Exercise 1. Pictured to the right is a Markov chain.
(a) Fill in the missing edge labels.
(b) Write down the transition matrix M for the Markov chain.
(c) Convince yourself that the Markov chain is regular.
(d) Find the unique stochastic vector w such that $A w=w$.

Exercise 2. Consider the (incomplete) matrix:

$$
A=\left[\begin{array}{ccccc}
\frac{1}{3} & * & 0 & \frac{2}{9} & 0 \\
0 & 0 & 0 & 0 & * \\
* & \frac{2}{7} & 0 & * & 0 \\
0 & \frac{3}{7} & 0 & 0 & \frac{1}{5} \\
\frac{1}{6} & 0 & * & 0 & 0
\end{array}\right]
$$

(a) Replace each asterisk mark in A with a real number so that the result is a stochastic matrix.
(b) Draw the Markov chain associated to A.
(c) Determine if the underlying directed graph is strongly connected.

Exercise 3. Let M be an $n \times n$ stochastic matrix and let $v \in \mathbb{R}^{n}$ be a stochastic vector. Show that $M v$ is a stochastic vector.

Exercise 4. Draw a Markov chain representing the following situation: The weather in Edinburgh is either good, indifferent, or bad on any given day. If the weather is good today, there is a 50% chance the weather will be good tomorrow, a 30% chance the weather will be indifferent, and a 20% chance the weather will be bad. If the weather is indifferent today, it will be good tomorrow with probability . 20 and indifferent with probability .70. Finally, if the weather is bad today, it will be good tomorrow with probability . 10 and indifferent with probability. 30 .

