Homework 12

Due Wednesday, December 6, 2023
Instructions. Your work will be collected in class on the due date. We will also have a quiz in class on the due date based on the content from the assignment.

Exercise 1. Complete the following exercises from Section 6.2 in the course textbook:
\# 11, 13, 17, 19, 21, 35, 37, 38, 41

Exercise 2. Let $\mathbf{v}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$, and let $W=\operatorname{span}\{\mathbf{v}\}$. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T(\mathbf{u})=\operatorname{proj}_{W}(\mathbf{u})
$$

(In \#41 in Section 6.2, you established that T is a linear transformation.) Find the matrix A satisfying $T(\mathbf{u})=A \mathbf{u}$ for every $\mathbf{u} \in \mathbb{R}^{2}$.

Exercise 3. Complete the following exercises from Section 6.3 in the course textbook: \# 1, 3, 5, 7, 32

Exercise 4. Let A be an $n \times n$ orthogonal matrix. Show that if $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, then

$$
(A \mathbf{u}) \cdot(A \mathbf{v})=\mathbf{u} \cdot \mathbf{v}
$$

Exercise 5. Let $R_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. Show that R_{θ} is an orthogonal matrix.
Exercise 6. Let W be a subspace of \mathbb{R}^{n}. Show that $W=\left(W^{\perp}\right)^{\perp}$ (Hint: Use the orthogonal projection theorem.)

Exercise 7. Complete the following exercises from Section 6.4 in the course textbook: \# 1, 7, 13, 24, 26

Exercise 8. Complete the following exercises from Section 6.5 in the course textbook: \# 9, 15, 27, 33

Exercise 9. Complete the following exercises from Section 6.6 in the course textbook: \# 1, 5

