Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment. All claims must be sufficiently justified.
*Exercise 1. Prove that the composition of two surjective functions is surjective.

Exercise 2. Let $a, b \in \mathbb{Z}$. Prove that if $a \mid b$ and $b \mid a$, then either $a=b$ or $a=-b$.

Exercise 3. Let $a, b, c, m, n \in \mathbb{Z}$. Prove that if $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$.

Exercise 4. Complete the following exercises from Section 2.4 in the course textbook: $\# 14,15,16,18, * 20,27$

Definition. Given two nonzero integers a and b, an integer c is a common multiple of a and b if $a \mid c$ and $b \mid c$. The least common multiple of a and b, denoted $\operatorname{lcm}(a, b)$, is the smallest positive common multiple of a and b.
*Exercise 5. Let a and b be nonzero integers.
(1) Prove that the least common multiple of a and b exists.
(2) Prove that if $k \in \mathbb{Z}$ is a common multiple of a and b, then $\operatorname{lcm}(a, b)$ divides k. (Hint: divide k by $\operatorname{lcm}(a, b)$ using the division algorithm.)
${ }^{* *}$ Exercise 6. Let a and b be nonzero integers.
(1) Prove that the product of $\operatorname{lcm}(a, b)$ and $\operatorname{gcd}(a, b)$ is equal to $|a b|$. (Hint: the product $a b$ is divisible by $d=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. Let $m=|a b| / d$. Now, let k be a common multiple of a and b. Write d as a linear combination in a and b, and use this to express the fraction k / m as an integer.)
(2) Prove that $\operatorname{lcm}(a, b)=|a b|$ if and only if $\operatorname{gcd}(a, b)=1$.

