Definition. An orthogonal matrix is an invertible matrix A such that $A^{-1}=A^{T}$.
Exercise 1. Show that the rotation matrix $R_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
Exercise 2. Show that the determinant of an orthogonal matrix is either 1 or -1 .
Exercise 3. Complete the following exercises from Section 6.1 in the course textbook:
\# 1, 3, 5, 9, 13, 15, 33, 34, 35, 37, 38
Exercise 4. Complete the following exercises from Section 6.2 in the course textbook:
\# 1, 3, 5, 7, 9, 34

