Homework 11

Due Wednesday, November 30, 2023
Instructions. Your work will be collected in class on the due date. We will also have a quiz in class on the due date based on the content from the assignment.

Exercise 1. Pictured to the right is a Markov chain.
(a) Fill in the missing edge labels.
(b) Write down the transition matrix M for the Markov chain.
(c) Convince yourself that the Markov chain is regular.
(d) Find the unique stochastic vector \mathbf{w} such that $M \mathbf{w}=\mathbf{w}$.

Exercise 2. Consider the (incomplete) matrix:

$$
A=\left[\begin{array}{ccccc}
\frac{1}{3} & * & 0 & \frac{2}{9} & 0 \\
0 & 0 & 0 & 0 & * \\
* & \frac{2}{7} & 0 & * & 0 \\
0 & \frac{3}{7} & 0 & 0 & \frac{1}{5} \\
\frac{1}{6} & 0 & * & 0 & 0
\end{array}\right]
$$

(a) Replace each asterisk mark in A with a real number so that the result is a stochastic matrix.
(b) Draw the Markov chain associated to A.
(c) Determine if the underlying directed graph is strongly connected.

Exercise 3. Draw a Markov chain representing the following situation: The weather in Edinburgh is either good, indifferent, or bad on any given day. If the weather is good today, there is a 50% chance the weather will be good tomorrow, a 30% chance the weather will be indifferent, and a 20% chance the weather will be bad. If the weather is indifferent today, it will be good tomorrow with probability . 20 and indifferent with probability .70. Finally, if the weather is bad today, it will be good tomorrow with probability . 10 and indifferent with probability. 30 .

Exercise 4. Let M be an $n \times n$ stochastic matrix, and let $\mathbf{w} \in \mathbb{R}^{n}$ be a stochastic vector. Show that $M \mathrm{w}$ is stochastic.

Exercise 5. Complete the following exercises from Section 6.1 in the course textbook:
\# 1, 3, 5, 9, 13, 15, 33, 35, 37, 38, 39
Exercise 6. Let W be a subspace of \mathbb{R}^{n}. Show that $W \subset\left(W^{\perp}\right)^{\perp}$.

