Theorem (Orthogonal Projection Theorem). Let W be a subspace of \mathbb{R}^{n}. Then, given $\mathbf{u} \in \mathbb{R}^{n}$, there exists unique $\hat{\mathbf{u}} \in W$ and $\mathbf{z} \in W^{\perp}$ such that $\mathbf{u}=\hat{\mathbf{u}}+\mathbf{z}$.

Proof. We will first prove existence; we will establish uniqueness at the end of the proof. The proof is an induction on the dimension of W. So, we will start by assuming that $\operatorname{dim} W=1$. We can then write $W=\operatorname{span}\{\mathbf{v}\}$ for any non-zero vector \mathbf{v} in W. By replacing \mathbf{v} with $\frac{\mathbf{v}}{\|\mathbf{v}\|^{2}}$, we may assume that \mathbf{v} is a unit vector, i.e., that $\mathbf{v} \cdot \mathbf{v}=1$. Now, let $\mathbf{u} \in \mathbb{R}^{n}$. Set $\hat{\mathbf{u}}=(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}$, and set $\mathbf{z}=\mathbf{u}-\hat{\mathbf{u}}$. Then, we have that $\mathbf{u}=\hat{\mathbf{u}}+\mathbf{z}$ by definition. Also, by definition, $\hat{\mathbf{u}} \in W$, and so we need to verify that $\mathbf{z} \in W^{\perp}$. To do so, it is enough to check that $\mathbf{z} \cdot \mathbf{v}=\mathbf{0}$. Let's compute:

$$
\begin{aligned}
\mathbf{z} \cdot \mathbf{v} & =(\mathbf{u}-\hat{\mathbf{u}}) \cdot \mathbf{v} \\
& =\mathbf{u} \cdot \mathbf{v}-\hat{\mathbf{u}} \cdot \mathbf{v} \\
& =\mathbf{u} \cdot \mathbf{v}-[(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}] \cdot \mathbf{v} \\
& =\mathbf{u} \cdot \mathbf{v}-(\mathbf{u} \cdot \mathbf{v})(\mathbf{v} \cdot \mathbf{v}) \\
& =\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{v} \\
& =0,
\end{aligned}
$$

where the 5 th equality follows from the fact that $\mathbf{v} \cdot \mathbf{v}=1$. This establishes the base case of the induction.

Now, suppose that $\operatorname{dim} W=d+1$. We will assume that the statement holds for all d dimensional vector spaces (this is called the inductive hypothesis), and from this assumption, we will prove that it holds for W. Choose a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d+1}\right\}$ for W. Let $W_{d}=$ $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}\right\}$. By the inductive hypothesis, we can write $\mathbf{v}_{d+1}=\hat{\mathbf{v}}_{d+1}+\mathbf{y}$, where $\hat{\mathbf{v}}_{d+1} \in W_{d}$ and $\mathbf{y} \in W_{d}^{\perp}$. Note that since \mathbf{v}_{d+1} and $\hat{\mathbf{v}}_{d+1}$ are in W, it follows that $\mathbf{y}=$ $\mathbf{v}_{d+1}-\hat{\mathbf{v}}_{d+1}$ is in W also. It also follows that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}, \mathbf{y}\right\}$ is a basis for W. As we did before, replacing \mathbf{y} with $\frac{\mathbf{y}}{\|\mathbf{y}\|^{2}}$, we may assume that $\mathbf{y} \cdot \mathbf{y}=1$.
Now, let $\mathbf{u} \in \mathbb{R}^{n}$. By the inductive hypothesis, there exists $\hat{\mathbf{u}}_{d} \in W_{d}$ and $\mathbf{z}_{d} \in W_{d}^{\perp}$ such that $\mathbf{u}=\hat{\mathbf{u}}_{d}+\mathbf{z}_{d}$. Let $\hat{\mathbf{u}}=\hat{\mathbf{u}}_{d}+(\mathbf{u} \cdot \mathbf{y}) \mathbf{y}$, and let $\mathbf{z}=\mathbf{u}-\hat{\mathbf{u}}$. Now, $\hat{\mathbf{u}} \in W$ and $\mathbf{u}=\hat{\mathbf{u}}+\mathbf{z}$, and so it is left to check that $\mathbf{z} \in W^{\perp}$. Observe that $\mathbf{z}=\mathbf{z}_{d}-(\mathbf{u} \cdot \mathbf{y}) \mathbf{y}$, and hence $\mathbf{z} \in W_{d}^{\perp}$. So, we know that $\mathbf{z} \cdot \mathbf{v}_{j}=0$ for each $j \in\{1,2, \ldots, d\}$. Therefore, it is left to check that $\mathbf{z} \cdot \mathbf{y}=0$. To see this, note that

$$
\mathbf{u} \cdot \mathbf{y}=\hat{\mathbf{u}}_{d} \cdot \mathbf{y}+\mathbf{z}_{d} \cdot \mathbf{y}=\mathbf{z}_{d} \cdot \mathbf{y}
$$

where the second equality uses the fact that $\mathbf{y} \in W_{d}^{\perp}$. Therefore,

$$
\begin{aligned}
\mathbf{z} \cdot \mathbf{y} & =\left[\mathbf{z}_{d}-(\mathbf{u} \cdot \mathbf{y}) \mathbf{y}\right] \cdot \mathbf{y} \\
& =\mathbf{z}_{d} \cdot \mathbf{y}-(\mathbf{u} \cdot \mathbf{y})(\mathbf{y} \cdot \mathbf{y}) \\
& =\mathbf{z}_{d} \cdot \mathbf{y}-\mathbf{u} \cdot \mathbf{y} \\
& =\mathbf{z}_{d} \cdot \mathbf{y}-\mathbf{z}_{d} \cdot \mathbf{y} \\
& =0
\end{aligned}
$$

This shows that $\mathbf{z} \in W^{\perp}$, and establishes the inductive step and the existence portion of the theorem.

It is left to establish uniqueness. Suppose $\mathbf{u}=\hat{\mathbf{u}}_{1}+\mathbf{z}_{1}$ and $\mathbf{u}=\hat{\mathbf{u}}_{2}+\mathbf{z}_{2}$ for some $\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{2} \in W$ and $\mathbf{z}_{1}, \mathbf{z}_{2} \in W^{\perp}$. Then, $\hat{\mathbf{u}}_{1}+\mathbf{z}_{1}=\hat{\mathbf{u}}_{2}+\mathbf{z}_{2}$, or after rearranging,

$$
\hat{\mathbf{u}}_{1}-\hat{\mathbf{u}}_{2}=\mathbf{z}_{2}-\mathbf{z}_{1} .
$$

Now, the vector on the left is in W and the vector on the right is in W^{\perp}, and since they are equal, they are both in $W \cap W^{\perp}$. However, $W \cap W^{\perp}=\{\mathbf{0}\}$, and hence we can conclude that $\hat{\mathbf{u}}_{1}=\hat{\mathbf{u}}_{2}$ and $\mathbf{z}_{1}=\mathbf{z}_{2}$, establishing uniqueness.

