$ is locally finite;
(ii) the intervals $S^{i} I_{0}, T_{1}^{j} I_{0}$ for $i, j \in \mathbb{Z}$ are pairwise disjoint, with the trivial exception of $S^{0} I_{0}=T_{1}^{0} I_{0}=I_{0}$.

Let Z_{0} be the union of the intervals in the family from (ii) above. We define the interval I_{1} by a similar procedure to that of I_{0}. Choose some point $x_{1}>S\left(x_{0}\right)$, outside Z_{0}, which is not a forward iterate of the point 2 under T_{1}. As before, modify T_{1} near $T_{1}^{-1}\left(x_{1}\right)$ if necessary to obtain a map T_{1}^{\prime} so that the set of backward iterates of x_{1} under T_{1}^{\prime} is disjoint from the set of backward iterates of x_{1} under S. The same argument as above implies that we may find a small interval I_{1} around x_{1}, taken sufficiently small so that it is disjoint from the set Z_{0}, such that every T_{1}^{\prime}-backward iterate of I_{1} is disjoint from every S-backward iterate of I_{1}. As the forward iterates of I_{1} under T_{1}^{\prime} and under S coincide we now modify T_{1}^{\prime} in a neighborhood of I_{1}, to get a map T_{2} with the property that all the T_{2}-forward iterates of I_{1} are disjoint and disjoint from its S-forward iterates.

We repeat the same process iteratively. At the k th step, choose $x_{k}>S\left(x_{k-1}\right)$, modify the already defined T_{k} to T_{k}^{\prime} as above in order to be able to choose a suitable small neighborhood I_{k} of x_{k} and then modify T_{k}^{\prime} by composing with a diffeomorphism supported on a neighborhood of $S\left(I_{k}\right)$ to get T_{k+1} so that the following properties hold:
(i) the family $\left\{S^{i} I_{m}, T_{k+1}^{j} I_{m}: i, j \geqslant 0, m \leqslant k\right\}$ is locally finite; and
(ii) the intervals in the family $S^{i} I_{m}, T_{k+1}^{j} I_{m}$ for $i, j \in \mathbb{Z}, m \leqslant k$ are pairwise disjoint, with the trivial exception $S^{0} I_{m}=T^{0} I_{m}$.

Since, at each step, we choose I_{k} to be a small interval about a point $x_{k} \geqslant S\left(x_{k-1}\right)$, the sequence of intervals $\left\{I_{k}\right\}$ is locally finite. And since on every compact subset K of the line, all but a finite number of the maps T_{k} agree, the sequence $\left\{T_{k}\right\}$ converges to an element T of $\operatorname{Diff}^{\infty}(\mathbb{R})$. By construction, these maps T, S and the sequence $\left\{I_{k}\right\}$ satisfy properties 1 . and 2 . from the statement of the lemma.

The next step is a natural generalization of Lemma 2.2. However, since we are now working in higher dimensions, we need to use the annulus theorem (proved by Kirby [21] and Quinn [27] for the difficult case $r=0$). As an alternative to the annulus theorem, one can use the related Edwards-Kirby theory of deformations of embeddings. We will take this latter approach in the next section, for now we use the more familiar annulus theorem directly. The precise consequence that we need is the following.

LEMMA 4.3 (consequence of the annulus theorem). Let $B_{1} \subset B_{2} \subset B_{3} \subset B_{4}$ be standard Euclidean closed balls in \mathbb{R}^{d} centered at 0 with pairwise disjoint boundaries. Let A be the annulus $B_{3} \backslash \operatorname{Int}\left(B_{2}\right)$. Suppose $f \in \operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{d}\right)$ satisfies $f(A) \subset \operatorname{Int}\left(B_{4}\right) \backslash B_{1}$, and that $f(A)$ is homotopically essential in the annulus $\operatorname{Int}\left(B_{4}\right) \backslash B_{1}$. Then there exists $h \in \operatorname{Diff} r=\left(\mathbb{R}^{d}\right)$ supported on $B_{4} \backslash B_{1}$ that agrees with f on A.

Proof. Let $B(R)$ denote the standard Euclidean ball of radius R. It is a standard corollary of the annulus theorem that, if γ is a C^{r} embedding of $B\left(\frac{1}{2}\right)$ into $B(1)$, then $B(1) \backslash \operatorname{Int}\left(\gamma\left(B\left(\frac{1}{2}\right)\right)\right)$ is C^{r}-diffeomorphic to $B(1) \backslash \operatorname{Int}\left(B\left(\frac{1}{2}\right)\right)$. Moreover, the diffeomorphism can be taken to agree (meaning to agree up to order r) with the identity on ∂B and agree with γ on $\partial B\left(\frac{1}{2}\right)$.

This means that, given f as in the lemma, we may find $h_{1}: B_{4} \backslash B_{3} \rightarrow B_{4} \backslash f\left(B_{3}\right)$ that is the identity on ∂B_{4} and agrees with f on ∂B_{3}. Extend h_{1} to a homeomorphism of \mathbb{R}^{d} that agrees with f on B_{3} and the identity outside of B_{4}. By the same argument, we may find h_{2} that agrees with the identity on $f\left(\partial B_{2}\right)$ and agrees with f^{-1} on $f\left(\partial B_{1}\right)$; extend h_{2} to be the identity outside of $f\left(B_{2}\right)$ and agree with f^{-1} on $f\left(B_{1}\right)$. Now $h:=h_{2} h_{1}$ is supported on $B_{4} \backslash B_{1}$ and agrees with f on A.

Lemma 4.4. Let $\left\{f_{n}\right\} \subset \operatorname{Diff}_{0}\left(\mathbb{R}^{d}\right)$. There exist sets X and Y, each a union of a locally finite family of disjoint concentric annuli, such that we can write each element f_{n} as a product $f_{n}=k_{n} g_{n} h_{n}$, where each k_{n} has compact $\operatorname{support}, \operatorname{supp}\left(g_{n}\right) \subset X$, and $\operatorname{supp}\left(h_{n}\right) \subset Y$.

Proof. Similarly to the proof of Lemma 2.2, we first construct two sequences of concentric annuli. For $R>0$, let $B(R)$ denote the closed ball of radius R about 0 in \mathbb{R}^{d}. The annuli will be defined by

$$
A_{N}=B\left(R_{N}^{+}\right) \backslash \operatorname{Int} B\left(R_{N}^{-}\right), \quad A_{N}^{\prime}=B\left(R_{N}^{+}\right) \backslash \operatorname{Int} B\left(R_{N}^{\prime-}\right) \quad(N \geqslant 0)
$$

and have the properties that

- the annuli $A_{N}^{\prime}, N \geqslant 0$ are pairwise disjoint;
- for every $N \geqslant 0, A_{N}$ is contained in A_{N}^{\prime};
- for every $N \geqslant 0$ and for every $n \leqslant N$,
- $B\left(R_{N}^{-}\right)$is contained in the interior of $f_{n}\left(B\left(R_{N}^{-}\right)\right.$,
- $f_{n}\left(B\left(R_{N}^{+}\right)\right)$is contained in the interior of $B\left(R_{N}^{+}\right)$.

Note that the last point says that $f_{n}\left(A_{N}\right)$ is contained in A_{N}^{\prime} in a homotopically essential way.
We construct these annuli by induction, the procedure is quite analogous to that in Lemma 2.2. First set $R_{0}^{\prime-}=1$, then choose R_{0}^{-}large enough so that the ball $B\left(R_{0}^{\prime-}\right)$ is contained in the interior of $f_{0}\left(B\left(R_{0}^{-}\right)\right)$, then choose for R_{0}^{+}any number larger that $R_{0}^{-}+1$, and finally choose R_{0}^{+}large enough so that $f_{0}\left(B\left(R_{0}^{+}\right)\right)$is contained in the interior of $B\left(R_{0}^{+}\right)$. Now assume that the annuli have been constructed up to step N, satisfying the above properties. We construct A_{N+1} and A_{N+1}^{\prime} as follows. First choose $R_{N+1}^{\prime-}$ greater than $R_{N}^{\prime+}$. Then choose R_{N+1}^{-} large enough so that for every $n=0, \ldots, N+1$, the ball $B\left(R_{N+1}^{\prime-}\right)$ is contained in the interior of $f_{n}\left(B\left(R_{N+1}^{-}\right)\right)$. Then choose for R_{N+1}^{+}any number larger that $R_{N+1}^{-}+1$. Finally choose $R_{N+1}^{\prime+}$ large enough so that for every $n=0, \ldots, N+1$, the set $f_{n}\left(B\left(R_{N+1}^{+}\right)\right)$is contained in the interior of $B\left(R_{N+1}^{\prime+}\right)$.

Now let us fix some $n \geqslant 0$, and define the maps k_{n}, g_{n} and h_{n} as follows. The property that, for any $N \geqslant n$, the annulus $f_{n}\left(A_{N}\right)$ is contained in A_{N}^{\prime} in a homotopically essential way means that we can use Lemma 4.3 to find $h_{n} \in \operatorname{Diff}^{r}\left(\mathbb{R}^{d}\right)$ supported in the disjoint union $X:=\cup_{N} A_{N}^{\prime}$, and that coincides with f_{n} on a neighborhood of each A_{N} with $N \geqslant n$. Fix such an h_{n}. Let k_{n} agree with $f_{n} h_{n}^{-1}$ on the ball $B\left(R_{n}^{-}\right)$, and be the identity elsewhere. Define g_{n} to be the
restriction of $f_{n} h_{n}^{-1}$ to the complement of this ball, and the identity elsewhere. Note that $f_{n}=k_{n} g_{n} h_{n}$, and that g_{n} is compactly supported in the disjoint union of annuli

$$
Y:=\bigcup_{N \geqslant n} B\left(R_{N+1}^{-}\right) \backslash \operatorname{Int} B\left(R_{N}^{+}\right),
$$

this proves the lemma.
Proof of Theorem 4.1. Let $\left\{f_{n}\right\}$ be a sequence in $\operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{d}\right)$. We first apply Lemma 4.4, to get two sets X, Y and for each n a decomposition $f_{n}=k_{n} g_{n} h_{n}$, with $\operatorname{supp}\left(k_{n}\right)$ compact, $\operatorname{supp}\left(g_{n}\right) \subset X$ and $\operatorname{supp}\left(h_{n}\right) \subset Y$.
We first take care of the sequence $\left\{g_{n}\right\}$ supported in X. Apply Lemma 4.2 to get maps $S, T \in \operatorname{Diff}_{0}^{\infty}(\mathbb{R})$ and a sequence $\left\{I_{k}\right\}$ of intervals in $(0,+\infty)$. Using polar coordinates, we identify $\mathbb{R}^{d} \backslash\{0\}$ with $\mathbb{R} \times \mathbb{S}^{d-1}$, and let

$$
\hat{I}_{k}=I_{k} \times \mathbb{S}^{d-1}, \quad \hat{S}=S \times \mathrm{Id}, \quad \hat{T}=T \times \mathrm{Id} .
$$

Note that since S and T are the identity near $-\infty$, the maps \hat{S}, \hat{T} extends to smooth diffeomorphisms of \mathbb{R}^{d} fixing 0 . Also note that properties 1 and 2 of Lemma 4.2 still hold if we replace $\left\{I_{k}\right\}, S$ and T by the sequence of annuli $\left\{\hat{I}_{k}\right\}$ and the maps \hat{S}, \hat{T}.

Since $\left\{\hat{I}_{k}\right\}$ is a locally finite sequence of concentric pairwise disjoint annuli, there exists a diffeomorphism that sends the union of the annuli \hat{I}_{k} onto a neighborhood of the set X. Up to conjugating by this diffeomorphism, we may assume that $X=\cup_{k \geqslant 0} \hat{I}_{k}$, and each g_{n} is supported in the interior of X.

We now appeal to Burago-Ivanov-Polterovich's theorem stated above: for each fixed n and k we may write the restriction of g_{n} to \hat{I}_{k} as a product of two commutators of diffeomorphisms supported in \hat{I}_{k}. Since the \hat{I}_{k} are pairwise disjoint, we may take composition over k and get C^{r} diffeomorphisms $a_{n}, b_{n}, a_{n}^{\prime}$ and b_{n}^{\prime} supported in the union of the \hat{I}_{k}, such that $g_{n}=\left[a_{n}, b_{n}\right]\left[a_{n}^{\prime}, b_{n}^{\prime}\right]$.

We work first with the sequence $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ applying the same strategy from the compact manifold case.
Let

$$
A=\prod_{n \geqslant 0} \hat{S}^{n} a_{n} \hat{S}^{-n}, \quad B=\prod_{n \geqslant 0} \hat{T}^{n} b_{n} \hat{T}^{-n} .
$$

Note that these infinite products define diffeomorphisms of \mathbb{R}^{d}, because of local finiteness of the supports (Property 1 of Lemma 4.2.) Now Property 2 of the same lemma implies that for every $n \geqslant 0$ we have

$$
\left[a_{n}, b_{n}\right]=\left[\hat{S}^{-n} A \hat{S}^{n}, \hat{T}^{-n} B \hat{T}^{n}\right] .
$$

The same strategy (and the same \hat{S} and \hat{T}) can be used to give A^{\prime} and B^{\prime} such that $\left[a_{n}^{\prime}, b_{n}^{\prime}\right]=$ $\left[\hat{S}^{-n} A^{\prime} \hat{S}^{n}, \hat{T}^{-n} B^{\prime} \hat{T}^{n}\right]$.

We have just shown that any sequence $\left\{g_{n}\right\}$ supported in X can be written as a word in $\left\{\hat{S}, \hat{T}, A, B, A^{\prime}, B^{\prime}\right\}$ of length $2(4(2 n+1))$. We can do the same for the sequence $\left\{f_{n}\right\}$ supported in Y, writing each as a word of length $16 n+8$ in a set of six different elements, say $\left\{\hat{S}_{2}, \hat{T}_{2}, A_{2}, B_{2}, A_{2}^{\prime}, B_{2}^{\prime}\right\}$. It remains only to treat the sequence $\left\{k_{n}\right\}$. Let $B\left(r_{n}\right)$ be a sequence of nested balls of increasing radii such that $\operatorname{supp}\left(k_{n}\right) \subset B\left(r_{n}\right)$. Fix a ball $K_{0} \subset X$, and let $\phi \in \operatorname{Diff}_{0}^{r}\left(\mathbb{R}^{d}\right)$ be a diffeomorphism such that, for every $n \geqslant 0$, we have $\phi^{n}\left(B\left(r_{n}\right)\right) \subset K_{0}$. Then $\phi^{-n} k_{n} \phi^{n}$ is supported in $K_{0} \subset X$, so the same argument for the sequence $\left\{g_{n}\right\}$ applies to $\left\{\phi^{-n} k_{n} \phi^{n}\right\}$; in fact, we may even use the same diffeomorphisms \hat{S} and \hat{T}. This gives a set $\left\{\hat{S}, \hat{T}, A_{3}, B_{3}, A_{3}^{\prime}, B_{3}^{\prime}\right\}$ so that each $\phi^{n} k_{n} \phi^{-n}$ can be written as a word of length $16 n+8$.

Thus, taking $\mathcal{S}:=\left\{\phi, \hat{S}, \hat{T}, \hat{S}_{2}, \hat{T}_{2}, A, B, A^{\prime}, B^{\prime}, A_{i}, B_{i}, A_{i}^{\prime}, B_{i}^{\prime}: i=2,3\right\}$ as a generating set, $\ell_{\mathcal{S}}\left(k_{n}\right) \leqslant 18 n+8$. Combined with the estimates above, this gives $\ell_{\mathcal{S}}\left(f_{n}\right) \leqslant 50 n+24$. This completes the proof.

5. The Schreier property for $\operatorname{Diff}_{0}^{r}(M), M$ noncompact

This short section gives the necessarily generalizations to Theorem 4.1 in order to prove the following.

Proposition 5.1. Let M be an open manifold diffeomorphic to the interior of a compact manifold with boundary. Then $\operatorname{Diff}_{0}(M)$ has the Schreier property.

In the special case that $M \cong N \times \mathbb{R}^{k}$ for some compact manifold N, then $\operatorname{Diff}_{0}(M)$ is also strongly distorted.

The proof of this proposition follows the same strategy as the \mathbb{R}^{n} case, but in place of the annulus theorem, we use the following related result (which is a difficult theorem in the C^{0} case). Recall that the trace of an isotopy $f^{t}, t \in[0,1]$ of a set C is defined to be $\bigcup_{t \in[0,1]} f^{t}(C)$.

Lemma 5.2. Let $f \in \operatorname{Diff}_{0}^{r}(M)$, let f^{t} be an isotopy from id $=f^{0}$ to $f=f^{1}$, and let $C \subset M$ be a compact set. Given a neighborhood U of the trace of C under f^{t}, there exists $g \in \operatorname{Diff}_{0}^{r}(M)$ supported on U and agreeing with f on C.

Proof. The C^{0} case follows from the embedding theory of Edwards and Kirby, this statement is exactly the generalization of [12, Corollary 1.2] explained in the second remark of [12, p. 79]. The case for $r \geqslant 1$ is easy: one thinks of $\frac{\partial}{\partial t} f^{t}$ as defining a time-dependent vector field X_{t} on M. One then cuts off X_{t} using a bump function that is identically one on the trace, and vanishes outside U. The time one map of the resulting time-dependent vector field is the desired diffeomorphism g.

Proof of Proposition 5.1. Let M be an open manifold diffeomorphic to the interior of a compact manifold with boundary. Then ∂M is a compact (possibly disconnected) $n-1$-dimensional manifold, and a neighborhood of the union of ends of M is diffeomorphic to $\partial M \times \mathbb{R}$.

Let $\left\{f_{n}\right\}$ be a sequence in $\operatorname{Diff}_{0}(M)$. We will use Lemma 5.2 to write f_{n} as a product $k_{n} g_{n} h_{n}$, where k_{n} has compact support, and g_{n} and h_{n} are supported in the union of ends of M. Moreover, we will have that g_{n} is supported in a set X diffeomorphic to $\partial M \times \bigcup_{n>0}\left[n+\frac{1}{3}, n-\frac{1}{3}\right]$, and h_{n} is supported in a set Y of the same form. After this, the proof will proceed much as before, with X and Y playing the roles of the unions of annuli from the $M=\mathbb{R}^{n}$ case.

To produce g_{n} and h_{n}, fix an identification of the complement of a compact set in M with $\mathbb{R} \times \partial M$, and fix isotopies f_{n}^{t} from f_{n} to id. Imitating notation from the previous proof, for $R>0$, let $B(R):=(-\infty, R] \times \partial M \subset \mathbb{R} \times \partial M \subset M$. We next construct sequences $R_{N}^{ \pm}, R_{N}^{\prime}$.

Set $R_{0}^{\prime-}=1$, then choose R_{0}^{-}large enough so that the ball $B\left(R_{0}^{\prime-}\right)$ is contained in the interior of $\bigcup_{t} f_{0}^{t}\left(B\left(R_{0}^{-}\right)\right)$. Now choose R_{0}^{+}to be any number larger that $R_{0}^{-}+1$, and finally choose $R_{0}^{\prime+}$ large enough so that $\bigcup_{t} f_{0}^{t}\left(B\left(R_{0}^{+}\right)\right)$is contained in the interior of $B\left(R_{0}^{\prime+}\right)$. The construction of $R_{n}^{ \pm}$and $R_{n}^{\prime \pm}$ is by the same inductive procedure as the \mathbb{R}^{n} case, except that we require R_{N+1}^{-}to be large enough so that for every $n=0, \ldots, N+1$, the ball $B\left(R_{N+1}^{\prime}\right)$ is contained in the interior of the trace $\bigcup_{t} f_{n}^{t}\left(B\left(R_{N+1}^{-}\right)\right)$, and $R_{N+1}^{\prime+}$ to be large enough so that for every $n=0, \ldots, N+1$, we have $\bigcup_{t} f_{n}^{t}\left(B\left(R_{N+1}^{+}\right)\right)$contained in the interior of $B\left(R_{N+1}^{\prime}\right)$.

Let $A_{N}=B\left(R_{N}^{+}\right) \backslash \operatorname{Int} B\left(R_{N}^{-}\right)$and $A_{N}^{\prime}=B\left(R_{N}^{\prime}\right) \backslash \operatorname{Int} B\left(R_{N}^{\prime}\right)$, for $N \geqslant 0$. Now Lemma 5.2 implies that there exists $h_{n} \in \operatorname{Diff}_{0}^{r}(M)$ supported in $X:=\cup_{N} A_{N}^{\prime}$, and coinciding with f_{n} on a neighborhood of each A_{N} with $N \geqslant n$. Fix such an h_{n}. Let k_{n} agree with $f_{n} h_{n}^{-1}$ on the union of $B\left(R_{n}^{-}\right)$with the compact part (the complement of the ends) of M, and be the identity elsewhere. Define g_{n} to be the restriction of $f_{n} h_{n}^{-1}$ to the complement of this ball, and the identity elsewhere. As before, $f_{n}=k_{n} g_{n} h_{n}$, and g_{n} is compactly supported in the disjoint union

$$
Y:=\bigcup_{N \geqslant n} B\left(R_{N+1}^{-}\right) \backslash \operatorname{Int} B\left(R_{N}^{+}\right),
$$

Following the proof of the $M=\mathbb{R}^{n}$ case verbatim, but replacing \mathbb{S}^{d-1} with ∂M, we conclude that $\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$ can each be written as words of length $16 n+8$ in sets of 6 elements. In the special case $M \cong \mathbb{R}^{k} \times N$, then $\operatorname{supp}\left(k_{n}\right)$ is contained in a set of the form $K_{n} \times N$, where K_{n} is a compact set in \mathbb{R}^{k}. Moreover, in this case, we have $A_{n}^{\prime} \cong S^{k} \times N$. Analogous to the \mathbb{R}^{n} case, one can therefore find a diffeomorphism ϕ such that $\phi^{n}\left(K_{n} \times N\right) \subset A_{0}^{\prime} \subset X$. Thus, the previous argument shows that k_{n} can be written as a word of length $16 n+8$ in a finite set; showing that $\operatorname{Diff}_{0}^{r}(M)$ is strongly distorted.

In the general case, $\operatorname{supp}\left(k_{n}\right)$ is a compact subvariety, but will not typically be conjugate into X or Y. (In fact, $\operatorname{supp}\left(k_{n}\right)$ in general will not be displaceable, that is, there will be no diffeomorphism S such that $S\left(\operatorname{supp}\left(k_{n}\right)\right) \cap \operatorname{supp}\left(k_{n}\right)=\emptyset$, so one cannot hope to imitate the previous proof using Lemma 4.2.) However, we can apply Theorem 3.5 to conclude that $\left\{k_{n}\right\}$ is generated by a finite set. Thus, $\operatorname{Diff}_{0}^{r}(M)$ has the Schreier property.

6. Further questions

We conclude with some natural questions for further study.
Our argument in the proof of Proposition 2.1 showed that every countable group in Homeo $_{0}(\mathbb{R})$ is contained in a group generated by 10 elements. This bound is likely not optimal, but finding the optimal bound seems challenging. More concretely, we ask

Question 6.1. Does there exist a countable set in $\operatorname{Homeo}_{0}(\mathbb{R})$ that is not contained in a 2-generated subgroup?

Of course, by Proposition 2.1, it suffices to consider sets of cardinality 10. We note that the Higman embedding theorem shows that an abstract countable group can be embedded in one generated by two elements, and that Galvin [15] proved that this was also the case within the class of subgroups of the group of permutations of an infinite set. Perhaps Question 6.1 is more approachable when $\operatorname{Homeo}_{0}(\mathbb{R})$ is replaced by $\operatorname{Diff}_{0}\left(\mathbb{R}^{n}\right)$.

It is also natural to ask for other transformation groups that satisfy (or fail to satisfy) strong distortion and Schreier's property. We mentioned the groups Homeo $\left(\mathbb{S}^{2}\right.$, area) and $\operatorname{Diff}^{r}\left(\mathbb{S}^{2}\right.$, area) in the introduction as natural candidates. We see no obvious obstruction to satisfying Schreier's property, but our proof tools do not apply here.

Finally, we reiterate the open problem of strong boundedness for homeomorphism groups of manifolds with finite fundamental group. The obvious first case is the following.

Question 6.2. Is Homeo $\left(\mathbb{R P}^{2}\right)$ strongly bounded? If not, is there a natural, geometrically motivated length function on this group?

Acknowledgements. The authors thank G. Bergman and Y. de Cornulier for comments, and Y. C. for pointing out Corollary 2.6.

References

1. R. D. Anderson, 'The algebraic simplicity of certain groups of homeomorphisms', Amer. J. Math. 80 (1958) 955-963.
2. A. Avila, 'Distortion elements in Diff ${ }^{\infty} \mathbb{R} / \mathbb{Z}$ ', Preprint, 2008, arXiv:0808.2334v1.
3. A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and Its Applications 400 (Kluwer Academic Publishers Group, Dordrecht, 1997).
4. G. Bergman, 'Generating infinite symmetric groups', Bull. Lond. Math. Soc. 38 (2006) 429-440.
5. A. Bounemoura, Simplicité des groupes de transformations de surfaces, Ensaios Matemticos 14 (Sociedade Brasileira de Matematica, Rio de Janeiro, 2008).
6. D. Burago, S. Ivanov and L. Polterovich, 'Conjugation-invariant norms on groups of geometric origin', Groups of diffeomorphisms, Advanced Studies in Pure Mathematics 52 (Mathematical Society of Japan, Tokyo, 2008) 221-250.
7. D. Calegari and M. H. Freedman, 'Distortion in transformation groups', Geom. Topol. 10 (2006) 267293; With an appendix by Yves de Cornulier.
8. Y. De Cornulier, 'Strongly bounded groups and infinite powers of finite groups', Comm. Algebra 34.7 (2006) 2337-2345.
9. Y. de Cornulier and P. de la Harpe, Metric geometry of locally compact groups, EMS Tracts in Mathematics 25 (European Mathematical Society, Zürich, 2016).
10. B. Deroin, A. Navas and C. Rivas, 'Groups, orders, and dynamics', Preprint, 2015, arXiv:1408.5805 [math.GR].
11. M. Droste and W. C. Holland, 'Generating automorphism groups of chains', Forum Math. 17 (2005) 699-710.
12. R. Edwards and R. Kirby, 'Deformations of spaces of imbeddings', Ann. Math. (2) 93 (1971) 63-88.
13. G. M. Fisher, 'On the group of all homeomorphisms of a manifold', Trans. Amer. Math. Soc. 97 (1960) 193-212.
14. J. Franks and M. Handel, 'Distortion elements in group actions on surfaces', Duke Math. J. 131.3 (2006) 441-468.
15. F. Galvin, 'Generating countable sets of permutations', J. Lond. Math. Soc. 51.2 (1995) 230-242.
16. S. Haller, T. Rybicki and J. Teichmann, 'Smooth perfectness for the group of diffeomorphisms', J. Geom. Mech. 5.3 (2013) 281-294.
17. A. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Proceedings of Symposia Pure Mathematics XXXII Part 1 (American Mathematical Society, Providence, RI, 1978) 3-21.
18. G. Higman, B. H. Neumann and H. Neumann, 'Embedding theorems for groups', J. Lond. Math. Soc. 24 (1949) 247-254.
19. W. Hsiang and R. Sharpe, 'Parametrized surgery and isotopy', Pacific J. Math. 67 (1976) 401-459.
20. A. Khelif, 'À propos de la propriété de Bergman', C. R. Acad. Sci. Paris, Ser. I. 342 (2006) 377-380.
21. R. Kirby, 'Stable homeomorphisms and the annulus conjecture', Ann. of Math. 89 (1969) 575-582.
22. K. MANN and C. Rosendal, 'The large-scale geometry of homeomorphism groups', Ergodic Theory Dynam. Systems (2017), https://doi.org/10.1017/etds.2017.8.
23. J. Mather, 'Commutators of diffeomorphisms', Comment. Math. Helv. 49 (1974) 512-528.
24. J. Mather, 'Commutators of diffeomorphisms II', Comment. Math. Helv. 50 (1975) 33-40.
25. R. D. Mauldin (ed.), The Scottish book, 2nd edn (Birkhäuser, Basel, 2015).
26. A. Navas, Groups of circle diffeomorphisms, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 2011).
27. F. Quinn, 'Ends of maps III: dimensions 4 and 5', J. Differential Geom. 17 (1982) 503-521.
28. G. Sabbagh, 'Sur les groupes que ne sont pas réunion d'une suite croissante de sous-groupes propres', C. R. Acad. Sci. Paris Sér. A-B 280 (1975) A763-A766.
29. S. SEyfaddini, ' C^{0} - limits of Hamiltonian paths and the Oh-Schwarz spectral invariants', Int. Math. Res. Not. 2013 (2013) 4920-4960.
30. W. Thurston, 'Foliations and groups of diffeomorphisms', Bull. Amer. Math. Soc. 80 (1974) 304-307.

Frédéric Le Roux
 Institut de Mathematiques de Jussieu Université Marie et Pierre Curie 4 place Jussieu, Case 247
 75252 Paris cedex 5
 France
 frederic.le-roux@imj-prg.fr

Kathryn Mann
Department of Mathematics Brown University
Box 1917, 151 Thayer Street
Providence, RI 02912
USA

mann@math.brown.edu

[^0]: Received 14 June 2017; revised 5 September 2017; published online 31 October 2017.
 2010 Mathematics Subject Classification 22F05, 37C05, 57S25, 20F05 (primary).
 K. Mann was partially supported by NSF award DMS-1606254.

[^1]: ${ }^{\dagger}$ We follow the terminology of Cornulier. This property was called 'Property P' in [20].

