
Worksheet/Notes for Wednesday, April 17 MATH 301/601

Instructions. Please carefully read these notes by Wednesday, May 1 and make a
serious attempt to understand the content. The exercises will be part of Homework 12
(due May 8), but to truly understand what you are reading, you will have to at least think
about them before then. I recommend meeting with your peers during our cancelled class
on Wednesday, April 17 to think through some portion of the exercises.

The goal of these notes is to introduce you to two new definitions: normal subgroups and
homomorphisms. In the textbook, normal subgroups are introduced in Section 10.1 and
homomorphisms are introduced in Section 11.1. We will not cover the entirety of those
sections here, so when we meet again we will discuss those sections in more depth. Here,
we will explore the definitions, basic examples, and basic properties. When we return after
the break, we see how these two notions are deeply connected.

Normal subgroups

Given a subgroup H of a group G, recall that the left coset of H with representative g
is the set gH = {gh : h ∈ H}, and the right coset of H with representative g is the set
Hg = {hg : h ∈ H}. We have seen that it is not always the case that gH and Hg are equal,
so when this happens we give the subgroup a special designation.

Definition 1 (Normal subgroup). A subgroup N of a group G is normal, written N ◁ G,
if gN = Ng for all g ∈ G.

After digesting the definition, it should be clear that every subgroup in an abelian group is
normal, so the definition is most interesting in the setting of non-abelian groups.

Example 1. Let N be an index two subgroup of a group G. It was a homework problem to
show that, under this hypothesis, gN = Ng for all g ∈ G; in other words, you proved that
every index two subgroup is normal. For instance, An is normal in Sn, as [Sn : An] = 2.
Similarly, the subgroup of rotations in Dn has index two, and hence it is normal.

Example 2. The special linear group SL(n,R) (i.e., the group of determinant one invertible
n× n matrices) is a normal subgroup of the general linear group GL(n,R) (i.e., the group
of n× n invertible matrices). Can you prove it? (Below we give a simpler way of checking
whether a subgroup is normal.)

Normally (no pun intended), I think about normal subgroups in terms of conjugation.
Recall that to conjugate a group element a by another group element g means to perform
the operation gag−1. We can also conjugate an entire subgroup: if H is a subgroup of a
group G and g ∈ G, then H conjugated by g is the subgroup gHg−1 = {ghg−1 : h ∈ H}
(technically, you should check that gHg−1 is in fact a subgroup). The following proposition
tells us that a subgroup is normal if and only if it is invariant under conjugation.

Proposition 2. Let N be a subgroup of a group G. Then the following are equivalent:

(i) N is normal.
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(ii) gNg−1 ⊂ N for all g ∈ G.

(iii) gNg−1 = N for all g ∈ G.

Proof. First, assume that N is normal. Let n ∈ N , and let g ∈ G. Then, as gN = Ng, there
exists n′ ∈ N such that gn = n′g, and hence gng−1 = n′. This implies that gng−1 ∈ N ,
and as both n and g were arbitrary, we have that gNg−1 ⊂ N , establishing that (i) implies
(ii).

Now, let us assume that gNg−1 ⊂ N for all g ∈ G. We will establish the equality of
these two sets for each g ∈ G. Fix g ∈ G. Let n ∈ N . By assumption, g−1Ng ⊂ N ,
so g−1ng ∈ N , implying that there exists n′ ∈ N such that g−1ng = n′. It follows that
n = gn′g−1 ∈ gNg−1. As both n and g were arbitrary, we have established that N ⊂ gNg−1

for all g ∈ G. Therefore, N = gNg−1 for all g ∈ G, establishing (ii) implies (iii).

To finish, assume gNg−1 = N for all g ∈ G. Fix g ∈ G. Let n ∈ N . Then gng−1 ∈
gNg−1 = N , so there exists n′ ∈ N such that gng−1 = n′, implying gn = n′g. In particular,
gn ∈ Ng, and hence, gN ⊂ Ng. A similar argument (replacing g with g−1 and vice versa)
shows that Ng ⊂ gN , and hence gN = Ng for all g ∈ G. Therefore, N is normal in G,
establishing (iii) implies (i).

Morally, the proposition says that the normal subgroups are those that have a “coordinate-
free” definition. This might make sense if we consider an example of a subgroup that is not
normal.

Exercise 1. Let H be the subgroup of Sn defined by H = {σ ∈ Sn : σ(1) = 1}. Now,
suppose µ ∈ Sn such that µ(1) = 2. Prove that µHµ−1 = {σ ∈ Sn : σ(2) = 2}.

The above exercise tells us that H is not normal, as it fails condition (iii) of the proposition:
relabeling the elements of {1, 2, . . . n} did not preserve the subgroup H.

Going back to my comment before the proposition, in my own work, if I want to check if a
subgroup N of a group G is normal, I will check that gng−1 ∈ N for all n ∈ N and all g ∈ G,
which is just checking condition (ii) in the proposition. Why don’t you practice:

Exercise 2. Use condition (ii) in Proposition 2 to prove the following statements:

(a) An is a normal subgroup of Sn.

(b) SL(n,R) is a normal subgroup of GL(n,R) (you have to remember the basic properties
of the determinant).

(c) The intersection of two normal subgroups is normal.

Homomorphisms

Whenever you are studying some class of mathematical objects, there is some associated
natural class of functions between such objects. In the setting of group theory, these are
the homomorphisms.
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Definition 3 (Homomorphism). Let G1 and G2 be groups. A function φ : G1 → G2 is a
homomorphism if φ(ab) = φ(a)φ(b) for all a, b ∈ G.

This definition should feel familiar as an isomorphism is a bijective homomorphism, and so
we have already been working with a special class of homomorphisms. Let us look at some
other examples.

Example 3. • Let A be an m× n matrix. Then TA : Rn → Rm given by TA(v) = Av is
a homomorphism, when we consider Rn and Rm as groups with respect to coordinate-
wise addition. It is a homomorphism because

TA(u+ v) = A(u+ v) = Au+Av = TA(u) + TA(v)

(of course slightly more is true as TA is linear).

• If φn : Z → Zn is the function defined by φ(k) = k̄, then φ is a homomorphism, since

φ(k + ℓ) = k + ℓ = k̄ + ℓ̄ = φ(k) + φ(ℓ)

• The determinant function det : GL(n,R) → R× is a homomorphism as det(AB) =
det(A) det(B).

Exercise 3. Recall that given z ∈ C, there exist real numbers x and y such that z = x+ iy.
The complex conjugate of z, denoted z̄, is the complex number z̄ = x− iy. The magnitude
of a complex number z, denoted |z|, is the real number

√
zz̄ =

√
x2 + y2.

(i) Prove that complex conjugation is a homomorphism C× → C×, i.e., prove that zw =
z̄w̄ for any z, w ∈ C (in fact, it is an isomorphism).

(ii) Prove that | · | : C× → R× is a homomorphism.

Next, we record the fact that homomorphisms have some the same basic properties of
isomorphisms:

Proposition 4. Let φ : G1 → G2 be a homomorphism.

(i) φ(eG1) = eG2.

(ii) φ(a−1) = φ(a)−1 for all a ∈ G.

(iii) φ(an) = φ(a)n for all a ∈ G and for all n ∈ Z.

If you remember from linear algebra, the null space of a matrix plays an important role. A
homomorphism has an equivalent notion of null space, called the kernel.

Definition 5 (Kernel). Let φ : G1 → G2 be a homomorphism. The kernel of φ, denoted
kerφ, is defined to be the set kerφ = {a ∈ G1 : φ(a) = eG2}, or equivalently, kerφ =
φ−1(eG2).

The next two exercises establishes a critical link between homomorphisms and normal sub-
groups.
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Exercise 4. Prove that the kernel of a homomorphism is a normal subgroup.

By definition, SL(n,R) is the kernel of the determinant, and hence by the exercise, it is
a normal subgroup. We will see when we next meet that every normal subgroup can be
realized as the kernel of some homomorphism.

Exercise 5. Let φ : Sn → Z2 be given by

φ(σ) =

{
0̄ if σ is even
1̄ otherwise

(i) Prove that φ is a homomorphism.

(ii) Prove that kerφ = An.

We finish by seeing that the kernel can detect whether a homomorphism is an isomor-
phism.

Exercise 6. Let φ : G1 → G2 be a homomorphism. Prove that φ is an isomorphism if and
only if kerφ is trivial (that is, kerφ = {eG1}).
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