Homework 3

Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment. All claims must be sufficiently justified.
*Exercise 1. Let $n \in \mathbb{N}$ with $n>1$, and let $a \in \mathbb{Z}$.
(a) Prove that if $\operatorname{gcd}(a, n)=1$ and $b, c \in \mathbb{Z}$ such that $a b=a c(\bmod n)$, then $b=c(\bmod n)$.
(b) Give an example of integers n, a, b, c such that $a b=a c(\bmod n)$ but $b \neq c(\bmod n)$.
*Exercise 2. Let $n \in \mathbb{N}$.
(a) Prove that $10^{n} \equiv 1(\bmod 9)$. (There are numerous ways to see this. One way is to use induction.)
(b) (Divisibility by 9) Define $h: \mathbb{N} \rightarrow \mathbb{Z}$ by

$$
h(n)=\sum_{j=0}^{k} a_{j},
$$

where

$$
n=\sum_{j=0}^{k}\left(a_{j} \cdot 10^{j}\right) .
$$

In words, $h(n)$ is the sum of the digits of n when written in base 10. For example, if $n=27301$, then $h(n)=1+0+3+7+2=13$. Prove the following statement: Let $n \in \mathbb{N}, 9 \mid n$ if and only if $9 \mid h(n)$. (Hint: You will have to use Exercise 2(a).)

Exercise 3. Let $n \in \mathbb{N}$.
(a) Prove that $10^{n} \equiv(-1)^{n}(\bmod 11)$. (Hint: use induction.)
(b) (Divisibility by 11) Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by

$$
f(n)=\sum_{j=0}^{k}(-1)^{j} a_{j},
$$

where

$$
n=\sum_{j=0}^{k}\left(a_{j} \cdot 10^{j}\right) .
$$

In words, $f(n)$ is the alternating sum of the digits of n when written in base 10 . For example, if $n=27301$, then $f(n)=1-0+3-7+2=-1$. Prove the following statement: Let $n \in \mathbb{N}, 11 \mid n$ if and only if $11 \mid f(n)$. (Hint: You will have to use Exercise 3(a).)
(Turn page over.)

Exercise 4. Complete the following exercises from Section 3.5 in the course textbook:
$\# 2,7,10,15,{ }^{*} 32,33$
(Note that \#32 is starred!)
Exercise 5. Let D_{4} denote the group of symmetries of a square.
(a) Describe all the elements of D_{4}. (You do not need to prove you have them all, but do your best. We will do an official count in class, though I'm putting it as a challenge problem below.)
(b) Describe a permutation of the vertices of the square that cannot be obtained via a symmetry of the square. (It might be helpful to view the side lengths of the square as 1 and to use the Pythagorean theorem: $a^{2}+b^{2}=c^{2}$, where a and b are the lengths of the legs of a right triangle and c is the length of the hypotenuse.)
${ }^{* *}$ Exercise 6. For $n \in \mathbb{N}$ with $n \geq 3$, let D_{n} denote the group of symmetries of a regular n-gon. Prove that D_{n} has $2 n$ elements. (We will eventually prove this in class.)

