Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment. All claims must be sufficiently justified.

*Exercise 1. (a) Find all the subgroups of \mathbb{Z}_{26} . Justify your answer.

(b) Let $p \in \mathbb{N}$ be prime. How many subgroups does \mathbb{Z}_{2p} have? Prove it.

Exercise 2. Let $A \in GL(n, \mathbb{R})$ be a matrix with odd order. Prove that $A \in SL(n, \mathbb{R})$.

Exercise 3. Let G be a group, and given $g \in G$, define $\lambda_g: G \to G$ by $\lambda_g(h) = gh$ for $h \in G$. Prove that: $\psi: G \to \text{Sym}(G)$ given by $\psi(g) = \lambda_g$ is injective.

Exercise 4. Give a set of matrices in $GL(4, \mathbb{R})$ that form a group isomorphic to D_4 .

Definition 1. An *automorphism* of a group G is an isomorphism $G \to G$.

*Exercise 5. Let G be a finite abelian group of order m. Suppose $n \in \mathbb{N}$ is relatively prime to m. Prove that $\varphi: G \to G$ given by $\varphi(g) = g^n$ is an automorphism of G. (This says that every element of G has an n^{th} -root.)

Exercise 6. Let G be a group. Prove that the set of automorphisms of G, denoted Aut(G), is a group with respect to function composition (this group is called *the automorphism group of G*).

Exercise 7. Complete the following exercises from Section 9.4:

8, 12, 38, ***39**, 41

****Exercise 8.** Prove that every automorphism of S_3 is an inner automorphism.