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ABSTRACT

Let E be an infinite set. In answer to a question of Wagon, I show that every countable subset of the
symmetric group Sym(£) is contained in a 2-generator subgroup of Sym(£). In answer to a question of
Macpherson and Neumann, 1 show that, if Sym(.E') is generated by A U B where \B\ ^ \E\, then Sym(E)
is generated by A u {y} for some permutation y in Sym(£).

1. Introduction

This work was motivated by the following pair of well-known theorems.

THEOREM 1.1. Every countable group is embeddable in a 2-generator group.

This was first proved by Higman, Neumann and Neumann [9, Theorem IV] and
(independently) Freudenthal [9, p. 254], using free products with amalgamations. A
simpler proof using wreath products was given by Neumann and Neumann [14]; a
short presentation of the Neumann-Neumann proof, avoiding explicit mention of
wreath products, can be found in [7]. (I am indebted to Peter M. Neumann for
pointing out that the main arguments of this paper are closely related to the methods
of Neumann and Neumann [14].)

THEOREM 1.2. Every countable set of selfmaps of an infinite set E is contained in
the semigroup generated by two selfmaps of E.

This was first proved by Sierpiriski [17]; a simpler proof was given by Banach [1].
(See [18] for a survey of further developments related to Sierpiriski's theorem.) In a
1979 letter, Stan Wagon asked whether one can substitute 'permutations' for
'selfmaps' in Sierpiriski's theorem; he observed that the permutational analogue of
Sierpiriski's theorem would imply Theorem 1.1, just as Sierpiriski's theorem itself
implies the result of Evans [5, Theorem II] that every countable semigroup is
embeddable in a 2-generator semigroup.

In this paper we answer Wagon's question in the affirmative. First, we show that
every countable subset of Sym (E) is contained in a 2-generator subgroup (Theorem
3.3). Then, with a slightly more complicated construction (Theorem 3.5), we get the
two generators to be of finite order, thereby showing that every countable subset of
Sym(£) is contained in a 2-generator subsemigroup, as requested by Wagon. Of
course, Theorem 3.3 already implies Theorem 1.1. B.H.Neumann [13, p. 542]

Received 1 September 1993.

1991 Mathematics Subject Classification 20B35.

This project was sponsored by the National Security Agency under Grant Number MDA904-92-H-
3037.

J. London Math. Soc. (2) 51 (1995) 230-242



GENERATING COUNTABLE SETS OF PERMUTATIONS 231

generalized Theorem 1.1 by showing that every group G can be embedded in a group
G* such that every countable subset of G* is contained in a 2-generator subgroup; in
view of Theorem 3.3, we could simply take G* to be a symmetric group.

Mal'cev [12] defined the general rank of a group G as the least number R in
N U {oo} such that every finite subset of G is contained in a subgroup generated by at
most R elements. Thus, Theorem 3.3 implies that the infinite symmetric groups have
general rank 2. If one merely wants to show that Sym(ii) has finite general rank (a
fact I have not been able to find stated in the literature), this can be done rather easily
by showing that every countable subset of Sym(£) is contained in a 4-generator
subgroup (Theorem 3.1).

Answering a question of B. H. Neumann [13, p. 541], Levin [10, Theorem 2.1]
showed that every countable group is embeddable in a 2-generator group with
generators of prescribed orders p ^ 3 and q^-2. My efforts to prove the analogous
result for permutation groups have been only partially successful.

QUESTION 1.3. Let E be an infinite set. Is every countable subset of Sym(if)
contained in a 2-generator subgroup with generators of prescribed orders p ^ 3 and

I can prove this for countable subsets H such that

\{x€E:xn = x for all neH}\ = \E\
(Theorem 4.1), which is enough to imply Levin's result; otherwise, I can do it only
for even orders q ^ 4 (Theorem 4.3). The following weaker version of Question 1.3
seems especially appealing.

QUESTION 1.4. Let E be an infinite set. Is every countable subset of Sym(£")
contained in a subgroup generated by three involutions?

Two involutions would not be enough, since, for example, the quaternion group
is not embeddable in any group generated by two involutions; on the other hand, it
follows from Theorem 3.3 (or 4.3) that four involutions suffice (or two involutions
and a third permutation of any desired order p ^ 3), in view of the well-known fact
(Lemma 2.2) that every permutation is the product of two involutions.

Let E be an infinite set. Macpherson and Neumann proved [11, Corollary 3.1]
that, if Sym(£") is generated by A U B where \B\ ^ \E\, then Sym(is) is generated by
A U Bo for some finite subset Bo of B; and they asked [11, Question 3.2] whether there
is a subset A of Sym (E) such that Sym (E) can be generated by A together with two
further elements, but cannot be generated by A together with a single element. This
question is answered in the negative by Theorem 5.7. Combining Theorem 5.7 with
the result of Macpherson and Neumann, we get the second result stated in the
abstract (Theorem 5.8): if Sym(£") is generated by A\}B, where \B\ ^ |£|, then
Sym(£) is generated by A U {y} for some permutation y in Sym(.E').

The following question is not really relevant to the concerns of this paper; I
mention it here because it arose out of a discussion with Peter M. Neumann of
possible strengthenings of Lemma 5.4.

QUESTION 1.5. Call a subgroup G of Sym (co^ almost disjoint if no element of G
other than the identity has uncountably many fixed points. Does the continuum
hypothesis 2X° = N\ imply that Sym(co1) has an almost disjoint subgroup of order 2N>?
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232 FRED GALVIN

It follows from a result of Baumgartner [2, Theorem 5.6] that the existence of such
a subgroup is undecidable in ZFC (standard set theory including the axiom of choice
but not the continuum hypothesis).

In §2 we introduce some standard notation and establish a few basic facts; experts
on group theory can skip §2 except perhaps for Lemma 2.1. The lemmas are given in
the easiest form that suffices for our purposes; for example, we show that every
element of an infinite symmetric group is the product of two commutators (Lemma
2.5), having no need of the stronger result of Ore [15, Theorem 6] that every element
is a commutator. Of the lemmas in §2, only Lemmas 2.1 and 2.2 will be used in §3
(and Lemma 2.2 only for the proof of Theorem 3.5). Sections 3, 4, and 5 are
independent of one another, except that Theorem 4.6 will be needed in §5. The reader
who is only interested in the results of § 5 (the answer to the Macpherson-Neumann
question) can start with Lemma 4.4, referring to §2 as needed.

The main results of this paper were stated in the abstracts [6, 8].

2. Preliminaries

If H is a subset of a group, then <//> is the subgroup generated by H; we shall
abbreviate, for example, (H U {<*,/?}> to (H, a,/?>. The commutator of group elements
a and ft is [a,fi] = cr1^1^. The symmetric group Sym(£) is the group of all
permutations of a set E; permutations are regarded as right operators, and are
composed from left to right. The set of fixed points of a permutation n in Sym(Zs) is
fix fa) = {xeE-.xn = x}; the support of n is suppfa) = {xeE:xn ^ x). If / / i s a subset
of Sym(£), then fix(//) = f|{nx{n):neH}, and supp(//) = |J{supp(7r):7re/7}. The
pointwise stabilizer of a subset X of E is the group Sx = {neSym(E): X <= fix(n)}.

We shall make heavy use of the following lemma, which was proved by Dixon,
Neumann and Thomas [3, Lemma, p. 580] for the case \E\ = Ko, and generalized by
Macpherson and Neumann [11, Lemma 2.1] to arbitrary infinite sets.

LEMMA 2.1. Let E be an infinite set. If E = A\) B{}C where A , B, C are disjoint
sets and \A\ = \B\ = \C\, then S y m ( £ ) = S A S B S A U SBSA SB.

Proof. Let K = \E\. Consider a permutation 7reSym(£). It is easy to see that
neSASBSA if (and only if) \(B\j C)\An~x\ = K. In particular, neSASBSA if
|C\y47r~1| = K; similarly, neSBSA SB if \C\Bn~l\ = K. At least one of these alternatives
must hold, since C = ( C V T T 1 ) U {C\BTI~1).

LEMMA 2.2 [16, Exercise 10.1.17, p. 259]. Every permutation is the product of two
involutions.

Proof. It suffices to consider the case of a permutation consisting of a single
(finite or infinite) cycle. Note, for example, that a 6-cycle is obtained by multiplying
the involutions (1,2) (3,4) (5,6) and (2,3) (4,5). This example can easily be generalized
to get cycles of any desired length.

LEMMA 2.3. Let 2 ^ q ^ oo and let E be an infinite set. There is a positive integer
k {depending only on q) such that every element of Sym (E) can be expressed as the
product of k elements of order q.
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GENERATING COUNTABLE SETS OF PERMUTATIONS 233

Proof. Leaving the (easier) case q = oo as an exercise for the reader, we assume
that q < oo. Choose a positive integer n that is divisible by 4 and large enough so that
the finite symmetric group Sym («) has an element of order q. Let n be a fixed-point-
free involution in Sym (n); then n is an even permutation. Let G be the subgroup of
Sym(n) generated by the elements of order q; then G is a nontrivial (meaning \G\ > 1)
normal subgroup of Sym (n). Since the only nontrivial normal subgroups of Sym (n)
are Sym (n) itself, the alternating group Alt(«), and (if n = 4) the four-group, we must
have neG; that is, n is the product of some number m of elements of order q. From
this it clearly follows that every involution with infinite support can be expressed as
the product of m permutations of order q. Now, it can easily be seen from the proof
of Lemma 2.2 that every permutation of an infinite set E is the product of two
involutions, each of which has infinite support; it follows that every element of
Sym (is) is the product of 2m permutations of order q.

LEMMA 2.4. Let E be an infinite set, and let 0eSym(£) . 7/"|fix(0)| = \E\, then 0
is a commutator in Sym (is).

Proof. Without loss of generality, we may assume that E = Z x T where
\T\ = \E\, and that supp(0) £ {0} x T. Define <j>eSym(T) so that (O,t)0 = (O,/0) for
te T. Define <x,PsSym(E) by setting (m, t)<x = (m + 1, t), (m, t)p = (m, t<j>) for m > 0,
and (m, t)p = (m, t) for m ^ 0. Then 0 = apoT1^1 = [a" 1 ,^ 1 ] .

LEMMA 2.5. If E is an infinite set, then every element of Sym (E) is the product of
two commutators.

Proof. Let K = \E\. Consider a permutation 7reSym(is). Choose 5 c £ s o that
|2*| = \E\(B U Bn)\ = K. Let D = E\(B U Bn), and choose A c: D so that \A\ =
\D\A\ = K. Since \E\(A U B)\ = \E\(A U Bn)\ = K, we can define 0eSym(£) so that
x(f> = x for xeA and x<p = xn for xeB. Let y/ = $~xn, so that n = <fiy/. Since
/4cf ix (<ft) and Bn c fix (y/), it follows by Lemma 2.4 that <fi and y/ are commutators.

LEMMA 2.6. Let 2 ^ q ^ oo anJ /ef is be an infinite set. Then every element
of Sym (is) can be expressed as a product of commutators of the form
[0X 02 . . . 0fc, y/1 y/2... y/k] where the factors 0t and y/t are permutations of order q.

Proof. This follows immediately from Lemmas 2.5 and 2.3.

3. Wagon's conjecture

THEOREM 3.1. Let E be an infinite set. Every countable subset of Sym (is) is
contained in a ^-generator subgroup of Sym (E).

Proof. We may assume that E =ZxZxT, where |71 = |£ |= ie . Let
Eo = {0} x {0} x T. Choose A c Eo with \A\ = \E0\A\ = K; let C = £ 0 \ ^ and B = E\E0.
Choose an involution eeSym(is) so that Bs = A. Define a,<5eSym(is) by setting
(m,n,t)a. = (m+\,n,t), (O,n,t)d = (O,n+\,t), and (m,n,t)d = (m,n,t) for m # 0.

Let a countable set H c Sym(E) be given; we shall show that H ^ <a,/?, 6, e> for
some /?eSym(is). By Lemma 2.1, we may assume that H^SA[)SB. Let
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234 FRED GALVIN

H' = (Hn SB) Ue(//n SA)e. Then H' is a countable subset of SB; let / / ' = {&:/eZ}.
Since supp (0() c £0, we can define <pt e Sym (T) so that (0,0, t) 0,. = (0,0, /0() for / e T,
/eZ. Finally, define /?e Sym (£) by setting

, A/? \(rn,n,4m) i f n ^ O ,
(m,n,t)B = {. . ._ A

Then ^ = (a'^a"*)<5~V^a"')<5 for each /eZ; thus we have H'^(aJ,S) and

COROLLARY 3.2. /I symmetric group is not the union of a countable chain of proper
subgroups.

This is the special case K = Xo of the result of Macpherson and Neumann [11,
Theorem 1.1] that, if \E\ ^ K, then Sym(ii) is not the union of a chain of K proper
subgroups.

THEOREM 3.3. Let E be an infinite set. Every countable subset of Sym {E) is
contained in a 2-generator subgroup ofSym(E).

Proof We may assume that E = ZxZxT where \T\ = \E\=K. Define
aeSym(£) by setting (m,n,t)<x = (m+ l,n,t). Let Eo = {1} x{0} x T. Choose A a Eo

with \A\ = \E0\A\ = K; let C = E0\A and B = E\E0. Choose an involution eeSc so
that Be = A.

Let a countable set H £ Sym (E) be given; we shall construct a permutation
y e Sym (E) so that H c <a, y>. By Lemma 2.1, we may assume that H ^ SA\J SB. Let
H' = (H0SB){j£(HnSA)e. Then H' is a countable subset of SB; let
/ / ' = {0,:/ = 3,5,7,...}. Since supp(0() £ £0? we can define ^ e S y m ( r ) so that
(l,O,/)0< = ( 1 , 0 , ^ ) f o r f eTand / = 3,5,7, . . . . Now define pQeSE as follows:

(m,n,t)fio =

r{m,n+\,t) ifm = 0;

(m,n,t^m) if w is odd, m ^ 3, n ^ 0;

(m,n,t) otherwise.

Let y = efl0. Note that yny l = ene for all 7re.SB, whence H^H'\JeH'e =
H' [}yH'y~l. Thus, in order to show that H s <a, y>, it will suffice to show that

Let p = y2 = (e/l0)
2. Note that xfi = xfi0 for all x e 5 , and that EJ = EQ.

Now, for each / = 3,5,7,..., we have a ^ o r 1 = (<xipoCi)f$~l{oiip~lcri)fl; hence

LEMMA 3.4. Let E be an infinite set, and suppose that E = A\J B[) C where A, B,
C are disjoint sets and \A\ = \B\ = \C\. Then every countable subset of Sym(£) is
contained in the subgroup generated by 24 involutions in SA[) SB.

Proof. By Theorem 3.1 (or 3.3), every countable subset of Sym (is) is contained
in the subgroup generated by 4 permutations in Sym(£); by Lemmas 2.1 and 2.2,
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GENERATING COUNTABLE SETS OF PERMUTATIONS 235

each of those permutations can be expressed as the product of 6 involutions in
SA U SB.

THEOREM 3.5. Let E be an infinite set. Every countable subset of Sym(is) is
contained in a 2-generator subgroup of Sym (E) with one generator of order 53 and the
other of order 4.

Proof We may assume that E = Z53 x Z x T where \T\ = \E\ = K. Define a
permutation a of order 53 by setting (m,n, t)a = (m+\,n, t). Let Eo = {0} x {0} x T.
Choose A^E0 with \A\ = \E0\A\ = K; let C = E0\A and B = E\E0. Choose an
involution eeSc so that Be = A.

Let a countable set H £ Sym (E) be given; we shall construct a permutation y of
order 4 so that H c <a, y>. By Lemma 3.4, we can assume that H is a set of 24
involutions in S^ U SB. Then H' = (H 0 SB)[) e(H\SB)e is a set of at most 24
involutions in SB; let H' = {fa: iel}, where / = {5,7,9, ...,51}. Since supp(0J £ £O,
we can define involutions faeSym(T) so that (0 ,0 ,0^ = (0,0, tfa) for teTand iel.

Now define an involution /?0 e 5£ as follows:

(m,n,t)p0 = {
(m,n,t<fim) if me/, « = 0(mod4), n ^ 0;

, (m,«, f) otherwise.

Then y = e/?0 is a permutation of order 4. Note that yny'1 = ene for all neSB, whence
H^H'V eH'e = H' U y//'y~x. Thus, in order to show that 7/ ^ <<x, y>, it will suffice
to show that H' g <a,y>.

Let fi = y2 = (e)90)
2; note that /? is an involution, x/3 = x/30 for all xeB,

and Eop = Eo. Let <5 = (j^a"1)2; note that (2,n,t)<5 = (2,« + 4(-l)ra,/), while
(m, n,t)d = (m, n, t) if m # 2. Now it is easy to see that

for each iel; hence / / ' ^ (<x,/3,S} ^ <a,y>.

4. Generators of prescribed order

THEOREM 4.1. Let 3 ^ p ^ oo a«f/ 2 ^ q ^ oo, a«J /e? E be an infinite set. If H is
a countable subset ofSym(E) with |fix(i/)| = \E\, then H is contained in a 2-generator
subgroup of Sym (E) with one generator of order p and the other of order q.

Proof. Leaving the case q = oo as an exercise for the reader, we assume that
q < oo.

We may assume that E = lpxlxT where \T\ = \E\, and that supp(#) ^Eo =
{0}x{0}xT. By Lemma 2.6 we can choose ^ e S y m ^ ) for ieN, so that each
(j>i is a permutation of order q with supp (0() ^ Eo, and every element of H can be
expressed as a product of commutators of the form [0^0^ ••• 0 ^ , 0 ^ ^ ... 0;J. For
each ie N define a permutation fa e Sym (T) of order q, so that (0,0, t) fa = (0,0, t^t)
for /er .
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236 FRED GALVIN

Define a permutation aeSym(E) of order p by setting (m,n,t)a — (m+ l,n,t).
Define /?eSym(£) as follows:

l,n-l+q,t) itn =
( i ? w _ i f ) otherwise;

,«+1,0 otherwise;

,n,t) ifm£{0,l,2}.

Then /? is a permutation of order q; thus it will suffice to show that

[ 0 V - 0 v ^ r " 0 J e < a ' ^ f ° r a l1 / i ' - ' W i .

Let 6 = {fioiporl)Q2 \ then

(
( 1 , A Z - ? 3 , / ) if« = l (mod^);

,n, 0 otherwise;

(m,n,t)S = (m,n,t) i
Let ^ = (a<52'a~1)y9(a(5~2la~1) for each /eN. Then {m,n,t)y/i = (m,n,t)/l for m ̂  0,
while

(U, H, /) y/t - | ( Q w / } . f w ^ { ^ 3 ( 2 , _ 2 < ) .y.

in particular, (0,0,t)^( = (0,0, tfa) = (0,0, t)$t. For each ieN, let Nt =
{q*(2j - 2f) :je N\{i}}; then Nt c Z\{0}, and ^ (\N} = 0 for / ^ / Let A', = {0}xJ\f (xr
and let r = { l , 2 } x Z x 7 .

Now £0, 7, Xv X2, Xv ... are disjoint sets, and for each ieN we have
supp (04) c £0, supp (v/f) c £ 0 U K U 4 Vil^o = ^tl^o, V*l ̂  = P\ Y> Eo Vi = £o>
Yy/( = Y and Xi i//t = Xt. It follows that

COROLLARY 4.2 [10, Theorem 2.1]. If 3 ^ /? ^ oo am/ 2 ̂ q ^ co, then every
countable group is embeddable in a 2-generator group with one generator of order p and
the other of order q.

THEOREM 4.3. Let 3 ^ p ^ oo and 2 ^ q ̂  oo, and let E be an infinite set. Then
every countable subset of Sym (E) is contained in a 2-generator subgroup of Sym (E)
with one generator of order p and the other of order 2q.

Proof. Leaving the case q = oo as an exercise for the reader, we assume that
q < oo.
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GENERATING COUNTABLE SETS OF PERMUTATIONS 237

We may assume that E = Zp x Z x T where \T\ = \E\ = K. Define a permutation a
of order p by setting (m, n, t) a = (m + 1, n, t). Let Eo = {0} x {0} x T. Choose A a Eo

with \A\ = \E0\A\ = K; let C = E0\A and B = E\E0. Choose an involution eeSc so
that Be = A.

Let a countable set / / £ SymCE) be given; we shall construct a permutation y of
order 2q so that H c <«, y>. By Lemma 2.1, we may assume that H ^ SA[) SB; then
H' = (HO SB) U e(//fl SJe is a countable subset of SB. By Lemma 2.6, we can choose
elements (j>i&SB for /eN, so that each 0( is a permutation of order q, and every
element of H' can be expressed as a product of commutators of the form
[0fj 0<2 •.. 0 V 0^ 0j2 • • • ^J - For each ie N define a permutation ^ e Sym (T) of order
?, so that (0,0,00, = (0,0,t$t) for teT.

Define a permutation /?0 e iSB of order q, as follows:

j r t _ i ^ ) otherwise;

A/? _ f ( 2 , » + l - ^ 0 if« = 0(m
,n,t)p0 | ( 2 j / n - l , 0 otherwise;

(m,n,t)P0 = (m,n,t) if mi{0,1,2}.

Let y = ep0 and let /? = y2; then fi\B = P0\B, p\E0 = epoe\Eo, Eop = Eo, j? is a
permutation of order q, and y is a permutation of order 2q. Note that yny~l = ene for
all nsSB, whence H £ H' U eH'e = H' U yH'y~x. Thus, in order to show that
H<^<jx, y>, it will suffice to show that / T ^ <oc, y>. In fact, we shall show
that / / ' £ <a,)9>, by showing that [0t j . . . 0 V < ^ ... 0j;t]G<a,y9> for all ix,...,ik,

)"*; then

(l,«,0 otherwise;

(m,n,t)S = (m,n,t) if m 7̂  1.

Let ^ = (a^ ' - ' a - 1 )^^- 2 ^" 1 ) for each /eM. Then (m,«, 0 ^ = (m, n, t)fi for w # 0.
If we define 0oe Sym (7) so that (0,0, t)p = (0,0, t<fi0) for te T, then

{ ' " ' ° ^ f \(0,», 0 if «#{^3(2^-2():ye N U {0}};

in particular, (0,0, /) y/t = (0,0, /^) = (0,0, /) <j>v For each /eN, let Nt =
{^3(2^-2i):y6Nu{0},y#/}; then ^ £ Z\{0}, and Nt(\N, = 0 for i#7. Let
^ = {0} xNtxT, and let F = {1,2} x Z x T.

Now £0, y,^^X2,X3,... are disjoint sets, and for each ieN we have

supp(0J £ .E1^ s u p p ( ^ ) c £ o u y u JT(,

^ | £ 0 = ^\E0, y,%\ Y = fi\Y, Eo y/t = Eo, Yyt = Y, X, Wi = Xt.

It follows that [0(]. . . 0ifc, ^ ... <ph] = [^(... ^ijt, ^ • • • V j e <a,/?>.
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238 FRED GALVIN

LEMMA 4.4. Let E be an infinite set with \E\ = K, and let a15 a2 e Sym (E) be such
that\{xeE:x # xax # xa2 # x}\ = K. If\{xeE:xa2 ^ x}\ < xfor each a6{a!,a2, a1a2},
then the set

{xeE.x # xax # xa2 # x,xaxa2 = x ^ a ^ a 2 = xa2 = x,x<x2<x\ = XOL2,XOLXCIL\ = x a j

/ms cardinality K.

Proof. Let

A' = { x e £ : i # xax =£ xa2 ^ x, x(a1 a2)2 = xa\ = xccl = x, xa2 ax = xa2, XOL1 a2 = jcaj.

Clearly |A1 = A:; we have to show that x<x1cc2 = xcc2a.l for all xeX. In fact,

xeX=> x(<x^ a2)2 = XOL\ => xax a2 aj = xa2 = xa2 a\ => xaj a2 = xa2 a r

LEMMA 4.5. Let E be an infinite set with \E\ = K, and let al5 a2eSym(£') be such
that \{xeE:x # xtx1 # xa2 # x}| = K. Then we can choose permutations a,0e<ax,a2>
and distinct points x\eEfor £,EK, /e{0,1,2,3}, so that, setting

e of the following four cases holds for all <

(I) x^a = x ,̂ x^a = xf, x^a = x^,
(II) x^a = x ,̂ xfa = x i x |a = x^, x\a. =

(III) x^a = x^, x^a = x|, x^aeZ), x^a =
(IV) x\ a = x\, x\ a = x|, x\ a = xf, x^ a =

A Q, A 2 1/ — A g,

Proof. If possible, we choose ae (a 1 ) a 2 > so that \{xeE:xa2 # x}\ = K; then we
get case (I) (if a has K 3-cycles) or (II) (if a has K 4-cycles) or (III) (if a has K cycles
of length at least 5, or else K = Xo and a has an infinite cycle). On the other hand,
suppose that \{xeE:xa2 # JC}| < K for each <xe<alsa2>; then we can set a = ax and
6 = a2, and use Lemma 4.4 to get case (IV).

THEOREM 4.6. Let 2 ^ q < oo, a/?d /e/ £ ^e a« infinite set. Suppose that ocv

a2eSym(E) are such that |{xe£:x ^ xax ^ xa2 # x}| = \E\. Then, for every countable
subset H of Sym(£), there is a permutation yeSym(E), of order 2q, such that

Proof. Let K = \E\. By Lemma 4.5, we may assume that {0,1,2,3} x Z x T ^ E,
171 = K, D = E\({0,1,2,3}xZx T), and that there are permutations a
such that one of the following four cases holds for all «eZ, te T:

(I) (0,n,t)<x = (\,n,t),(l,n,t)<x = (2,n,t),(2,
(II) (0,w,0a = ( l , « , 0 > ( l , « . 0 a = (2,«,0.(2,

(III) (0 ,« ,0a = ( l , « , 0 , ( l , « , 0 a = (2,«,/),(2,
(IV) (0, n, t) a = (3, /?, 0, (1, n, t) a = (2,«, 0, (2,«, 0 a = (1, n, t), (3, M ) a = (0, n, t),
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GENERATING COUNTABLE SETS OF PERMUTATIONS 239

moreover, in cases (I) to (III) we can take 9 = a, so that (0, n,t)9 = (1, n, t) in all cases.
Note that D<x^D[) ({3} xZxT). Let Eo = {0} x {0} x T. Choose A c Eo with
\A\ = \E0\A\ = K; let C = E0\A and B = E\E0. Choose an involution eeSc so that
Be = A.

By Lemma 2.1, we may assume that H e SA U SB; then

H' = (HoSB)\Je(H(]SA)e

is a countable subset of SB. By Lemma 2.6, we can choose elements 0<e5B for
is N, so that each 0f is a permutation of order q, and every element of H' can be
expressed as product of commutators of the form [0^0<2•• • 0tfc, 0 ^ ^ ...0,J. For
each /e N define a permutation 0ieSym(71) of order <?, so that (0,0, t)$t = (0,0, t<j>t)
for/eT.

Define a permutation fiQeSE , of order #, as follows:

leN;

V,n,t)p0

( l , « - l , 0 otherwise;

2,n+\-q,t) if«
(2,«+1,0 otherwise;

Let y = £^0 and let 0 = y2; then y9|5 = 0O\B, 0\EO = ePoe\Eo, E0/3 = E0, 0 is a
permutation of order g, and y is a permutation of order 2q. Note that yrcy"1 = ene for
all neSB, whence H £ H' U e/Te = / / ' U yH'y~x. Thus, in order to show that
H ^ <a15a2, y>, it will suffice to show that / / ' ^ <a15a2, y>. In fact, we will
show that / / ' £ <a, #,/?>, by showing that [0(] . . . 0 V 0^ .. .0Je<a,^,^> for all

Let S = ; then

(1,«, 0
ifn= l(mod^);

otherwise;

x3 = x ifxeD;

and in cases (I) to (III) we have

(2,n,t)6 = (2,n,t);

however, in case (IV) we have

\2,n-q\i) ifn =
(2,n,t)S = ,t) ifn = - l ( m o d ^ ) ;

(2,n,t) otherwise.
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240 FRED GALVIN

Let y/t = (d52i-l6-1) pidd^Q-1) for each ieN. Then xy/t = xfi for xeE\({0} xlxT).
If we define 0oeSym(r) so that (0,0,t)£ = (0,0,/0O) for /e7 , then

(U, n, t) yjt

in particular (0,0, t) y/t = (0,0, t<j>t) = (0,0,0(f)t. For each ieN, let
Ar. = {^3(2'-T):je N U {0}, y ^ /}; then ty s Z\{0}, and NtON} = 0 for / # / Let
^ = {0} x iV, x 7, and let r = {1,2} x Z x r .

Now £0, y, XpA'^Xg,... are disjoint sets, and for each ieN we have

= Xv

supp(&) ^ £"0, supp(yjt) c ^ u y u

V<lr = ^ r ' ^o V* = ^o, ^ t = y

It follows that [<f>ti... (f>ik, <f>h... cj>h] = [if/ti... y/ik, yu ... y, J e <a, 6, fi}.

5. Large subgroups of symmetric groups

We use the notation [X\K {or {Y ̂  X:\Y\ = K), where X is a set and K is a cardinal
number.

LEMMA 5.1. Let E be an infinite set with \E[ = K, let A £ Sym (E), and suppose that
there do not exist al,a2eA such that \{xeE:x =£ x(Xt ^ ^a2 # x}\ = K. Given a set
Xe[Ef and a permutation ye Sym (is), we can find a set Y6[X]K and a permutation
<5eSym(is) such that, for each CLEA, we have \{XG Y:xyct4{xy,xS}}\ < K.

Proof. If possible, choose OL^EA SO that HxeXixy^ # xy}\ = K, and let
Y = {xeX: xy^ ^ xy} and S = y<xv If no such ax exists, let Y = X and S = y.

LEMMA 5.2. Let E be an infinite set with \E\ = K, let A ^ Sym (E), and suppose that
there do not exist a1,a2eA such that \{xeE:x ^ xa, ^ xa2 ^ x}\ = K. Given a set
Xe[E]K and n permutations fiv . . . ,^neSym(£), we can find a set Ye[X]K and 2n+1

permutations 3^ ...,32n+ieSym(E) such that, for each neA^A^--- AflnA, we have
\{xe Y-.xn^ixd^ ...,xS2n+i}}\ < K.

Proof. By induction on n, using Lemma 5.1.

The next lemma follows from a theorem of Engelking and Karlowicz [4, Theorem
3]; we give a direct proof for the convenience of the reader.

LEMMA 5.3. Let Tbe a set with \T\ = K ̂  Xo. Then there is a family F of functions
f:T->Z such that \F\ = 2K and, whenever fv ...,fn are finitely many distinct elements of
F, we have {{teTf^t),^), ...,fn(t) are all distinct}\ = K.

Proof. We may assume that T is the set of all finite sequences in K. For each
subset I of K: define/7:r->Z by setting//(^0."-»^m-i) = L ( 2 < : 0 ^ i<m, c^e/}, and
let F = { / , : / £ K).

LEMMA 5.4. Let E be an infinite set with \E\ = K. Then there is a set C ̂  Sym (E)
such that \C\ = 2K and, for each finite subset D ofC, we have \{xeE:\xD\ = \D\}\ = K.
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GENERATING COUNTABLE SETS OF PERMUTATIONS 241

Proof. We may assume that E = TxZ where \T\ = K. Choose a family F of
functions /:!T->Z as in Lemma 5.3. For each/ei7 define 7if€Sym(E) by setting
(t,n)nf = (t,n+f{t)), and let C = {nf:feF}.

LEMMA 5.5. Let E be an infinite set with \E\ = K, let A be a subgroup o/Sym(£),
and suppose that there do not exist a1,a2e/l such that \{xeE:x # x<xx ^ xoc2 =^ x}\

^ Sym(E) and \B\ < 2\ then (A,B} # Sym(£).

Proof. We may assume that B~l = B; then

Choose a set C ^ Sym(ii) as in Lemma 5.4. It is easy to show using Lemma 5.2 that
\Cf] (ApxAp2- -ApnA)\ ^ 2 n + 1 for each finite sequence /?!,...,/?„ in B, hence

LEMMA 5.6. Let E be an infinite set with \E\ = K, and let A be a subgroup of
Sym(£). //Sym(£) = (A, B^for some set B c Sym(£) with \B\ < 2K, then there exist
al5a2ey4 such that \{xeE:x ¥" XOL^ ^ xa2 ^ x}\ = K.

Proof. This is just a restatement of Lemma 5.5.

THEOREM 5.7. Let 2 ^ q < oo and let E be an infinite set with \E\ = K. Suppose that
Sym(£) = (A,B) and \B\ < 2K. Then, for every countable subset H o/Sym(£), there
is a permutation yeSym(ii) of order 2q, such that (A,H} £ </4,y>.

Proof. This follows immediately from Lemma 5.6 and Theorem 4.6.

THEOREM 5.8. Let 2 ^ q < oo and let E be an infinite set. Suppose that
Sym (E) = (A, B)> where \B\ ^ \E\. Then there is a permutation y 6 Sym (E) of order 2q,
such that Sym(£) = (A,y).

Proof. By a result of Macpherson and Neumann [11, Corollary 3.1], there is a
finite set H ^ B such that Sym(ii) = {A,H}. (In the case of a countable set E, we
could get this from our Corollary 3.2.) By Theorem 5.7, there is a permutation y of
order 2q such that (A,H} £ (A,y).

The case \B\ = 2 of Theorem 5.8 answers Question 3.2 of Macpherson and
Neumann [11] in the negative.

Acknowledgements. I am grateful to Peter M. Neumann for his comments on a
preliminary draft of this paper.

Note added in March, 1994. The answer to Question 1.5 above is yes; the proof
will appear elsewhere.
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