
The Orthogonal Projection Theorem MATH 231

Theorem (Orthogonal Projection Theorem). Let W be a subspace of Rn. Then, given
u ∈ Rn, there exists unique û ∈W and z ∈W⊥ such that u = û + z.

Proof. We will first prove existence; we will establish uniqueness at the end of the proof.
The proof is an induction on the dimension of W . So, we will start by assuming that
dimW = 1. We can then write W = span{v} for any non-zero vector v in W . By replacing
v with v

||v||2 , we may assume that v is a unit vector, i.e., that v · v = 1. Now, let u ∈ Rn.

Set û = (u · v)v, and set z = u− û. Then, we have that u = û + z by definition. Also, by
definition, û ∈ W , and so we need to verify that z ∈ W⊥. To do so, it is enough to check
that z · v = 0. Let’s compute:

z · v = (u− û) · v
= u · v − û · v
= u · v − [(u · v)v] · v
= u · v − (u · v)(v · v)

= u · v − u · v
= 0,

where the 5th equality follows from the fact that v · v = 1. This establishes the base case
of the induction.

Now, suppose that dimW = d + 1. We will assume that the statement holds for all d-
dimensional vector spaces (this is called the inductive hypothesis), and from this assumption,
we will prove that it holds for W . Choose a basis {v1,v2, . . . ,vd+1} for W . Let Wd =
span{v1,v2, . . . ,vd}. By the inductive hypothesis, we can write vd+1 = v̂d+1 + y, where
v̂d+1 ∈ Wd and y ∈ W⊥

d . Note that since vd+1 and v̂d+1 are in W , it follows that y =
vd+1 − v̂d+1 is in W also. It also follows that {v1,v2, . . . ,vd,y} is a basis for W . As we
did before, replacing y with y

||y||2 , we may assume that y · y = 1.

Now, let u ∈ Rn. By the inductive hypothesis, there exists ûd ∈ Wd and zd ∈ W⊥
d such

that u = ûd + zd. Let û = ûd + (u · y)y, and let z = u− û. Now, û ∈ W and u = û + z,
and so it is left to check that z ∈W⊥. Observe that z = zd − (u · y)y, and hence z ∈W⊥

d .
So, we know that z · vj = 0 for each j ∈ {1, 2, . . . , d}. Therefore, it is left to check that
z · y = 0. To see this, note that

u · y = ûd · y + zd · y = zd · y,

where the second equality uses the fact that y ∈W⊥
d . Therefore,

z · y = [zd − (u · y)y] · y
= zd · y − (u · y)(y · y)

= zd · y − u · y
= zd · y − zd · y
= 0
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This shows that z ∈ W⊥, and establishes the inductive step and the existence portion of
the theorem.

It is left to establish uniqueness. Suppose u = û1 +z1 and u = û2 +z2 for some û1, û2 ∈W
and z1, z2 ∈W⊥. Then, û1 + z1 = û2 + z2, or after rearranging,

û1 − û2 = z2 − z1.

Now, the vector on the left is in W and the vector on the right is in W⊥, and since they
are equal, they are both in W ∩W⊥. However, W ∩W⊥ = {0}, and hence we can conclude
that û1 = û2 and z1 = z2, establishing uniqueness.
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