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Strong distortion in transformation groups

Frédéric Le Roux and Kathryn Mann

Abstract

We show that the groups Diffr
0(R

n) and Diffr(Rn) have the strong distortion property, whenever
0 � r � ∞, r �= n + 1. This implies in particular that every element in these groups is distorted,
a property with dynamical implications. The result also gives new examples of groups with
Bergman’s strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429–
440). With related techniques we show that, for M a closed manifold or homeomorphic to the
interior of a compact manifold with boundary, the diffeomorphism groups Diffr

0(M) satisfy a
relative Higman embedding type property, introduced by Schreier. In the simplest case, this
answers a problem asked by Schreier in the famous Scottish Book.

1. Introduction

It is a classical theorem of Higman, Neumann and Neumann [18] that every countable group can
be realized as a subgroup of a group generated by two elements. In this paper, we are concerned
with a relative version of this property, inspired by the following question of Schreier.

Question 1.1 (Schreier (1935), Problem 111 in the Scottish Book [25]). Does there exist an
uncountable group with the property that every countable sequence of elements of this group is
contained in a subgroup which has a finite number of generators? In particular, does the group
S∞ of permutations of an infinite set, and the group of all homeomorphisms of the interval
have this property?

The first part of this question was answered positively, and using the example of S∞, by
Galvin [15], although the existence of such a group also follows easily from the earlier work of
Sabbagh in [28]. A few other examples of groups with this property have been found, see, for
example, [8] and references therein. However, as of the 2nd (2015) edition of the Scottish Book,
the question concerning the group of homeomorphisms of the interval remains open. Here we
give a positive answer to Schreier’s question for the group of homeomorphisms of the interval,
and show that the property in question holds for many other transformation groups as well.
For concreteness, say that a group G has the Schreier property if every countable subset of G
is contained in a finitely generated subgroup of G. We prove:

Theorem 1.2. Let 0 � r � ∞, and let M be a Cr manifold with dim(M) �= r − 1, either
closed or homeomorphic to the interior of a compact manifold with boundary. Then the group
Diffr

0(M) of isotopically trivial diffeomorphisms of M has the Schreier property.
Consequently, the group Diffr(M) has the Schreier property if and only if the mapping class

group Diffr(M)/Diffr
0(M) is finitely generated.

The answer to Schreier’s question is the special case Diff0(R) = Homeo(R) ∼= Homeo(I). The
assumption dim(M) �= r − 1 in this theorem comes from the fact that the group Diffr

c(M) of
compactly supported diffeomorphisms of a manifold M is known to be simple in this case, but
the algebraic structure of Diffr

c(M) is not understood when dim(M) = r − 1. In particular, it
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STRONG DISTORTION IN TRANSFORMATION GROUPS 47

is not known whether such a group admits a surjective homomorphism to R, if so, it would fail
to have the Schreier property.

In many cases, it turns out that Schreier’s property follows from a stronger dynamical
property called strong distortion.

Definition 1.3. A group is strongly distorted† if there exists an integer m and an integer-
valued sequence wn such that, for every sequence gn in G, there exists a finite set S of cardinality
m, such that each element gn can be expressed as a word of length wn in S.

In particular, strong distortion implies that every element of G is arbitrarily distorted in the
usual sense of distortion of group elements or subgroups. This fact has important dynamical
implications when G is a group of homeomorphisms or diffeomorphisms of a manifold or more
general metric space, as distortion places constraints on the dynamics of such transformations.
For example, the case of distorted diffeomorphisms of surfaces is studied in [14].

Closely related to strong distortion are the notions of strong boundedness, also called
property (OB) or the Bergman property, and uncountable cofinality.

Definition 1.4. A group G is strongly bounded if every function � : G → R�0, satisfying
�(g−1) = �(g), �(id) = 0, and the triangle inequality �(gh) � �(g) + �(h), is bounded.

Definition 1.5. A group G has uncountable cofinality if it cannot be written as the union
of a countable strictly increasing sequence of subgroups.

It is not hard to see that the Schreier property implies uncountable cofinality, that strong
distortion implies both strong boundedness and the Schreier property (we give quick proofs
at the end of this introduction), and that strong boundedness is equivalent to the dynamical
condition that every isometric action of G on a metric space has bounded orbits (see the
appendix to [7]). Our second main result is the following.

Theorem 1.6. The groups Diffr
0(R

n) and Diffr(Rn) are strongly distorted, for all n and all
r �= n + 1.

This is particularly surprising since Diffr
c(R

n), as well as the groups Diffr
0(M) for compact

M , are never strongly distorted, nor even strongly bounded, whenever r � 1. This is also true of
Diff0

0(M) = Homeo0(M) provided that M has infinite fundamental group — this follows from
[7, Example 6.8], or more explicitly from [22, Proposition 20] which implies that all maximal
metrics on Homeo0(M) are unbounded length functions. In particular, for these examples,
there is no hope to improve Theorem 1.2 to a proof of strong boundedness or distortion.

Interestingly the question of strong boundedness and strong distortion for homeomorphism
groups of manifolds with finite fundamental group, other than the spheres, remains open.

The following table summarizes the results mentioned above.

Strongly distorted Strongly bounded Schreier property Uncountable cofinality

Diffr
0(Rn), r �= n + 1 � � � �

Homeo0(Sn) � � � �
(Cornulier [7, Appendix])
Homeo0(M), |π1(M)| < ∞ ? ? � �
Homeo0(M), |π1(M)| = ∞ X [7], [22] X � �
Diffr

0(M) r � 1, X X �∗ �∗
M compact

∗Under the hypotheses of Theorem 1.2.

†We follow the terminology of Cornulier. This property was called ‘Property P’ in [20].
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48 FRÉDÉRIC LE ROUX AND KATHRYN MANN

Despite the results mentioned above, one should not expect that most transformation groups
have Schreier’s property. For instance, we have the following.

Example 1.7 (Failure of Schreier’s property). The group PL(M) of piecewise-linear
homeomorphisms of a PL manifold M does not have the Schreier property. To see this directly,
fix a system of PL charts for M , and note that for any finite symmetric set S ⊂ G, the set of
all jacobians (at all points where defined) of elements of S is a finite subset, say F ⊂ GL(n,R).
Thus, for any element g generated by S and any point x ∈ M , the jacobian of g at x has
each entry an algebraic expression in the (finite) set of entries of elements of F . Thus, if gn
agrees with dilation by λn near some fixed point x, where λn is a sequence of algebraically
independent real numbers, then the sequence {gn} cannot be generated by any finite set.

As an easier example, suppose G is the group of compactly supported homeomorphisms or
diffeomorphisms of a noncompact manifold M . Let Kn be an exhaustion of M by compact
sets, with Kn contained in the interior of Kn+1. Then G is the countable increasing union
of the subgroups Gn := {g : g(x) = x for all x /∈ Kn}. Thus, G has countable cofinality, and
hence does not have the Schreier property.

Example 1.8 (Open question). We do not know whether either of the groups
Homeo0(S2, area) or Diffr

0(S
2, area), r � 1 of area preserving homeomorphisms or diffeomor-

phism of the sphere have the Schreier property. We do know that they are not strongly bounded.
In the case of diffeomorphisms, this follows from the fact that norm of the derivative gives an
unbounded length function. However, there is also another (conjugation-invariant) norm, the
Viterbo norm on Diff0(S2, area), and by work of [29] it extends to a norm on Homeo0(S2, area).

On the other hand, the groups Diffr
0(T

2, area) do not have Schreier’s property. Indeed, the
rotation number of the area is a morphism from these groups to R; if a group G has Schreier’s
property then it is also the case of its image under a morphism; and R does not have Schreier’s
property. The question is again open if we restrict to the kernels of these morphisms (that is,
to the groups of Hamiltonian diffeomorphisms or homeomorphisms).

Remark 1.9 (A stronger property). As pointed out by G. Bergman, the proof of Theo-
rem 1.6 shows that the group G = Diffr

0(R
n) has a stronger property; namely the following:

There is an integer m and a sequence WN of words in m letters (elements of the free group on
m generators) with the property that, for any sequence {fn} in G, there exists s1, . . . , sm ∈ G
such that fn = Wn(s1, s2, . . . sm).

Bergman asks if this property is equivalent to strong boundedness. We do not know a
counterexample.

Implications between properties

We conclude these introductory remarks with some implications between properties that are
not evident from the table given above. Further discussion of these and related properties can
be found in [4], and, in the context of topological groups, also [9, Section 4.E].

Strong boundedness and uncountable cofinality do not imply Schreier. This comes from
the following example of a group with the strong boundedness property, due to Cornulier [8].

Example 1.10. Let G be a finite, simple group, and let H be the infinite direct product
of countably many copies of G. It is shown in [8] that such a group H is strongly bounded.
We show that H does not have the Schreier property. Let S = {s1, . . . , sk} be a finite subset
of H, and write si = (si,1, si,2, . . .) where si,j ∈ G. Since G is finite, there exists g1 ∈ G such
that s1,j = g1 for infinitely many j. Passing to a further infinite subset of indices, we can find
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STRONG DISTORTION IN TRANSFORMATION GROUPS 49

g2 ∈ G such that s2,j = g2 and s1,j = g1 for all such j. Similarly, one finds g1, g2, . . . gk such
that si,j = gi holds for each i for infinitely many j. Thus any word in the generators projects
to the same element of G in all of these infinitely many places. In particular, a sequence such
as (g, id, id, id . . .), (id, g, id, id, . . .), (id, id, g, id . . .), where g �= id ∈ G, cannot be written as a
word in S.

Since every strongly bounded group has uncountable cofinality (see [9, Remark 4.E.11]),
Example 1.10 also gives an example of a group with uncountable cofinality that fails to have
Schreier’s property.

Strong distorsion implies strong boundedness. Assume that G is a strongly distorted group.
That G has the Schreier property is immediate from the definition. For strong boundedness,
suppose for contradiction that � is an unbounded length function on G. Let gn be a sequence of
elements in G such that �(gn) > w2

n, where wn is the sequence given by the definition of strong
distortion. Then there is a finite set S such that gn can be written as a word of length wn in S.
However, this implies that �(gn) � Kwn, where K = max{�(s) | s ∈ S}, giving a contradiction.

Schreier implies uncountable cofinality. We show the contrapositive. Suppose that
G1 � G2 � G3 . . . is an increasing union of subgroups with

⋃
n Gn = G. Choose fn ∈ Gn \

Gn−1. If S ⊂ G is any finite set, then there is a maximum i such that S ∩Gi �= ∅, hence
S ⊂ Gi and does not generate {fn}.

Contents and outline of paper

Section 2 gives a direct proof of strong distortion for Homeo0(R), and therefore a quick answer
to Schreier’s question. In Section 3 we introduce further technical tools to prove Theorem 1.2
for closed manifolds. The proofs of strong distortion of Diffr(Rn) and Theorem 1.2 are given
in Sections 4 and 5, respectively.

2. Strong distortion for Homeo(R)

The purpose of this section is to give a quick answer to Schreier’s question, and introduce
some strategies to be used later in the proof of Theorem 1.6. Note that strong distortion is
inherited from finite index subgroups, so it suffices to work with the index two subgroup of
orientation-preserving homeomorphisms of the interval, Homeo0(R).

Given a generating set S for a group G, word length of g ∈ G with respect to S is denoted
�S(g).

Proposition 2.1 (Strong distortion for Homeo0(R)). Given a sequence {fn} ⊂ Homeo0(R),
there exists a set S ⊂ Homeo0(R) with |S| = 10, such that �S(fn) � 14n + 12 holds for all n.

The first step in the proof is a simple factorization lemma for homeomorphisms. Say that
a set X is a standard infinite union of intervals if it is the image of

⋃
n∈Z

[n + 1
3 , n− 1

3 ] under
some f ∈ Homeo0(R). We denote by supp(h) the support of a homeomorphism h.

Lemma 2.2. Let {fn} ⊂ Homeo0(R). There exist sets X, Y ⊂ R, each a standard infinite
union of intervals, and for each n a factorization fn = gnhnkn, where kn has compact support,
supp(gn) ⊂ X, and supp(hn) ⊂ Y .

Proof. This is a special (easier) case of Lemma 4.4, this case can be done by hand as follows.
We denote by [a± ε] the interval [a− ε, a + ε]. First, we inductively define the endpoints of the
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50 FRÉDÉRIC LE ROUX AND KATHRYN MANN

intervals in X. Assume without loss of generality that f0 = id, and let X0 = [−3,−1] 
 [1, 3].
Inductively, suppose we have defined Xk = [−x+

k ,−x−
k ] 
 [x−

k , x
+
k ] and points zk−1 for all k < n.

Let x−
n = x+

n−1 + 1. Choose zn large enough, so that the interval [zn ± 1
2 ] and all its images

under f0, . . . , fn are located on the right-hand side of x−
n , and the interval [−zn ± 1

2 ] and
all its images under f0, . . . , fn are located on the left-hand side of −x−

n . For instance, one
could take zn = max{(x−

n , f
−1
j (x−

j ),−f−1
j (−x−

j ) : j � n} + 1. Now choose x+
n large enough so

that [−x+
n , x

+
n ] contains all the intervals fj([−zn ± 1

2 ]), fj([−zn ± 1
2 ]) for j � n. Let Xn =

[−x+
n ,−x−

n ] ∪ [x+
n , x

−
n ].

The purpose of this construction is to guarantee that, for every j < n, there exists a
homeomorphism of R supported on Xn that agrees with fj on [−zn ± 1

2 ] ∪ [zn ± 1
2 ]. Such a

homeomorphism exists because Xn contains an interval containing both [−zn ± 1
2 ] and its

image under fj (and similarly for [zn ± 1
2 ] and its image).

Let X := 
Xj , let Y ′ =
⋃

n�1[−zn ± 1
2 ] ∪ [zn ± 1

2 ], and let Y = R \ Y ′. Then X and Y both
are standard infinite unions of intervals. The observation in the previous paragraph says that,
for each n, we can find gn ∈ Homeo0(R) supported on X that coincides with fn on the subset

⋃
m�n

[
−zm ± 1

2

]
∪
[
zm ± 1

2

]

of Y ′, so g−1
n fn is the identity there. In particular g−1

n fn fixes ±zn and we may write
g−1
n fn = hnkn with kn supported on [−zn, zn] and hn supported on the complement. Actually
hn is supported on

R \
⎛
⎝[−zn, zn] ∪

⋃
m�n

[
−zm ± 1

2

]
∪
[
zm ± 1

2

]⎞⎠

which is a subset of Y , and we have fn = gnhnkn as required by the lemma. �

Now to prove Proposition 2.1, take the sequences kn, gn and hn given by the lemma.
We will build sets S1, S2 and S3 ⊂ Homeo0(R) with |S1| = 4 and |S2| = |S3| = 3 such that
�S1(kn) � 6n + 4, �S2(gn) � 4n + 4, and �S3(hn) � 4n + 4.

Proof. Given that each kn has compact support, we may take compact intervals Kn

with supp(kn) ⊂ Kn, such that Ki is contained in the interior of Ki+1, and such that⋃
n Kn = R. Let d : R → R be a homeomorphism such that d(Ki) contains Ki+1 for all i. Then

supp(dnknd−n) ⊂ K1.
We now use a classical trick. It appears, perhaps first, in Fisher [13], but also in a related

form in [15] and later in [7] (and probably elsewhere!).

Construction 2.3. Suppose {an} is a sequence of homeomorphisms supported on a set
Z, and there exist homeomorphisms T and S such that

1. the sets Z, S(Z), S2(Z) . . . are pairwise disjoint;
2. the sets supp(S), T (supp(S)), T 2(supp(S)) . . . are pairwise disjoint; and
3. the maximum diameter of the connected components of Tn(supp(S)) and of Sn(Z)

converges to 0 as n → ∞.

Denote ab = bab−1. Since the map aT
nSm

n is supported on TnSm(Z), the three above properties
entail that the function

A(x) :=
∏

n�0,m�0

aT
nSm

n (x)
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STRONG DISTORTION IN TRANSFORMATION GROUPS 51

defines a homeomorphism. Moreover, it is easily verified that the commutator

[AT−n

, S] = AT−n

(A−1)ST−n

= an

by checking this equality separately on each set TnSm(Z).

Remark 2.4. Other variants of condition 3 can also be used in this construction. For
example, it can be replaced by either of

3′ the collection of sets Z, S(Z), S2(Z) . . . and supp(S), T (supp(S)), T 2(supp(S)) . . . are
locally finite;

3′′ the maximum diameter of a connected component of Sn(Z) converges to 0, and supp(S),
T (supp(S)), T 2(supp(S)) . . . is locally finite.

We will apply Construction 2.3 to the sequence an := dnknd
−n supported on K1.

To do this, we may take T to be supported on a neighborhood of K1, and to
satisfy T (K1) ∩K1 = ∅. Then let S be a homeomorphism supported on a smaller
neighborhood N of K1, small enough so that T (N) ∩N = ∅, and again satisfying
S(K1) ∩K1 = ∅. We can choose T and S such that Property 3 of the construc-
tion is satisfied. Let S1 = {d,A, S, T}, then kn = d−nand

n is a word of length 6n + 4
in S1.

Similarly, given the sequence {gn} supported on X (a standard union of disjoint intervals),
we can find a homeomorphism T ′ supported on a neighborhood NX of X that consists of
pairwise disjoint neighborhoods of the intervals comprising X, and satisfying T ′(X) ∩X = ∅.
Then take S′ to be supported on a smaller neighborhood, say N ′

X of X, so that translates
of N ′

X by T ′ are also disjoint. Choose T ′ and S′ that satisfies Property 3. Together with the
construction, this gives a set S2 of cardinality 3 so that each gn is a word of length 4n + 4 in
S2.

Finally, as Y is also a standard union of disjoint intervals, this same argument applies
verbatim to the sequence {hn} supported on Y . �

Remark 2.5. This proof can be generalized directly to Homeo0(Rn) using collections of
disjoint concentric annuli in the place of our sets X and Y of disjoint intervals. However, the
strategy does not immediately apply to Diffr

0(R
n) for any n and any r � 1, since the ‘infinite

product’ of conjugates of compactly supported diffeomorphisms, as in Construction 2.3, will
not generally be differentiable.

We conclude this section by noting an interesting application to orderable groups.

Corollary 2.6. Let G be a countable left-ordered group. Then there exists a finitely
generated left-orderable group H containing G. Moreover, one can order H such that the
inclusion H → G is order preserving.

Proof. Given G, realize G as a subgroup of Homeo+(R); this can be done so that the
linear order on G agrees with that on the orbit G(0) ⊂ R under the usual order on R. (This
is standard, see, for example, [10, Proposition 1.1.8]). Proposition 2.1 implies that G ⊂ H,
for some finitely generated group H ⊂ Homeo+(R). Now H can be given a left-invariant order
that agrees with the given order on G – in fact all of Homeo+(R) can be given such an order,
following [10, § 1.1.3]. �

Remark 2.7. Related to order structures, we also note that the strategy of the proof of
Proposition 2.1 appears to give an alternative proof of results in [11]. Droste and Holland
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52 FRÉDÉRIC LE ROUX AND KATHRYN MANN

show there that that the automorphism group of a doubly homogeneous chain (meaning a
totally ordered set where the set of order-preserving bijections acts transitively on pairs) has
uncountable cofinality. Interpreting [a, b] as {c : a � c � b} in our proof allows one to extend
it to a more general setting.

3. Schreier’s property for Diffr
0(M), M closed

In this section we prove Theorem 1.2 for the case of diffeomorphism groups of closed manifolds.
We defer the case of open manifolds until after the proof of strong boundedness for Diffr

0(R
n).

The proof uses the following two classical results.

Theorem 3.1 (Simplicity of diffeomorphism groups [1, 23, 24, 30]). Let M be a connected
manifold (without boundary), and r �= dim(M) + 1. Then the identity component of the group
of compactly supported Cr diffeomorphisms of M , denoted Diffr

c(M), is a simple group.

Here, the C∞ case is due to Thurston [30], and the Cr case, for 1 � r < ∞ is from Mather
[23, 24]. Mather and Thurston’s proofs use different arguments, but both deal with group
homology and are quite deep. The C0 case of the theorem, modulo the next ‘fragmentation
lemma’, is much easier and originally due to Anderson [1].

Lemma 3.2 (Fragmentation). Let M be a compact (not necessarily closed) manifold, and U
a finite open cover of M . Then Diffr

0(M) is generated by the set

{f ∈ Diffr
0(M) : supp(f) ⊂ U for some U ∈ U}.

The proof of Lemma 3.2 for groups of homeomorphisms is a major result of Edwards and
Kirby, it uses the topological torus trick [12]. The proof for Cr–diffeomorphisms is much easier:
it uses only the fact that each Cr diffeomorphism near the identity can be written as the time
one map of a time-dependent vector field; one then ‘cuts off’ such vector fields by suitable
bump functions. See [3, 5] for an exposition.

We will also use a lemma on affine subgroups.

Lemma 3.3 (Existence of affine subgroups). Let B ⊂ Rn be a compact ball. There exist
one-parameter families of smooth diffeomorphisms f t and gs supported on B and satisfying
the relations f tgsf−t = gse

t

for all s, t.

The idea of the proof in the one-dimensional case is to conjugate the standard affine group in
Diff∞

0 (R) generated by the flows f t(x) = etx and gs(x) = x + s by a suitable homeomorphism
from R to (0, 1) so as to ‘flatten’ derivatives at the endpoints; this is generalized to higher
dimensional manifolds by embedding a family of copies of (0, 1) inside a ball.

Proof. For the one-dimensional case, we follow [26, § 4.3]. Fix ε < 1
2 , and define homeomor-

phisms f1 : (0, 1) → R and f2 : (0, 1) → (0, 1) by

f1(x) =
{−1/x for x ∈ (0, ε)
e−1/x for x ∈ (ε, 1)

f2(x)
{

1/(1 − x) for x ∈ (0, ε)
1 − e1/(x−1) for x ∈ (ε, 1)

and let f : (0, 1) → R be the composition f = f1 ◦ f2
2 .

The standard affine group in Diff∞(R) is has its Lie algebra generated by the vector fields
∂
∂x and x ∂

∂x . Thus, f∗( ∂
∂x ) and f∗(x ∂

∂x ) generate an affine subgroup of (0, 1). One checks
that these extend to smooth vector fields on [0, 1] that are infinitely flat at the endpoints,
hence extend to smooth vector fields on (−δ, 1 + δ) supported on [0, 1]. These generate an
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STRONG DISTORTION IN TRANSFORMATION GROUPS 53

affine subgroup G ⊂ Diff∞([−δ, 1 + δ]) supported on [0, 1]. Let G(n) be the affine subgroup
of Diff∞([−δ, 1 + δ] × Sn−1) given by the product action of G on the [−δ, 1 + δ] factor, and
trivial action on the Sn−1 factor.

Finally, given a manifold M of dimension n and open ball B, we can take φ to be a smooth
embedding of (−δ, 1 + δ) × Sn−1 in M , and consider the affine subgroup given by extending
each element of φG(n)φ−1 to agree with the identity outside of the image of φ. �

Although Theorem 3.1 means that every f ∈ Diffr
c(M) can be written as a product of

commutators, Mather’s proof is nonconstructive, so gives no control on the norms of the
elements in these commutators and the number of commutators in terms of the norm of f . (It
is however possible to control the norm and number in the r = ∞ and r = 0 cases; see [16] for
the C∞ case, the C0 case is an exercise.) The benefit to working inside of affine subgroups is
that elements close to the identity can always be written as commutators of elements close to
the identity. Precisely, we have the following corollary of Lemma 3.3, giving control on norms
of elements that will be used later on.

Corollary 3.4. Let r be arbitrary, and let G be an affine subgroup of Diffr
c(M) generated

by Cr flows f t and gs satisfying relations as in Lemma 3.3. For any neighborhood U of id in
Diffr

c(M), there exists a neighborhood V of id such that, if gs ∈ V, then gs can be written as
a single commutator of elements of U ∩G.

Proof. Since the flows f t and gs are continuous in t and s, it suffices to show that, given ε > 0,
there exists δ0 > 0 such that if δ < δ0, then gδ can be written as a commutator [f t, gs] with
t, s < ε. This is immediate from the relation in affine group, which gives f tgs(f t)−1(gs)−1 =
gs(e

t−1). �

The next proposition is the main result of this section.

Proposition 3.5 (Theorem 1.2, closed manifold case). Let M be a closed manifold, and
{fn} ⊂ Diffr

0(M). Assume r �= dim(M) + 1. Then there exists a finite set S ⊂ Diffr
0(M) such

that {fn} ⊂ 〈S〉

We start with an obvious lemma.

Lemma 3.6. Let G be a group, and let X be a generating set for G. Then G has the Schreier
property if and only if, for every sequence xn ∈ X, there exists a finite set S ⊂ G such that
{xn} ⊂ 〈S〉.

Proof. Let G be a group generated by a subset X. The condition on sequences in X is an
immediate consequence of the Schreier property. For the converse, assume X has the property
in the lemma. Now if fn is an arbitrary sequence in G, we may write fn = fn,1 . . . fn,j(n) where
each fn,i ∈ X. Now apply the assumption from the lemma to the countable set {fn,i}. This
provides a set that S that generates each fn. �

Now to prove the proposition.

Proof. Fix a finite cover of M by open balls. The fragmentation lemma states that the set
of diffeomorphisms whose support lies in a single element of the cover is a generating set for
Diffr

0(M). By Lemma 3.6 and the fact that the cover is finite, it suffices to show that for an
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54 FRÉDÉRIC LE ROUX AND KATHRYN MANN

open ball B and any sequence {fn} ⊂ Diffr
c(B), there exists a finite set S ⊂ Diffr(M) such

that {fn} ⊂ 〈S〉.
Since Diffr

c(B) is simple, Lemma 3.3 implies that it is generated by the set

{g : g is the time 1 map of a flow gs from an affine subgroup}.

Thus, again using Lemma 3.6, we can reduce to the case where each fn is the time one map of
a flow gsn from some affine subgroup.

The next short lemma is based on an idea of Avila [2]. To fix terminology, let M be a Cr

manifold, and let B′ be an embedded Euclidean ball in M , that is, the image of a standard
Euclidean ball by some Cr diffeomorphism φ. This allows us to push forward the standard Cr

norm on Diffr
c(R

n) to Diffc(B′), the subset of Diffc(M) consisting of diffeomorphisms supported
on the interior of B′. Abusing notation somewhat, we denote this push-forward Cr norm by
‖f‖r. Note that the induced left-invariant distance dr(f, g) := ‖f−1g‖r on Diffc(B′) generates
the topology of Diffc(B′) ⊂ Diffc(M).

Lemma 3.7. Let Z ⊂ M be an open set, and T ∈ Diffr
0(M) such that the translates Tn(Z)

are pairwise disjoint and contained in an embedded ball B′. Then there exist εn → 0 (depending
on T ) such that, if an is a sequence of diffeomorphisms with ‖an‖ < εn and support on Z, then
the infinite product

∏
n T

nanT
−n is a Cr diffeomorphism.

Proof. Fix T ∈ Diffr
0(M) such that the translates Tn(Z) are pairwise disjoint. For each n,

conjugation by Tn is a continuous automorphism of Diffr
0(M), so there exists εn such that, if

an has Cr-norm less than εn, then TnanT
−1 has Cr norm less than 2−n. Thus, for any such

sequence an, the sequence

Ak :=
k∏

i=1

TnanT
−1

is Cauchy, so converges in the Cr topology to the diffeomorphism
∏
n∈N

TnanT
−n. �

To apply this to our situation, let Z ⊂ M be an open ball, and let T and S ∈ Diffr
0(M) be

such that the translates Tn(Z), Sm(Z) for n ∈ Z and m ∈ Z \ {0} are all pairwise disjoint. If
dim(M) = 1, one can take S and T as in the proof of Proposition 2.1, the higher dimensional
case is entirely analogous. Using Lemma 3.7, let εn be such that if an and bn are sequences of
diffeomorphisms with ‖an‖r < εn and ‖bn‖r < εn, then the infinite compositions

∏
SnanS

−n

and
∏

TnbnT
−n are Cr diffeomorphisms. By Corollary 3.4, if we fix k = k(n) sufficiently large,

then we can write g
1/k
n as a commutator [an, bn], such that the ‖an‖r < εn and ‖bn‖r < εn. In

this case, gn = [an, bn]k(n).
Now we apply Lemma 3.7. Define Cr–diffeomorphisms A and B by

A :=
∏

SnanS
−n

B :=
∏

TnbnT
−n.

Note that the intersection of the supports of the maps S−nASn and T−nBTn is contained in Z,
and on that set they coincide, respectively, with an and bn. Thus [an, bn] = [S−nASn, T−nBTn]
which shows that the sequence gn is generated by the set S = {A,B, T, S}. This completes the
proof. �
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STRONG DISTORTION IN TRANSFORMATION GROUPS 55

3.1. Mapping class groups, extensions and quotients

To finish the proof of Theorem 1.2 for closed manifolds, we need to show Diffr(M) has the
Schreier property if and only if the mapping class group is finitely generated. This is a direct
consequence of the following observation.

Proposition 3.8. If G is a group with the Schreier property, then any quotient of G has
the Schreier property. If A and C are groups with the Schreier property, then any extension
1 → A → B → C → 1 has the Schreier property.

The same statements hold when the Schreier property is replaced by strong distortion.

Proof. The first statement is immediate from the definition of the property. For the second
statement, given a sequence bn ∈ B, let S1 ⊂ C be a finite set generating the images of bn in
C, and let S′

1 be a transversal for S1 in B. Then, for each n there exists an ∈ A such that
anbn ∈ 〈S′

1〉. Let S2 ⊂ A ⊂ B be a finite set generating {an}, and let S = S′
1 ∪ S2.

In the case where A and C have strong distortion (say with sequences wA
n and wC

n ,
respectively), choosing S′

1 such that the images of bn in C have length at most wC
n in S1,

and S2 such that an has length at most wA
n in S2, shows that B is strongly distorted with

sequence wA
n + wC

n . �

Now our claim about mapping class groups follows from the fact that a countable group has
the Schreier property if and only if it is finitely generated, and that the mapping class group
is the quotient of Diffr(M) by Diffr

0(M). �
Note that examples where mapping class groups cannot be finitely generated do indeed occur:

for one concrete example, Hatcher [17] and Hsiang–Sharpe [19] have independently computed
the mapping class group Diff∞(T5)/Diff∞

0 (T5), and it is not finitely generated.

4. Strong distortion for Diffr
0(R

n)

In this section we will prove the following result.

Theorem 4.1 (Strong distortion for Diffr
0(R

d)). Let 0 � r � ∞, r �= d + 1, and let
{fn} ⊂ Diffr

0(R
d). Then there exists a set S ⊂ Diffr

0(R
d) with 17 elements, such that each

fn can be written as a word of length 50n + 24 in S.

Since Diffr
0(R

d) is the index two subgroup of orientation preserving Cr diffeomorphisms in
Diffr(Rd), an argument as in Section 3.1 implies that Diffr(Rd) is strongly distorted also.

To prove Theorem 4.1, we additionally need the following theorem of Burago, Ivanov, and
Polterovich.

Theorem [6, Theorem 1.18]. Let M be a manifold diffeomorphic to a product M ′ × Rn−1.
If Diffr

c(M) is perfect, then any element may be written as the product of two commutators.

This theorem applies in the more general context where M is a ‘portable manifold’, but we
only need this special case here. The statement in [6] is given for C∞ diffeomorphisms, but the
proof does not use smoothness and applies directly to the Cr case, for any r.

The uniform bound on commutator length from Burago–Ivanov–Polterovich will help us
control word length in the proof of strong boundedness. The other major tool towards this end
is a variant of Lemma 3.7 avoiding the earlier hypothesis that the norms of diffeomorphisms an
are bounded by a sequence tending to zero. Instead, we will use the unboundedness of Rd to
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56 FRÉDÉRIC LE ROUX AND KATHRYN MANN

Figure 1. Configuration of cubes in R2 satisfying the properties of Lemma 4.2.

displace supports so as to avoid accumulation points. This is the purpose of the next technical
lemma.

Lemma 4.2. There exist S, T ∈ Diff∞
0 (R) that are the identity on (−∞, 0], and a sequence

{Ik}k�0 of intervals in (0,+∞), such that

1. the family {SiIk1 , T
jIk2 , i, j, k1, k2 � 0} is locally finite, and

2. the intervals SiIk1 , T
jIk2 for i, j ∈ Z and k1, k2 � 0 are pairwise disjoint (with the trivial

exception of S0Ik = T 0
1 Ik = Ik for all k).

Figure 1 gives a graphical description of properties 1 and 2 from Lemma 4.2. The figure
shows a configuration of rectangles Ik in R2, and their images under diffeomorphisms S and
T , that satisfy both properties. It is much harder to achieve this configuration for intervals in
R; this is the technical work in proof of the lemma.

Proof. Let S be a smooth diffeomorphism of the line which is the identity on (−∞, 0], and
which coincides with an affine map fixing 2, say x �→ 2(x− 2) + 2, on [2,+∞). Similarly, let T0

be a smooth diffeomorphism of the line which is the identity on (−∞, 0], which coincides with
S on [3,+∞), fixes 1, and has no fixed point in (1,+∞). Note that for every point x > 2, the
sequence S−n(x) converges to 2 as n → ∞, while the sequence T−n

0 (x) converges to 1.
We will define the intervals I0, I1, I2, . . . iteratively, modifying T0 at each step to produce

diffeomorphisms T ′
0, T

′
1, T

′
2, . . . , designed to converge to a diffeomorphism T with our desired

properties.
Take any point x0 � 3 such that x0 /∈ {T k

0 (2) : k > 0}. I0 will be the closure of a small
neighborhood of x0, of size to be determined after the construction of T ′

0. For this, we consider
the backward iterates of x0 under T0 and S. If there is no common iterate, that is, {S−n(x0) :
n > 0} ∩ {T−n

0 (x0) : n > 0} = ∅, then we let T ′
0 = T0. Otherwise, we modify T0 as follows.

Choose x′
0 close to x0 outside the countable set {Tm

0 S−n(x0) : n,m > 0}, so that the backward
iterates of x′

0 under T0 are disjoint from the backward iterates of x0 under S. Then modify T0

near T−1
0 (x′

0) to obtain a map T ′
0 such that T ′

0(T
−1
0 (x′

0)) = x0. This can be done, for instance,
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STRONG DISTORTION IN TRANSFORMATION GROUPS 57

by taking a diffeomorphism h with support on a small neighborhood of T−1
0 (x′

0) disjoint from
{T−m

0 (x0) : m > 1}, and setting T ′
0 = h ◦ T0.

Now the backward iterates of x0 under T ′
0 coincide with the backward iterates of x′

0 under
T0, and thus are disjoint from the backward iterates of x0 under S. Note that by choosing x′

0

sufficiently close to x0 we may keep the property that x0 /∈ {T ′
0
k(2) : k > 0}.

Since {T ′
0
−n(x0) : n > 0} ∩ [2, x0] is finite and does not contain 2, and since [2, x0] contains

{S−n(x0) : n > 0}, if I0 is a sufficiently small neighborhood of x0, then every image T ′
0
−n(I0)

will be disjoint from
⋃

n>0 S
−n(I0). Fix any such interval I0.

At this point, the T ′
0-forward iterates {T ′

0
n(I0) : n > 0} of I0 coincide with its S-forward

iterates. We now further modify T ′
0 so that they are pairwise disjoint from the iterates under

S. To do this, fix a small neighborhood U of S(I0) so that U ∩ S(U) = ∅, and let I ′0 be a small
interval in U disjoint from S(I0). Then all the S-forward iterates of I ′0 and S(I0) are disjoint.
Now modify T ′

0 by postcomposing it with a diffeomorphism h supported on U and such that
h(I0) = I ′0. Call this new map T1, and note that T1(I0) = I ′0. We have achieved the following
properties:

(i) the family {SiI0, T
j
1 I0 : i, j � 0} is locally finite;

(ii) the intervals SiI0, T
j
1 I0 for i, j ∈ Z are pairwise disjoint, with the trivial exception of

S0I0 = T 0
1 I0 = I0.

Let Z0 be the union of the intervals in the family from (ii) above. We define the interval I1
by a similar procedure to that of I0. Choose some point x1 > S(x0), outside Z0, which is not
a forward iterate of the point 2 under T1. As before, modify T1 near T−1

1 (x1) if necessary to
obtain a map T ′

1 so that the set of backward iterates of x1 under T ′
1 is disjoint from the set

of backward iterates of x1 under S. The same argument as above implies that we may find a
small interval I1 around x1, taken sufficiently small so that it is disjoint from the set Z0, such
that every T ′

1-backward iterate of I1 is disjoint from every S-backward iterate of I1. As the
forward iterates of I1 under T ′

1 and under S coincide we now modify T ′
1 in a neighborhood of

I1, to get a map T2 with the property that all the T2-forward iterates of I1 are disjoint and
disjoint from its S-forward iterates.

We repeat the same process iteratively. At the kth step, choose xk > S(xk−1), modify the
already defined Tk to T ′

k as above in order to be able to choose a suitable small neighborhood Ik
of xk and then modify T ′

k by composing with a diffeomorphism supported on a neighborhood
of S(Ik) to get Tk+1 so that the following properties hold:

(i) the family {SiIm, T j
k+1Im : i, j � 0,m � k} is locally finite; and

(ii) the intervals in the family SiIm, T j
k+1Im for i, j ∈ Z,m � k are pairwise disjoint, with

the trivial exception S0Im = T 0Im.

Since, at each step, we choose Ik to be a small interval about a point xk � S(xk−1), the
sequence of intervals {Ik} is locally finite. And since on every compact subset K of the line,
all but a finite number of the maps Tk agree, the sequence {Tk} converges to an element T of
Diff∞(R). By construction, these maps T, S and the sequence {Ik} satisfy properties 1. and 2.
from the statement of the lemma. �

The next step is a natural generalization of Lemma 2.2. However, since we are now working
in higher dimensions, we need to use the annulus theorem (proved by Kirby [21] and Quinn
[27] for the difficult case r = 0). As an alternative to the annulus theorem, one can use the
related Edwards–Kirby theory of deformations of embeddings. We will take this latter approach
in the next section, for now we use the more familiar annulus theorem directly. The precise
consequence that we need is the following.
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58 FRÉDÉRIC LE ROUX AND KATHRYN MANN

Lemma 4.3 (consequence of the annulus theorem). Let B1 ⊂ B2 ⊂ B3 ⊂ B4 be standard
Euclidean closed balls in Rd centered at 0 with pairwise disjoint boundaries. Let A be the
annulus B3 \ Int(B2). Suppose f ∈ Diffr

0(R
d) satisfies f(A) ⊂ Int(B4) \B1, and that f(A) is

homotopically essential in the annulus Int(B4) \B1. Then there exists h ∈ Diffr
0(R

d) supported
on B4 \B1 that agrees with f on A.

Proof. Let B(R) denote the standard Euclidean ball of radius R. It is a standard corollary of
the annulus theorem that, if γ is a Cr embedding of B( 1

2 ) into B(1), then B(1) \ Int(γ(B( 1
2 )))

is Cr-diffeomorphic to B(1) \ Int(B( 1
2 )). Moreover, the diffeomorphism can be taken to agree

(meaning to agree up to order r) with the identity on ∂B and agree with γ on ∂B(1
2 ).

This means that, given f as in the lemma, we may find h1 : B4 \B3 → B4 \ f(B3) that is
the identity on ∂B4 and agrees with f on ∂B3. Extend h1 to a homeomorphism of Rd that
agrees with f on B3 and the identity outside of B4. By the same argument, we may find h2

that agrees with the identity on f(∂B2) and agrees with f−1 on f(∂B1); extend h2 to be the
identity outside of f(B2) and agree with f−1 on f(B1). Now h := h2h1 is supported on B4 \B1

and agrees with f on A. �

Lemma 4.4. Let {fn} ⊂ Diff0(Rd). There exist sets X and Y , each a union of a locally
finite family of disjoint concentric annuli, such that we can write each element fn as a product
fn = kngnhn, where each kn has compact support, supp(gn) ⊂ X, and supp(hn) ⊂ Y .

Proof. Similarly to the proof of Lemma 2.2, we first construct two sequences of concentric
annuli. For R > 0, let B(R) denote the closed ball of radius R about 0 in Rd. The annuli will
be defined by

AN = B(R+
N ) \ IntB(R−

N ), A′
N = B(R′+

N ) \ IntB(R′−
N ) (N � 0)

and have the properties that

• the annuli A′
N , N � 0 are pairwise disjoint;

• for every N � 0, AN is contained in A′
N ;

• for every N � 0 and for every n � N ,
• B(R′−

N ) is contained in the interior of fn(B(R−
N ),

• fn(B(R+
N )) is contained in the interior of B(R′+

N ).

Note that the last point says that fn(AN ) is contained in A′
N in a homotopically essential way.

We construct these annuli by induction, the procedure is quite analogous to that in
Lemma 2.2. First set R′−

0 = 1, then choose R−
0 large enough so that the ball B(R′−

0 ) is
contained in the interior of f0(B(R−

0 )), then choose for R+
0 any number larger that R−

0 + 1, and
finally choose R′+

0 large enough so that f0(B(R+
0 )) is contained in the interior of B(R′+

0 ). Now
assume that the annuli have been constructed up to step N , satisfying the above properties. We
construct AN+1 and A′

N+1 as follows. First choose R′−
N+1 greater than R′+

N . Then choose R−
N+1

large enough so that for every n = 0, . . . , N + 1, the ball B(R′−
N+1) is contained in the interior

of fn(B(R−
N+1)). Then choose for R+

N+1 any number larger that R−
N+1 + 1. Finally choose

R′+
N+1 large enough so that for every n = 0, . . . , N + 1, the set fn(B(R+

N+1)) is contained in
the interior of B(R′+

N+1).
Now let us fix some n � 0, and define the maps kn, gn and hn as follows. The property that,

for any N � n, the annulus fn(AN ) is contained in A′
N in a homotopically essential way means

that we can use Lemma 4.3 to find hn ∈ Diffr(Rd) supported in the disjoint union X := ∪NA′
N ,

and that coincides with fn on a neighborhood of each AN with N � n. Fix such an hn. Let
kn agree with fnh

−1
n on the ball B(R−

n ), and be the identity elsewhere. Define gn to be the
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STRONG DISTORTION IN TRANSFORMATION GROUPS 59

restriction of fnh
−1
n to the complement of this ball, and the identity elsewhere. Note that

fn = kngnhn, and that gn is compactly supported in the disjoint union of annuli

Y :=
⋃

N�n

B(R−
N+1) \ IntB(R+

N ),

this proves the lemma. �

Proof of Theorem 4.1. Let {fn} be a sequence in Diffr
0(R

d). We first apply Lemma 4.4,
to get two sets X,Y and for each n a decomposition fn = kngnhn, with supp(kn) compact,
supp(gn) ⊂ X and supp(hn) ⊂ Y .

We first take care of the sequence {gn} supported in X. Apply Lemma 4.2 to get maps
S, T ∈ Diff∞

0 (R) and a sequence {Ik} of intervals in (0,+∞). Using polar coordinates, we
identify Rd \ {0} with R × Sd−1, and let

Îk = Ik × Sd−1, Ŝ = S × Id, T̂ = T × Id.

Note that since S and T are the identity near −∞, the maps Ŝ, T̂ extends to smooth
diffeomorphisms of Rd fixing 0. Also note that properties 1 and 2 of Lemma 4.2 still hold
if we replace {Ik}, S and T by the sequence of annuli {Îk} and the maps Ŝ, T̂ .

Since {Îk} is a locally finite sequence of concentric pairwise disjoint annuli, there exists
a diffeomorphism that sends the union of the annuli Îk onto a neighborhood of the set X.
Up to conjugating by this diffeomorphism, we may assume that X = ∪k�0Îk, and each gn is
supported in the interior of X.

We now appeal to Burago–Ivanov–Polterovich’s theorem stated above: for each fixed n and
k we may write the restriction of gn to Îk as a product of two commutators of diffeomorphisms
supported in Îk. Since the Îk are pairwise disjoint, we may take composition over k and
get Cr diffeomorphisms an, bn, a

′
n and b′n supported in the union of the Îk, such that

gn = [an, bn][a′n, b
′
n].

We work first with the sequence {an} and {bn} applying the same strategy from the compact
manifold case.

Let

A =
∏
n�0

ŜnanŜ
−n, B =

∏
n�0

T̂nbnT̂
−n.

Note that these infinite products define diffeomorphisms of Rd, because of local finiteness of
the supports (Property 1 of Lemma 4.2.) Now Property 2 of the same lemma implies that for
every n � 0 we have

[an, bn] = [Ŝ−nAŜn, T̂−nBT̂n].

The same strategy (and the same Ŝ and T̂ ) can be used to give A′ and B′ such that [a′n, b
′
n] =

[Ŝ−nA′Ŝn, T̂−nB′T̂n].
We have just shown that any sequence {gn} supported in X can be written as a word

in {Ŝ, T̂ , A,B,A′, B′} of length 2(4(2n + 1)). We can do the same for the sequence {fn}
supported in Y , writing each as a word of length 16n + 8 in a set of six different elements, say
{Ŝ2, T̂2, A2, B2, A

′
2, B

′
2}. It remains only to treat the sequence {kn}. Let B(rn) be a sequence

of nested balls of increasing radii such that supp(kn) ⊂ B(rn). Fix a ball K0 ⊂ X, and let
φ ∈ Diffr

0(R
d) be a diffeomorphism such that, for every n � 0, we have φn(B(rn)) ⊂ K0. Then

φ−nknφ
n is supported in K0 ⊂ X, so the same argument for the sequence {gn} applies to

{φ−nknφ
n}; in fact, we may even use the same diffeomorphisms Ŝ and T̂ . This gives a set

{Ŝ, T̂ , A3, B3, A
′
3, B

′
3} so that each φnknφ

−n can be written as a word of length 16n + 8.
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60 FRÉDÉRIC LE ROUX AND KATHRYN MANN

Thus, taking S := {φ, Ŝ, T̂ , Ŝ2, T̂2, A,B,A′, B′, Ai, Bi, A
′
i, B

′
i : i = 2, 3} as a generating set,

�S(kn) � 18n + 8. Combined with the estimates above, this gives �S(fn) � 50n + 24. This
completes the proof. �

5. The Schreier property for Diffr
0(M), M noncompact

This short section gives the necessarily generalizations to Theorem 4.1 in order to prove the
following.

Proposition 5.1. Let M be an open manifold diffeomorphic to the interior of a compact
manifold with boundary. Then Diff0(M) has the Schreier property.

In the special case that M ∼= N × Rk for some compact manifold N , then Diff0(M) is also
strongly distorted.

The proof of this proposition follows the same strategy as the Rn case, but in place of the
annulus theorem, we use the following related result (which is a difficult theorem in the C0

case). Recall that the trace of an isotopy f t, t ∈ [0, 1] of a set C is defined to be
⋃

t∈[0,1] f
t(C).

Lemma 5.2. Let f ∈ Diffr
0(M), let f t be an isotopy from id = f0 to f = f1, and let C ⊂ M

be a compact set. Given a neighborhood U of the trace of C under f t, there exists g ∈ Diffr
0(M)

supported on U and agreeing with f on C.

Proof. The C0 case follows from the embedding theory of Edwards and Kirby, this statement
is exactly the generalization of [12, Corollary 1.2] explained in the second remark of [12, p. 79].
The case for r � 1 is easy: one thinks of ∂

∂tf
t as defining a time-dependent vector field Xt on

M . One then cuts off Xt using a bump function that is identically one on the trace, and
vanishes outside U . The time one map of the resulting time-dependent vector field is the
desired diffeomorphism g. �

Proof of Proposition 5.1. Let M be an open manifold diffeomorphic to the interior
of a compact manifold with boundary. Then ∂M is a compact (possibly disconnected)
n− 1-dimensional manifold, and a neighborhood of the union of ends of M is diffeomorphic to
∂M × R.

Let {fn} be a sequence in Diff0(M). We will use Lemma 5.2 to write fn as a product
kngnhn, where kn has compact support, and gn and hn are supported in the union of
ends of M . Moreover, we will have that gn is supported in a set X diffeomorphic to
∂M ×⋃

n>0[n + 1
3 , n− 1

3 ], and hn is supported in a set Y of the same form. After this, the
proof will proceed much as before, with X and Y playing the roles of the unions of annuli from
the M = Rn case.

To produce gn and hn, fix an identification of the complement of a compact set in M with
R × ∂M , and fix isotopies f t

n from fn to id. Imitating notation from the previous proof, for
R > 0, let B(R) := (−∞, R] × ∂M ⊂ R × ∂M ⊂ M . We next construct sequences R±

N , R′±
N .

Set R′−
0 = 1, then choose R−

0 large enough so that the ball B(R′−
0 ) is contained in the interior

of
⋃

t f
t
0(B(R−

0 )). Now choose R+
0 to be any number larger that R−

0 + 1, and finally choose R′+
0

large enough so that
⋃

t f
t
0(B(R+

0 )) is contained in the interior of B(R′+
0 ). The construction

of R±
n and R′±

n is by the same inductive procedure as the Rn case, except that we require
R−

N+1 to be large enough so that for every n = 0, . . . , N + 1, the ball B(R′−
N+1) is contained

in the interior of the trace
⋃

t f
t
n(B(R−

N+1)), and R′+
N+1 to be large enough so that for every

n = 0, . . . , N + 1, we have
⋃

t f
t
n(B(R+

N+1)) contained in the interior of B(R′+
N+1).
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STRONG DISTORTION IN TRANSFORMATION GROUPS 61

Let AN = B(R+
N ) \ IntB(R−

N ) and A′
N = B(R′+

N ) \ IntB(R′−
N ), for N � 0. Now Lemma 5.2

implies that there exists hn ∈ Diffr
0(M) supported in X := ∪NA′

N , and coinciding with fn on
a neighborhood of each AN with N � n. Fix such an hn. Let kn agree with fnh

−1
n on the

union of B(R−
n ) with the compact part (the complement of the ends) of M , and be the identity

elsewhere. Define gn to be the restriction of fnh
−1
n to the complement of this ball, and the

identity elsewhere. As before, fn = kngnhn, and gn is compactly supported in the disjoint
union

Y :=
⋃

N�n

B(R−
N+1) \ IntB(R+

N ),

Following the proof of the M = Rn case verbatim, but replacing Sd−1 with ∂M , we conclude
that {gn} and {hn} can each be written as words of length 16n + 8 in sets of 6 elements. In
the special case M ∼= Rk ×N , then supp(kn) is contained in a set of the form Kn ×N , where
Kn is a compact set in Rk. Moreover, in this case, we have A′

n
∼= Sk ×N . Analogous to the

Rn case, one can therefore find a diffeomorphism φ such that φn(Kn ×N) ⊂ A′
0 ⊂ X. Thus,

the previous argument shows that kn can be written as a word of length 16n + 8 in a finite
set; showing that Diffr

0(M) is strongly distorted.
In the general case, supp(kn) is a compact subvariety, but will not typically be conjugate

into X or Y . (In fact, supp(kn) in general will not be displaceable, that is, there will be no
diffeomorphism S such that S(supp(kn)) ∩ supp(kn) = ∅, so one cannot hope to imitate the
previous proof using Lemma 4.2.) However, we can apply Theorem 3.5 to conclude that {kn}
is generated by a finite set. Thus, Diffr

0(M) has the Schreier property. �

6. Further questions

We conclude with some natural questions for further study.
Our argument in the proof of Proposition 2.1 showed that every countable group in

Homeo0(R) is contained in a group generated by 10 elements. This bound is likely not optimal,
but finding the optimal bound seems challenging. More concretely, we ask

Question 6.1. Does there exist a countable set in Homeo0(R) that is not contained in a
2-generated subgroup?

Of course, by Proposition 2.1, it suffices to consider sets of cardinality 10. We note that the
Higman embedding theorem shows that an abstract countable group can be embedded in one
generated by two elements, and that Galvin [15] proved that this was also the case within the
class of subgroups of the group of permutations of an infinite set. Perhaps Question 6.1 is more
approachable when Homeo0(R) is replaced by Diff0(Rn).

It is also natural to ask for other transformation groups that satisfy (or fail to satisfy)
strong distortion and Schreier’s property. We mentioned the groups Homeo(S2, area) and
Diffr(S2, area) in the introduction as natural candidates. We see no obvious obstruction to
satisfying Schreier’s property, but our proof tools do not apply here.

Finally, we reiterate the open problem of strong boundedness for homeomorphism groups of
manifolds with finite fundamental group. The obvious first case is the following.

Question 6.2. Is Homeo(RP2) strongly bounded? If not, is there a natural, geometrically
motivated length function on this group?

Acknowledgements. The authors thank G. Bergman and Y. de Cornulier for comments, and
Y. C. for pointing out Corollary 2.6.
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