Recap. $v, w \in \mathbb{R}^{n}$ are orthogonal if $v \cdot w=0$.

- Given subspace, its orthogonal complement of W $w^{\perp}=\left\{v \in \mathbb{R}^{n} \mid v \cdot w=0 \quad \forall w \in W\right\}$

Recall: Given a matrix A, the row space of A is the subspace $\operatorname{row}(A)=\operatorname{Col}\left(A^{T}\right)=$ " subspace spanned by the rows of $A^{\text {" }}$

$$
\begin{aligned}
A= & {\left[\begin{array}{ccc}
1 & 0 & -1 \\
3 & -1 & 5
\end{array}\right] } \\
& \operatorname{vow}(A)=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right]\right\}
\end{aligned}
$$

$\operatorname{Thm} 6.3 \operatorname{row}(A)^{\perp}=\operatorname{null}(A)$ and $\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{+}\right)$.
Proof NTS: $\operatorname{null}(A)<\operatorname{row}(A)^{\perp}$ and $\operatorname{row}(A)^{\perp} \subset \operatorname{null}(A)$
Take venull(A), and well show that $v \in \operatorname{row}(A)^{+}$.
$\Rightarrow A_{v}=0$. If $r_{1}, r_{2}, \ldots, r_{m}$ are the rows of A, then

$$
A v=\left[\begin{array}{c}
r_{1} \cdot v \\
r_{2} \cdot v \\
\vdots \\
r_{m} \cdot v
\end{array}\right] \quad \Rightarrow \quad r_{1} \cdot v=r_{2} \cdot v=\ldots=r_{m} \cdot v=0
$$

Now, if $w \in \operatorname{row}(A)$, then $w=c_{1} r_{1}+c_{2} r_{2}+\cdots+c_{m} r_{m}$

$$
\begin{aligned}
& \Rightarrow \quad V \cdot W=C_{1} \frac{V \cdot r_{1}}{C}+C_{2} \frac{V \cdot r_{2}}{c}+\cdots+C_{m} \frac{V \cdot r_{m}}{C}=C \\
& \Rightarrow \quad V \in \operatorname{row}(A)^{\perp} \\
& \Rightarrow \operatorname{null}(A) C \operatorname{row}(A)^{\perp}
\end{aligned}
$$

Conversely, suppose $w \in \operatorname{row}(A)^{\perp}$, then we need to show that wenull(A).

$$
\begin{aligned}
& A_{w}=\left[\begin{array}{c}
r_{1} \cdot w \\
r_{2} \cdot w \\
\vdots \\
r_{m} \cdot w
\end{array}\right]=0 \Rightarrow w \in \operatorname{null}(A) \\
& \Rightarrow \operatorname{row}(A)^{\perp} \operatorname{cnu} \|(A) \Rightarrow \operatorname{row}(A)^{\perp}=\operatorname{null}(A) .
\end{aligned}
$$

To finish, we want $\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{\top}\right)$.

$$
\operatorname{null}\left(A^{\top}\right)=\operatorname{row}\left(A^{\top}\right)^{\perp}=\operatorname{col}(A)^{\perp}
$$

Def A set of vectors is orthogonal it each pair of distinct vectors is orthogonal.

Ex $u_{1}=\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right], u_{2}:\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right], \quad u_{3}=\left[\begin{array}{c}-2 \\ 0 \\ 6\end{array}\right]$

$$
\begin{aligned}
& u_{1} \cdot u_{2}=3 \cdot 1+0 \cdot 2+1 \cdot(-3)=0 \\
& u_{1} \cdot u_{3}=3(-2)+0 \cdot 10+1 \cdot 6=0 \\
& u_{2} \cdot u_{3}=1 \cdot(-2)+2(10)+(-3) \cdot 6=0
\end{aligned}
$$

$\Rightarrow\left\{u_{1}, u_{2}, u_{3}\right\}$ is orthogenal.

Recall: $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ is linearly independent if

$$
0=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{p} u_{p}
$$

has only the trivial solution.
Thin 6.4 Let $S=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\} \subset \mathbb{R}^{n}$ be an orthogonal set, ${ }^{n}$ non- zetas Then, S is linearly independent, and hence S is a basis for span S

Proof Suppose

$$
0=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{p} u_{p} .
$$

Take the dot product of each side w/ U1

$$
\begin{aligned}
& \Rightarrow 0=c_{1} u_{1} \cdot u_{1}+c_{2} u_{2} \cdot u_{1}+\cdots+c_{p} \frac{u_{p} \cdot u_{1}}{0} \\
& \Rightarrow 0=c_{1}\left\|u_{1}\right\|^{2}
\end{aligned}
$$

Since $u, \neq 0$, we know that $\left\|u_{1}\right\|^{2} \neq 0$.

$$
\Rightarrow c_{1}=0 .
$$

Similarly, $c_{2}=c_{3}=\cdots=c_{p}=0$.
$\Rightarrow S$ is linearly independent. I

Def An orthogonal basis of a subspace WC \mathbb{R}^{n} is a basis F or W that is also an orthogonal set.

Ex The standard basis e_{1}, \ldots, e_{n} for \mathbb{R}^{n} is an orthoganenl basis.

$$
\begin{array}{lll}
v=5 e_{1}+3 e_{2} & \text { observation: } & 5=v \cdot e_{1} \\
& 3=v \cdot e_{2}
\end{array}
$$

The 6.5 Let $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be an athogonal basis's for subspace $W \subset \mathbb{R}^{n}$. For each $y \in W$,

$$
\begin{aligned}
& y=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{p} u_{p} \\
& \text { with } \left.c_{j}=\frac{y \cdot u_{j}}{\left\|u_{j}\right\|^{2}} \quad \forall j \in 3, \cdots, p\right\} .
\end{aligned}
$$

Proof

$$
\begin{aligned}
y \cdot u_{1} & =c_{1} u_{1} \cdot u_{1}+c_{2} \frac{u_{2} \cdot u_{1}+\cdots+c_{p} u_{p} \cdot u_{1}}{0} \\
& =c_{1}\left\|u_{1}\right\|^{2} \\
\Rightarrow c_{1} & =\frac{y \cdot u_{1}}{\left\|u_{1}\right\|^{2}} \text { Sinilorly for } c_{2}, \ldots, c_{p} \cdot B
\end{aligned}
$$

Ex, $u_{1}=\left[\begin{array}{c}3 \\ 4 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right], \quad u_{3}=\left[\begin{array}{c}-2 \\ 0 \\ 6\end{array}\right]$
$\Rightarrow S:\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3}
Q: Find the S-coordinates for $v=\left[\begin{array}{c}-1 \\ 5 \\ 2\end{array}\right]$.
A:

$$
\begin{aligned}
& \left\|u_{1}\right\|^{2}=u_{1} \cdot u_{1}=3^{2}+0^{2}+1^{2}=10 \\
& \left\|u_{2}\right\|^{2}=14 \\
& \left\|u_{2}\right\|^{2}=140 \\
& v=\frac{v \cdot u_{1}}{\left\|u_{1}\right\|^{2}} u_{1}+\frac{v \cdot u_{2}}{\left\|u_{2}\right\|^{2}} \cdot u_{2}+\frac{v \cdot u_{3}}{\left\|u_{3}\right\|^{2}} u_{3} \text { by Thu } 6 \cdot 5 \\
& =\frac{-1}{10} u_{1}+\frac{3}{14} u_{2}+\frac{1}{2} u_{3}
\end{aligned}
$$

