Theorem 1 (Invertible Matrix Theorem). Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- a. A is an invertible matrix.
- b. A is row equivalent to I_n .
- c. A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$.
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix C such that $CA = I_n$.
- k. There is an $n \times n$ matrix D such that AD = I.
- l. A^T is an invertible matrix.
- m. The columns of A form a basis of \mathbb{R}^n .
- n. $col(A) = \mathbb{R}^n$.
- o. rank(A) = n.
- p. $\operatorname{nullity}(A) = 0$.
- q. $null(A) = \{0\}.$
- r. $det(A) \neq 0$.