Homework 6

Due Wednesday, October 25, 2023

Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment. All claims must be sufficiently justified.

Exercise 1. Prove that the order of S_{n} is $n!$.

Exercise 2. (a) Write down the elements in the cyclic subgroups generated by the cycles (143) and (135246).
(b) Prove the order of a k-cycle is k.

Exercise 3. Complete the following exercises from Section 5.4 in the course textbook:
$\# 1,2(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}), 4,5$ (ignore the first sentence, and just find each of the sets in a, b, and c , and decide whether they are subgroups or not), $7,8,17,18,23, * 25, * 33$
*Exercise 4. From Exercise 1, $\left|S_{4}\right|=4!=24$. Show that for any divisor d of 24 there exists a subgroup H such that $|H|=d$.
**Exercise 5. Prove that A_{9} is generated by two 5 -cycles. (This means there are two five cycles, say σ and τ, such that every element in A_{9} can be expressed as $w_{1} w_{2} \cdots w_{k}$, where $w_{i} \in\{\sigma, \tau\}$.)

This question came up in discussing the Gizmo Gear Puzzle, see also this research paper about the puzzle (one of the authors is a current master's student at QC). Understanding Figure 3(b) is where the question comes from, and it might also help in doing the exercise!

