Homework 11 Due Wednesday, May 10, 2023.

Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment. All claims must be sufficiently justified.

Exercise 1. Prove that every index two subgroup is normal.

Exercise 2. Let $\varphi: G \to H$ be a homomorphism of groups. Prove that the kernel of φ is a normal subgroup of G.

Exercise 3. Let $\varphi \colon \mathbb{Z}_7 \to H$ be a homomorphism that is not injective. Determine φ .

Exercise 4. Up to isomorphism, determine the groups H for which there exists a surjective homomorphism from D_4 onto H.

Exercise 5. A 2×2 rotation matrix is a *rotation matrix* of the form

$$R_{\theta} = \begin{bmatrix} \cos(2\pi\theta) & -\sin(2\pi\theta) \\ \sin(2\pi\theta) & \cos(2\pi\theta) \end{bmatrix}$$

where $\theta \in \mathbb{R}$. The two-dimensional special orthogonal group SO(2) is the set of 2×2 rotation matrices equipped with matrix multiplication.

(a) Prove that $f: \mathbb{R} \to SO(2)$ given by $f(\theta) = R_{\theta}$ is a group homomorphism.

- (b) Find the kernel of f.
- (c) Prove that SO(2) is isomorphic to \mathbb{R}/\mathbb{Z} .

Exercise 6. Complete the following exercises from Section 11.4:

13, 19