Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment. All claims must be sufficiently justified.

Exercise 1. Complete the following exercises from Section 4.5 in the course textbook:

#1(a,b,c,d), 2(a,e,f), 3(b,c,e), 4(a,b,c), 9, 11, 27, 30, 31, 39

- **Exercise 2.** (a) Compute the center of $GL(2, \mathbb{R})$. (Hint: use the following test matrices $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.)
- (b) Compute the center of $SL(2, \mathbb{R})$.

*Exercise 3. Let G be a group. Let $a \in G \setminus \{e\}$ such that the order of a, denoted |a|, is m (recall, this means the cyclic subgroup $\langle a \rangle$ is order m). The goal of this exercise is to prove that $|a| = \min\{n \in \mathbb{N} : a^n = e\}$.

- (a) Show that the set $S = \{n \in \mathbb{N} : a^n = e\}$ is not empty. (Hint: argue that there exists $j, k \in \{1, 2, \dots, m+1\}$ such that $a^j = a^k$.) Then, by the well-ordering principle, S has a least element, call it ℓ .
- (b) Show that $a^k \neq a^j$ if $0 \leq j < k < \ell$.
- (c) Given $k \in \mathbb{Z}$, use the division algorithm to show that $a^k \in \{e, a, a^2, \dots, a^{\ell-1}\}$.
- (d) Conclude that $\langle a \rangle = \{e, a, a^2, \dots, a^{\ell-1}\}$, and hence $|a| = \ell$.

Exercise 4. Let $a, b \in \mathbb{Z}$.

- (a) Let $\langle a, b \rangle = \{as + bt : s, t \in \mathbb{Z}\}$. Prove that $\langle a, b \rangle$ is a subgroup of \mathbb{Z} .
- (b) Show that if H is a subgroup such that $a, b \in H$, then $\langle a, b \rangle < H$ (this says that $\langle a, b \rangle$ is the subgroup generated by a and b).
- (c) Find $n \in \mathbb{N} \cup \{0\}$ such that $\langle a, b \rangle = n\mathbb{Z}$. Justify your answer. (It might help to try some concrete values for a and b if you are not sure what n should be.)

*Exercise 5. Let G be a finite group. Show that there exists an integer N such that $g^N = e$ for every $g \in G$.

*Exercise 6. Suppose G is a nontrivial group in which the only two subgroups of G are itself and the trivial subgroup.

- (a) Prove that G is cyclic.
- (b) Using part (a), prove that G is a finite group of prime order.