Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment. All claims must be sufficiently justified.

Exercise 1. Use induction to prove that

$$\frac{x^n - 1}{x - 1} = \sum_{i=0}^{n-1} x^i$$

for all $n \in \mathbb{N}$ and $x \in \mathbb{Z}$. (Note: you are inducting on n, not x.)

Exercise 2. Complete the following exercises from Section 2.4 in the course textbook: # 1, 5, 9, *27, 28 (you will need to use Exercise 1), 31

Exercise 3. Complete exercise #1 from Section 3.5 in the course textbook.

Definition 1. An equivalence relation on a set S is a binary relation \sim that is:

- (i) reflexive, that is, $a \sim a$ for all $a \in S$;
- (ii) symmetric, that is, $a \sim b$ implies $b \sim a$ for all $a, b \in S$; and
- (iii) transitive, that is, $a \sim b$ and $b \sim c$ implies $a \sim c$ for all $a, b, c \in S$.

Exercise 4. Let $n \in \mathbb{N}$. Prove that equivalence modulo n is an equivalence relation on \mathbb{Z} .

*Exercise 5. Let $n \in \mathbb{N}$. Prove that given any $m \in \mathbb{Z}$ there exists a unique element $a \in \{0, 1, 2, \ldots, n-1\}$ such that $m \equiv a \pmod{n}$. (Hint: Use the division algorithm.)

Exercise 6. Let $n \in \mathbb{N}$, and let $a, b \in \mathbb{Z}$. Prove that if $a \equiv b \pmod{n}$, then

gcd(a, n) = gcd(b, n).