Homework 12 Due Wednesday, December 6, 2023

Instructions. Your work will be collected in class on the due date. We will also have a quiz in class on the due date based on the content from the assignment.

Exercise 1. Complete the following exercises from Section 6.2 in the course textbook: # 11, 13, 17, 19, 21, 35, 37, 38, 41

Exercise 2. Let
$$\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
, and let $W = \operatorname{span}\{\mathbf{v}\}$. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$T(\mathbf{u}) = \operatorname{proj}_W(\mathbf{u})$$

(In #41 in Section 6.2, you established that T is a linear transformation.) Find the matrix A satisfying $T(\mathbf{u}) = A\mathbf{u}$ for every $\mathbf{u} \in \mathbb{R}^2$.

Exercise 3. Complete the following exercises from Section 6.3 in the course textbook: # 1, 3, 5, 7, 32

Exercise 4. Let A be an $n \times n$ orthogonal matrix. Show that if $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then

$$(A\mathbf{u})\cdot(A\mathbf{v})=\mathbf{u}\cdot\mathbf{v}$$

Exercise 5. Let $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Show that R_{θ} is an orthogonal matrix.

Exercise 6. Let W be a subspace of \mathbb{R}^n . Show that $W = (W^{\perp})^{\perp}$ (Hint: Use the orthogonal projection theorem.)

Exercise 7. Complete the following exercises from Section 6.4 in the course textbook: # 1, 7, 13, 24, 26

Exercise 8. Complete the following exercises from Section 6.5 in the course textbook: # 9, 15, 27, 33

Exercise 9. Complete the following exercises from Section 6.6 in the course textbook: # 1, 5