MATH 301/601: Fall 2023		Instructor: Nicholas Vlamis	
Wednesday 3/6/2024	Exam 1	110 minutes	
Name:	Solutions		

Instructions.

- Read each problem carefully. Make sure you understand what the problem is asking.
- Proofs can be informal: use of logical symbols and incomplete sentences are permitted. However, make sure all statements and logical steps are clear and correct.
- You are allowed one 8.5" x 11" sheet of notes, written on the front and back. Your sheet may only contain theorem statements and definitions. You must turn in your note sheet with the exam.
- 4. No devices other than a writing utensil may be used.
- Feel free to use the back of any sheet. Just make it clear where I am meant to look for your solutions.

Question	Points	Score
1	. 6	
2	3	
3	4	
4	3	
5	6	
6	4	
7	8	
8	8	
9	8	
10	8	
Total:	50	

Part I: Computation and Understanding

1. $\boxed{6 \text{ points}}$ (a) Use the Euclidean algorithm to compute gcd(18, 120).

ها ح

(b) Write gcd(18,(20)) as a linear combination of 18 and 120.

(c) Is 24 a linear combination of 18 and 120? If so, give the linear combination; if not, explain why not.

2. 3 points Use the fact that $10^n \equiv (-1)^n \pmod{11}$ for each $n \in \mathbb{N}$ to show that 132539 is divisible by 11.

3. 4 points Find infinitely many solutions to the equation $5x + 1 \equiv 15 \pmod{21}$. Justify your answer.

3 points Give an example of a function f: N → N that is surjective but not injective.

$$f(n) = \begin{cases} n-1 & \text{if } n \ge 2 \\ 1 & \text{if } n = 1 \end{cases}$$

$$f(0) = f(1) = 1, \text{ so } f \text{ is } \text{ not in jecture,}$$
but it is surfecture: given KeIV, $f(kii) = k$.

- 6 points For each of following pairs of sets and binary operations, give one reason why the pair is not a group.
 - (a) the natural numbers with addition, $(\mathbb{N}, +)$

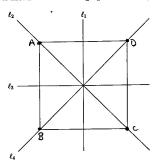
(b) the integers with substraction, $(\mathbb{Z}, -)$

Not associative
$$-2 = (0-1) - 1 \neq 0 - (1-1) = 0$$

(c) the rational numbers with multiplication, (\mathbb{Q},\cdot)

O does not have an inverte
$$\times 0 = 0$$
 $\vee \times 6$ \times \times $0 = 1$.

6. 4 points This question asks you to work with the symmetries of a square S. For $\theta \in \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$, let R_{θ} denote the counter-clockwise rotation of angle θ about the center of S, and for $i \in \{1, 2, 3, 4\}$, let F_i be the symmetry of S given by reflection in the line ℓ_i , where ℓ_i is shown in the following figure:



The set $D_4=\{R_0,R_{\frac{\pi}{2}},R_{\pi},R_{\frac{3\pi}{2}},F_1,F_2,F_3,F_4\}$ is a group under composition.

(a) Find the element of D_4 that is equal to $F_1 \circ F_2$.

(b) Find the element of D_4 that is equal to $F_2 \circ F_1$.

$$\mathcal{L}_{7/2} \qquad \qquad {}^{A}_{3} \square_{c}^{0} \stackrel{F_{1}}{\longrightarrow} \stackrel{D}{\longrightarrow} \stackrel{A}{\longrightarrow} \stackrel{F_{2}}{\longrightarrow} \stackrel{D}{\longrightarrow} \stackrel{C}{\longrightarrow} \stackrel{C}{\longrightarrow}$$

(c) Find the element of D_4 that is equal to $R_{\pi} \circ F_3$.

(d) Find the element of D_4 that is equal to $F_4 \circ R_{\frac{\pi}{2}}$.

Part II: Proofs

Instructions: Complete any three of the following four problems.

8 points Let f: A → B and g: B → C be functions. Prove that if g ∘ f is injective and f is surjective, then g is injective.

Let
$$ab_1, b_2 \in B$$
 s.t. $g(b_1) = g(b_2)$.

NTS $ab_1 = b_2$

As f is surjective, f a, $a_1 \in A$ s.t. $f(a_1) = b$, and $f(a_2) = b_2$.

Now, $(g \cdot f)(a_1) = g(f(a_1)) = g(b_1) = g(b_2) = g(f(a_2)) = (g \cdot f)(a_2)$

As $g \cdot f$ injective, $a_1 = a_2$. Hence, $b_1 = f(a_1) = b_2$.

8. 8 points Let n∈ N and a∈ Z \ {0} be relatively prime. Prove that if b ≡ a (mod n), then b and n are relatively prime. (***This is an easier version of a homework problem: do not reference any homework exercises in your proof.)

9. 8 points Use induction to prove that 3 divides $10^{n+1} + 10^n + 1$ for every $n \in \mathbb{N}$.

$$10^{n-2} + 10^{n+1} + 1 = 10 (10^{n+1} + 10^{n} + 1) - 9$$

As $3|9$ and $3|(10^{n+1} + 10^{n} + 1)$, $3|(10^{n+2} + 10^{n+1} + 1)$

D

10. 8 points Let G be a group and suppose that $(ab)^2 = a^2b^2$ for all $a, b \in G$. Prove that G is an abelian group.

Let
$$a,b \in G$$
,

 $(ab)^{a} = abab$

So, $abab = a^{a}b^{a} = aabb$
 $\Rightarrow a^{a}(abab) = a^{a}(aabb)$
 $\Rightarrow bab = abb$
 $\Rightarrow bab = abb$
 $\Rightarrow bab = abb$
 $\Rightarrow bab = abb$