Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment. All claims must be sufficiently justified.

Exercise 1. Prove that the order of S_n is n!.

Exercise 2. (a) Write down the elements in the cyclic subgroups generated by the cycles (1 4 3) and (1 3 5 2 4 6).

(b) Prove the order of a k-cycle is k.

Exercise 3. Complete the following exercises from Section 5.4 in the course textbook:

#1, 2(a,b,c,d), 4, 5 (ignore the first sentence, and just find each of the sets in a, b, and c, and decide whether they are subgroups or not), 7, 8, 17, 18, 23, *25, *33

*Exercise 4. From Exercise 1, $|S_4| = 4! = 24$. Show that for any divisor d of 24 there exists a subgroup H such that |H| = d.

**Exercise 5. Prove that A_9 is generated by two 5-cycles. (This means there are two five cycles, say σ and τ , such that every element in A_9 can be expressed as $w_1w_2\cdots w_k$, where $w_i \in {\sigma, \tau}$.)

This question came up in discussing the Gizmo Gear Puzzle, see also this research paper about the puzzle (one of the authors is a current master's student at QC). Understanding Figure 3(b) is where the question comes from, and it might also help in doing the exercise!