A q-Queens Problem

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Thomas Zaslavsky, Binghamton University (SUNY) and Seth Chaiken, University at Albany (SUNY)

qc.edu/chanusa > Research > Talks

When Queens Attack!

A queen is a chess piece that can move horizontally, vertically, and diagonally.

When Queens Attack!

A queen is a chess piece that can move horizontally, vertically, and diagonally.

- Two pieces are attacking when one piece can move to the other's square.
- A configuration is a placement of chess pieces on a chessboard.
- A configuration is nonattacking if no two pieces are attacking.

When Queens Attack!

A queen is a chess piece that can move horizontally, vertically, and diagonally.

- Two pieces are attacking when one piece can move to the other's square.
- ► A **configuration** is a placement of chess pieces on a chessboard.
- ► A configuration is **nonattacking** if no two pieces are attacking.

When Queens Attack!

A queen is a chess piece that can move horizontally, vertically, and diagonally.

- Two pieces are attacking when one piece can move to the other's square.
- A configuration is a placement of chess pieces on a chessboard.
- A configuration is nonattacking if no two pieces are attacking.

Question: How many nonattack'g queens MIGHT fit on a chessboard?

 $\emph{n} extsf{-}\mathsf{Queens}$ q-Queens Formulas What's Next:

The 8-Queens Problem

Q: Can you place 8 nonattacking queens on an 8×8 chessboard?

The 8-Queens Problem

Q: Can you place 8 nonattacking queens on an 8×8 chessboard?

A: Yes!

The 8-Queens Problem

Q: In how many ways

 \mathbf{Q} : Can you place 8 nonattacking queens on an 8 \times 8 chessboard?

A: Yes!

The 8-Queens Problem

Q: In how many ways

 \mathbf{u} : **Can** you place 8 nonattacking queens on an 8 \times 8 chessboard?

A: 92

The 8-Queens Problem

Q: In how many ways

 \mathbf{Q} : Can you place 8 nonattacking queens on an 8×8 chessboard?

A: 92

The *n*-Queens Problem: Find a formula for the number of nonattacking configurations of n queens on an $n \times n$ chessboard.

n	1	2	3	4	5	6	7	8	9	10
#	1	0	0	2	10	4	40	92	352	724

From *n*-Queens to *q*-Queens

```
The n-Queens Problem:

# nonatt. configs of n queens

on a n \times n square board
```

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A *q*-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.
 A set of basic moves.
- A board B.
 A convex polygon and its dilations.

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A q-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- ► A number *q*.

 # of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

A **piece** \mathbb{P} is defined by its moves $(c, d) \in \mathbf{M}$. $(x, y) \longrightarrow (x, y) + \alpha(c, d)$ for $\alpha \in \mathbb{Z}$

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A q-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B. A convex polygon and its dilations.

A **piece** \mathbb{P} is defined by its moves $(c, d) \in \mathbf{M}$. $(x, y) \longrightarrow (x, y) + \alpha(c, d)$ for $\alpha \in \mathbb{Z}$

₩ Queen:

$$\mathbf{M} = \frac{\{(1,0),(0,1),}{(1,1),(1,-1)\}}$$

A Bishop:

$$\mathbf{M} = \{(1,1), (1,-1)\}$$

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A q-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

A **piece** \mathbb{P} is defined by its moves $(c, d) \in \mathbf{M}$. $(x, y) \longrightarrow (x, y) + \alpha(c, d)$ for $\alpha \in \mathbb{Z}$

W Queen:

$$\mathsf{M} = rac{\{(1,0),(0,1),}{(1,1),(1,-1)\}}$$

A Bishop:

$$\textbf{M} = \{(1,1), (1,-1)\}$$

 \bigcirc Nightrider: $\{(1,2),(1,2)\}$

$$\mathbf{M} = \frac{\{(1,2), (1,-2), (2,1), (2,1), (2,-1)\}}{\{(2,1), (2,-1)\}}$$

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A *q*-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A *q*-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A *q*-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A *q*-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A q-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A q-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A q-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

From *n*-Queens to *q*-Queens

The *n*-Queens Problem:

nonatt. configs of n queens on a $n \times n$ square board

A q-Queens Problem:

nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q.# of pieces in config.
- A piece ℙ.A set of basic moves.
- A board B.
 A convex polygon and its dilations.

-Queens **q-Queens** Formulas What's Next²

A q-Queens Problem

Our Quest: Find a formula for the number of nonattacking configurations of q pieces \mathbb{P} inside dilations of \mathcal{B} .

A q-Queens Problem

Our Quest: Find a formula for the number of nonattacking configurations of q pieces \mathbb{P} inside dilations of \mathcal{B} .

Theorem: (CZ'05, CHZ'14) Given q, \mathbb{P} , and \mathcal{B} , the number of nonattacking configurations of q pieces \mathbb{P} inside $t\mathcal{B}$ is a quasipolynomial function of t.

A q-Queens Problem

Our Quest: Find a formula for the number of nonattacking configurations of q pieces \mathbb{P} inside dilations of \mathcal{B} .

Theorem: (CZ'05, CHZ'14) Given q, \mathbb{P} , and \mathcal{B} , the number of nonattacking configurations of q pieces \mathbb{P} inside $t\mathcal{B}$ is a quasipolynomial function of t.

Definition: A **quasipolynomial** is a function f(t) on $t \in \mathbb{Z}_+$ s.t. $f(t) = c_d t^d + c_{d-1} t^{d-1} + \cdots + c_0$, where each c_i is periodic in t.

A q-Queens Problem

Our Quest: Find a formula for the number of nonattacking configurations of q pieces \mathbb{P} inside dilations of \mathcal{B} .

Theorem: (CZ'05, CHZ'14)

Given q, \mathbb{P} , and \mathcal{B} , the number of nonattacking configurations of q pieces \mathbb{P} inside $t\mathcal{B}$ is a quasipolynomial function of t.

Definition: A **quasipolynomial** is a function f(t) on $t \in \mathbb{Z}_+$ s.t. $f(t) = c_d t^d + c_{d-1} t^{d-1} + \cdots + c_0$, where each c_i is periodic in t.

Example. The number of ways to place two nightriders on an $n \times n$ chessboard is:

$$u_{\bigcirc}(2;n) = \begin{cases} \frac{n^4}{2} - \frac{5n^3}{6} + \frac{3n^2}{2} - \frac{2n}{3} & \text{for even } n \\ \frac{n^4}{2} - \frac{5n^3}{6} + \frac{3n^2}{2} - \frac{7n}{6} & \text{for odd } n \end{cases}$$

Proof uses Inside-out polytopes

Two pieces \mathbb{P} in positions (x_i, y_i) and (x_j, y_j) inside $t\mathcal{B}$ are attacking if:

$$(x_i, y_i) - (x_i, y_i) = \alpha(c, d) \qquad \stackrel{\text{move eqn.}}{\longleftrightarrow} \qquad d(x_i - x_i) = c(y_i - y_i)$$

Two pieces \mathbb{P} in positions (x_i, y_i) and (x_j, y_j) inside $t\mathcal{B}$ are attacking if:

$$(x_i, y_i) - (x_i, y_i) = \alpha(c, d)$$
 $\stackrel{\text{move eqn.}}{\longleftrightarrow}$ $d(x_i - x_i) = c(y_i - y_i)$

With two pieces, a move equation defines a forbidden hyperplane in $\mathcal{B}^2 \subset \mathbb{R}^4$.

Two pieces \mathbb{P} in positions (x_i, y_i) and (x_j, y_j) inside $t\mathcal{B}$ are attacking if:

$$(x_i, y_i) - (x_j, y_j) = \alpha(c, d)$$
 $\stackrel{\text{move eqn.}}{\longleftrightarrow}$ $d(x_i - x_j) = c(y_i - y_j)$

With two pieces, a move equation defines a forbidden hyperplane in $\mathcal{B}^2 \subset \mathbb{R}^4$.

Two pieces \mathbb{P} in positions (x_i, y_i) and (x_j, y_j) inside $t\mathcal{B}$ are attacking if:

$$(x_i, y_i) - (x_i, y_i) = \alpha(c, d)$$
 $\stackrel{\text{move eqn.}}{\longleftrightarrow}$ $d(x_i - x_i) = c(y_i - y_i)$

With q pieces, a move equation defines

 $\binom{q}{2}$ forbidden hyperplanes in $\mathcal{B}^q \subset \mathbb{R}^{2q}$.

Two pieces \mathbb{P} in positions (x_i, y_i) and (x_j, y_j) inside $t\mathcal{B}$ are attacking if:

$$(x_i, y_i) - (x_j, y_j) = \alpha(c, d)$$
 \longleftrightarrow $d(x_i - x_j) = c(y_i - y_j)$

With q pieces, a move equation defines $\binom{q}{2}$ forbidden hyperplanes in $\mathcal{B}^q \subset \mathbb{R}^{2q}$.

Our quest becomes: Count lattice points inside \mathcal{B}^q that avoid forbidden hyperplanes.

Two pieces \mathbb{P} in positions (x_i, y_i) and (x_j, y_j) inside $t\mathcal{B}$ are attacking if:

$$(x_i, y_i) - (x_j, y_j) = \alpha(c, d)$$

$$\overset{\mathsf{move}\;\mathsf{eqn}}{\longleftrightarrow}$$

$$d(x_i - x_j) = c(y_i - y_j)$$

With q pieces, a move equation defines $\binom{q}{2}$ forbidden hyperplanes in $\mathcal{B}^q \subset \mathbb{R}^{2q}$.

Our quest becomes: Count lattice points inside \mathcal{B}^q that avoid forbidden hyperplanes.

Inside-out polytope!
Apply theory of
Beck and Zaslavsky.

Two pieces \mathbb{P} in positions (x_i, y_i) and (x_j, y_j) inside $t\mathcal{B}$ are attacking if:

$$(x_i, y_i) - (x_j, y_j) = \alpha(c, d)$$
 $\stackrel{\text{move eqn.}}{\longleftrightarrow}$ $d(x_i - x_j) = c(y_i - y_j)$

With q pieces, a move equation defines $\binom{q}{2}$ forbidden hyperplanes in $\mathcal{B}^q \subset \mathbb{R}^{2q}$.

Our quest becomes: Count lattice points inside \mathcal{B}^q that avoid forbidden hyperplanes.

Inside-out polytope!
Apply theory of
Beck and Zaslavsky.

▶ Answer is a quasipolynomial ullet degree 2qullet vol $(\mathcal{B}^q) \leadsto$ initial term

Proof uses Inside-out polytopes

Two pieces \mathbb{P} in positions (x_i, y_i) and (x_j, y_j) inside $t\mathcal{B}$ are attacking if:

$$(x_i, y_i) - (x_j, y_j) = \alpha(c, d)$$
 $\stackrel{\text{move eqn.}}{\longleftrightarrow}$ $d(x_i - x_j) = c(y_i - y_j)$

With q pieces, a move equation defines $\binom{q}{2}$ forbidden hyperplanes in $\mathcal{B}^q \subset \mathbb{R}^{2q}$.

Our quest becomes: Count lattice points inside \mathcal{B}^q that avoid

forbidden hyperplanes.

- Inside-out polytope!
 Apply theory of
 Beck and Zaslavsky.
- ▶ Answer is a quasipolynomial degree 2q $vol(\mathcal{B}^q) \leadsto initial$ term
- ► Inclusion-Exclusion for exact formula (later!)

Computing formulas experimentally

Restatement: The number of ways to place q \mathbb{P} -pieces inside a t dilation of \mathcal{B} is a quasipolynomial:

$$u_{\mathbb{P}}(q;t) = \begin{cases} c_{2q,0} \ t^{2q} + \dots + c_{1,0} \ t + c_{0,0} & t \equiv 0 \mod p \\ c_{2q,1} \ t^{2q} + \dots + c_{1,1} \ t + c_{0,1} & t \equiv 1 \mod p \\ \vdots & & & \\ c_{2q,p-1} t^{2q} + \dots + c_{1,p-1} t + c_{0,p-1} & t \equiv p-1 \mod p \end{cases}$$

7-Queens **Formulas** What's Next:

Computing formulas experimentally

Restatement: The number of ways to place q \mathbb{P} -pieces inside a t dilation of \mathcal{B} is a quasipolynomial:

$$u_{\mathbb{P}}(q;t) = \begin{cases} c_{2q,0} \ t^{2q} + \dots + c_{1,0} \ t + c_{0,0} & t \equiv 0 \mod p \\ c_{2q,1} \ t^{2q} + \dots + c_{1,1} \ t + c_{0,1} & t \equiv 1 \mod p \\ \vdots & & & \\ c_{2q,p-1} t^{2q} + \dots + c_{1,p-1} t + c_{0,p-1} & t \equiv p-1 \mod p \end{cases}$$

Consequence: If we can prove what the period is (or a bound), then with enough data we can solve for the coefficients!

Gives a proof of correctness for $u_{\mathbb{P}}(q;t)$!

Enough data?

Let me introduce Václav Kotěšovec:

Enough data?

Let me introduce Václav Kotěšovec:

► Comprensive Book

Formulas

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- ► Tables of Data

Neohrožující se kameny

5 impala	4 impalas	3 impalas	2 impalas	n
				1
	1	. 4	6	2
	18	36	28	3
34	412	276	96	4
595	3472	1220	244	5
5874	19465	4128	526	6
40974	83982	11596	1008	7
208488	290676	28136	1768	8
849577	854496	61032	2896	9
2907145	2208797	121180	4494	10
8687991	5158998	224172	6676	11
23282733	11098648	391416	9568	12
57036452	22307354	651396	13308	13
129607868	42347901	1041052	18046	14
276327929	76581532	1607280	23944	15
557789756	132822748	2408552	31176	16
1073845138	222156028	3516656	39928	17
19834780833	359938909	5018556	50398	18
35323608130	567017466	7018372	62796	19
6090279838	871181912	9639480	77344	20
10201052147	1308891718	13026732	94276	21
16648036614	1927301333	17348796	113838	22
26538886912	2786619264	22800616	136288	23

k Impalas board n x n

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- ► Tables of Data

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- ► Tables of Data
- Conjectured Formulas ***
 - Essential check to our theory cohrodujici se kameny

$$\begin{split} \text{Alikitis} & - \text{Quanta based } a + \epsilon (I \text{Actions}, 4 \text{Alikitis}) \\ & - \frac{1}{12} a^2 - \frac{1}{12} a^2 + \frac{20}{12} a^2 + \frac{120}{1200} a^2 + \frac{2000}{1200} a^2 + \frac{12000}{1200} a^2 + \frac{120000}{12000} a^2 + \frac{120}{12000} a^2 + \frac{120}{12000} a^2 + \frac{120}{12000} a^2 + \frac{12000}{12000} a^2 + \frac{120}{12000} a^2 + \frac{120}{12000$$

n-Queens Formulas What's Next:

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- ► Tables of Data

Formulas

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- Tables of Data
- Essential check to our theory cohrotujici se kameny

⚠ Collecting enough data is HARD for a large period. ⚠

Non-attacking chess pieces 6th edition

Imp. Q. What is the period?

Formulas

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- ► Tables of Data

Non-attacking chess pieces

△ Collecting enough data is HARD for a large period. △

Imp. Q. What is the period? **Thm.** (qq.VI) Bishops' period is 2.

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- ► Tables of Data
- Conjectured Formulas ***

Essential check to our theory cohrodujici se kameny

△ Collecting enough data is HARD for a large period. △

Imp. Q. What is the period? Thm. (qq.VI) Bishops' period is 2. Conj. (qq.IV, K.) Queens' period is $lcm(\{1,...,fibonacci_q\})$!?! 5:60

Formulas

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- ► Tables of Data Conjectured Formulas Kotton
- Essential check to our theory cohrotujici se kameny

⚠ Collecting enough data is HARD for a large period. ⚠

Imp. Q. What is the period? **Thm.** (qq.VI) Bishops' period is 2. Conj. (qq.IV, K.) Queens' period is $lcm(\{1,\ldots,fibonacci_q\})$!?! 5:60

Upper Bound: LCM of denoms of facet/hyperplane intersection pts.

Formulas

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- ► Tables of Data

Essential check to our theory cohrotujici se kameny

⚠ Collecting enough data is HARD for a large period. ⚠

Imp. Q. What is the period? **Thm.** (qq.VI) Bishops' period is 2. Conj. (qq.IV, K.) Queens' period is $lcm(\{1,\ldots,fibonacci_q\})$!?! 5:60

Upper Bound: LCM of denoms of facet/hyperplane intersection pts.

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

-Queens Formulas What's Next?

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

- ► To count points in the polygon *P* but NOT in *S*₁ nor *S*₂:
- \triangleright Count points in P, S_1 , S_2

2-Queens **Formulas** What's Next?

Deriving formulas theoretically

Our Quest: Count lattice points inside P avoiding hyperplanes.

- ► To count points in the polygon *P* but NOT in *S*₁ nor *S*₂:
- ► Count points in P, S_1 , S_2 AND in the intersection $\mathcal{I} = S_1 \cap S_2$.

Deriving formulas theoretically

Our Quest: Count lattice points inside P avoiding hyperplanes.

$$20 - 4 - 4 + 2 = 14$$

- ► To count points in the polygon *P* but NOT in *S*₁ nor *S*₂:
- ► Count points in P, S_1 , S_2 AND in the intersection $\mathcal{I} = S_1 \cap S_2$.
- ► The count is $|P| |S_1| |S_2| + |\mathcal{I}|$.

Deriving formulas theoretically

Our Quest: Count lattice points inside P avoiding hyperplanes.

$$20 - 4 - 4 + 2 = 14$$

- ► To count points in the polygon *P* but NOT in *S*₁ nor *S*₂:
- ► Count points in P, S_1 , S_2 AND in the intersection $\mathcal{I} = S_1 \cap S_2$.
- ► The count is $|P| |S_1| |S_2| + |\mathcal{I}|$.
- ▶ In general, alternate signs: $|P| - \sum_{i} |S_{i}| + \sum_{i,j} |S_{i} \cap S_{j}| - \sum_{ijk} |S_{i} \cap S_{j} \cap S_{k}| + \sum_{ijkl} \cdots$

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

$$20 - 4 - 4 + 2 = 14$$

Formulas

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

Use Möbius Inversion, an extension of Inclusion/Exclusion:

$$20 - 4 - 4 + 2 = 14$$

Hyperplane intersections are subspaces w/complex interactions

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

Use Möbius Inversion, an extension of Inclusion/Exclusion:

▶ Hyperplane intersections are subspaces w/complex interactions

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

- ► Hyperplane intersections are subspaces w/complex interactions
- Form the poset of subspace inclusion.

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

- ► Hyperplane intersections are subspaces w/complex interactions
- ▶ Form the poset of subspace inclusion. $\mu(\mathcal{U}) = -\sum_{\mathcal{T} < \mathcal{U}} \mu(\mathcal{T})$

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

- ▶ Hyperplane intersections are subspaces w/complex interactions
- ▶ Form the poset of subspace inclusion. $\mu(\mathcal{U}) = -\sum_{\mathcal{T} < \mathcal{U}} \mu(\mathcal{T})$

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

- ► Hyperplane intersections are subspaces w/complex interactions
- Form the poset of subspace inclusion. $\mu(\mathcal{U}) = -\sum_{\mathcal{T}<\mathcal{U}} \mu(\mathcal{T})$

Formulas

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

$$20 - 4 - 4 + 2 = 14$$

- Hyperplane intersections are subspaces w/complex interactions
- Form the poset of subspace inclusion. $\mu(\mathcal{U}) = -\sum_{\mathcal{T} < \mathcal{U}} \mu(\mathcal{T})$

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.

Use Möbius Inversion, an extension of Inclusion/Exclusion:

 $\mathcal{H}_{1}^{(-1)}$ $\mathcal{H}_{2}^{(-1)}$ $\mathcal{H}_{3}^{(-1)}$ $\hat{\mathbb{O}}$ (1)

- 20 4 4 + 2 = 14
- ▶ Hyperplane intersections are subspaces w/complex interactions
- Form the poset of subspace inclusion. $\mu(\mathcal{U}) = -\sum_{\mathcal{T} < \mathcal{U}} \mu(\mathcal{T})$
- Find # lattice points in each subspace, calculate $\sum_{\mathcal{U}} \mu(\mathcal{U}) |\mathcal{U}|$

Deriving formulas theoretically

Our Quest: Count lattice points inside P avoiding hyperplanes.

- ► Hyperplane intersections are subspaces w/complex interactions
- Form the poset of subspace inclusion. $\mu(\mathcal{U}) = -\sum_{T < \mathcal{U}} \mu(T)$
- Find # lattice points in each subspace, calculate $\sum_{\mathcal{U}} \mu(\mathcal{U}) |\mathcal{U}|$

Deriving formulas theoretically

Derive exact formulas for leading coeffs of quasipolynomial:

Derive exact formulas for leading coeffs of quasipolynomial:

Interior integer points **NOT** in the hyperplane arrangement is given by Möbius inversion on points **IN** the arrangement.

On a square board,
$$u_{\mathbb{P}}(q;n)=rac{1}{q!}\sum_{\mathcal{U}\in\mathscr{L}(\mathscr{A}_{\mathbb{P}})} \boxed{\mu(\mathcal{U}) \ \alpha(\mathcal{U};n)} n^{2q-2k}$$

A q-Queens Problem

Derive exact formulas for leading coeffs of quasipolynomial:

Interior integer points **NOT** in the hyperplane arrangement is given by Möbius inversion on points **IN** the arrangement.

Calculate poset of multiway intersections of hyperplanes

On a square board,
$$u_{\mathbb{P}}(q;n) = \frac{1}{q!} \sum_{\mathcal{U} \in \mathscr{L}(\mathscr{A}_{\mathbb{P}})} \boxed{\mu(\mathcal{U}) \ \alpha(\mathcal{U};n)} \boxed{n^{2q-2k}}$$

Deriving formulas theoretically

Derive exact formulas for leading coeffs of quasipolynomial:

Interior integer points **NOT** in the hyperplane arrangement is given by Möbius inversion on points **IN** the arrangement.

Calculate poset of multiway intersections of hyperplanes

For each $\mathcal{U} \cap \mathcal{B}^q$, count number of lattice points

On a square board,
$$u_{\mathbb{P}}(q;n) = \frac{1}{q!} \sum_{\mathcal{U} \in \mathscr{L}(\mathscr{A}_{\mathbb{P}})} \boxed{\mu(\mathcal{U}) \ \alpha(\mathcal{U};n)} \boxed{n^{2q-2k}}$$

Derive exact formulas for leading coeffs of quasipolynomial:

Interior integer points **NOT** in the hyperplane arrangement is given by Möbius inversion on points **IN** the arrangement.

Calculate poset of multiway intersections of hyperplanes

For each $\mathcal{U} \cap \mathcal{B}^q$, count number of lattice points

Apply Möbius Inversion!

On a square board,
$$u_{\mathbb{P}}(q;n) = \frac{1}{q!} \sum_{\mathcal{U} \in \mathscr{L}(\mathscr{A}_{\mathbb{P}})} \boxed{\mu(\mathcal{U}) \ \alpha(\mathcal{U};n)} \boxed{n^{2q-2k}}$$

Derive exact formulas for leading coeffs of quasipolynomial:

Interior integer points **NOT** in the hyperplane arrangement is given by Möbius inversion on points **IN** the arrangement.

Calculate poset of multiway intersections of hyperplanes

For each $\mathcal{U} \cap \mathcal{B}^q$, count number of lattice points

Apply Möbius Inversion!

Each corresponds to placements of *k* attacking pieces

On a square board,
$$u_{\mathbb{P}}(q;n)=rac{1}{q!}\sum_{oldsymbol{\mathcal{U}}\in\mathscr{L}(\mathscr{A}_{\mathbb{P}})} \boxed{\mu(\mathcal{U}) \ \ \alpha(\mathcal{U};n)} \ \ n^{2q-2k}$$

A a-Queens Problem

Derive exact formulas for leading coeffs of quasipolynomial:

Interior integer points **NOT** in the hyperplane arrangement is given by Möbius inversion on points **IN** the arrangement.

Calculate poset of multiway intersections of hyperplanes

For each $\mathcal{U} \cap \mathcal{B}^q$, count number of lattice points

Apply Möbius Inversion!

Each corresponds to placements of *k* attacking pieces

We end up counting number of ways *k* pieces attack

On a square board,
$$u_{\mathbb{P}}(q;n) = \frac{1}{q!} \sum_{\mathcal{U} \in \mathscr{L}(\mathscr{A}_{\mathbb{P}})} \mu(\mathcal{U}) \alpha(\mathcal{U};n) n^{2q-2k}$$

Derive exact formulas for leading coeffs of quasipolynomial:

Interior integer points **NOT** in the hyperplane arrangement is given by Möbius inversion on points **IN** the arrangement.

Calculate poset of multiway intersections of hyperplanes

For each $\mathcal{U} \cap \mathcal{B}^q$, count number of lattice points

Apply Möbius Inversion!

Each corresponds to placements of *k* attacking pieces

We end up counting number of ways *k* pieces attack

(And place the other q - k pieces!)

On a square board, $u_{\mathbb{P}}(q;n)=rac{1}{q!}\sum_{m{\mathcal{U}}\in\mathscr{L}(\mathscr{A}_{\mathbb{P}})}m{\mu(\mathcal{U})\ \ lpha(\mathcal{U};n)}\ n^{2q-2k}$

Subspaces from two hyperplanes (Codimension 2)

How might two attack equations interact?

And how do we count them?

How might two attack equations interact? And how do we count them?

Four pieces

How might two attack equations interact? And how do we count them?

Four pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_3 attacks \mathbb{P}_4 on any slope.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **another** slope.

Three pieces

How might two attack equations interact? And how do we count them?

Four pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_3 attacks \mathbb{P}_4 on any slope.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **another** slope.

Two pieces.

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_1 attacks \mathbb{P}_2 on **another** slope.

Three pieces

How might two attack equations interact? And how do we count them?

Four pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_3 attacks \mathbb{P}_4 on any slope.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **another** slope.

Two pieces.

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_1 attacks \mathbb{P}_2 on **another** slope.

 $[\Rightarrow \mathbb{P}_1 \text{ and } \mathbb{P}_2 \text{ share a point.}]$ Count # of points on board.

Three pieces

Subspaces from two hyperplanes (Codimension 2)

How might two attack equations interact? And how do we count them?

Four pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_3 attacks \mathbb{P}_4 on any slope.

[No interaction.]
(Count # ways two in a row)².

Two pieces.

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_1 attacks \mathbb{P}_2 on **another** slope.

 $[\Rightarrow \mathbb{P}_1 \text{ and } \mathbb{P}_2 \text{ share a point.}]$ Count # of points on board.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **another** slope.

Three pieces

Subspaces from two hyperplanes (Codimension 2)

How might two attack equations interact? And how do we count them?

Four pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_3 attacks \mathbb{P}_4 on any slope.

[No interaction.] (Count # ways two in a row)².

Two pieces.

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_1 attacks \mathbb{P}_2 on **another** slope.

 $[\Rightarrow \mathbb{P}_1 \text{ and } \mathbb{P}_2 \text{ share a point.}]$ Count # of points on board.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **another** slope.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **same** slope.

 $[\Rightarrow \mathbb{P}_1 \text{ and } \mathbb{P}_3 \text{ also attack.}]$ Count # of ways three in a row.

Formulas

Subspaces from two hyperplanes (Codimension 2)

How might two attack equations interact? And how do we count them?

Four pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_3 attacks \mathbb{P}_4 on any slope.

[No interaction.] $(Count \# ways two in a row)^2$.

Two pieces. \mathbb{P}_1 attacks \mathbb{P}_2 on any slope.

 \mathbb{P}_1 attacks \mathbb{P}_2 on **another** slope.

 $[\Rightarrow \mathbb{P}_1 \text{ and } \mathbb{P}_2 \text{ share a point.}]$ Count # of points on board.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **another** slope.

[No restriction on \mathbb{P}_1 vs. \mathbb{P}_3 .] Cases based on actual slopes.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **same** slope.

 $[\Rightarrow \mathbb{P}_1 \text{ and } \mathbb{P}_3 \text{ also attack.}]$ Count # of ways three in a row. Formulas

Subspaces from two hyperplanes (Codimension 2)

How might two attack equations interact? And how do we count them?

Four pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_3 attacks \mathbb{P}_4 on any slope.

[No interaction.] $(Count \# ways two in a row)^2$.

Two pieces.

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_1 attacks \mathbb{P}_2 on **another** slope.

 $[\Rightarrow \mathbb{P}_1 \text{ and } \mathbb{P}_2 \text{ share a point.}]$ Count # of points on board.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **another** slope.

[No restriction on \mathbb{P}_1 vs. \mathbb{P}_3 .] Cases based on actual slopes.

Three pieces

 \mathbb{P}_1 attacks \mathbb{P}_2 on any slope. \mathbb{P}_2 attacks \mathbb{P}_3 on **same** slope.

 $[\Rightarrow \mathbb{P}_1 \text{ and } \mathbb{P}_3 \text{ also attack.}]$ Count # of ways three in a row.

- ✓ Codim 3 for Partial Queens $\mathbb{P} = \mathbb{Q}^{hk}$:
- explicit $u_{\mathbb{P}}(3; n)$
- leading 4 coeffs of $u_{\mathbb{P}}(q; n)$; period of 5–7.

A (not-very-useful) formula for *n*-Queens

Set q = n to give the first closed-form formula for the n-Queens Problem:

Theorem

The number of ways to place n unlabelled copies of a rider piece \mathbb{P} on a square $n \times n$ board so that none attacks another is

$$\frac{1}{n!} \sum_{i=1}^{2n} n^{2n-i} \sum_{\kappa=2}^{2i} (n)_{\kappa} \sum_{\nu=\lceil \kappa/2 \rceil}^{\min(i,2\kappa-2)} \sum_{[\mathcal{U}_{\kappa}^{\nu}]: \mathcal{U}_{\kappa}^{\nu} \in \mathscr{L}(\mathscr{A}_{\mathbb{P}}^{\infty})} \mu(\hat{0}, \mathcal{U}_{\kappa}^{\nu}) \frac{\bar{\gamma}_{i-\nu}(\mathcal{U}_{\kappa}^{\nu})}{|\operatorname{Aut}(\mathcal{U}_{\kappa}^{\nu})|}.$$

This formula is very complicated but it is explicitly computable.

Brief Aside

I've never used so many variables!

- ► Blackboard letters: BNPQRZ
- ▶ Bold letters: **abcdxyzILM** *β*

Brief Aside

I've never used so many variables!

- ► Blackboard letters: BNPQRZ
- ► Bold letters: **abcdxyzILM**β
- ► Greek letters: $\alpha\beta\gamma\delta\varepsilon\zeta\theta\kappa\lambda\mu\nu\xi\pi\varphi\omega$ ABΔΓΗΛΠΣΨ

Brief Aside

I've never used so many variables!

- ► Blackboard letters: BNPQRZ
- ► Bold letters: **abcdxyzILM**β
- ► Greek letters: $\alpha\beta\gamma\delta\varepsilon\zeta\theta\kappa\lambda\mu\nu\xi\pi\varphi\omega$ ABΔΓΗΛΠΣΨ
- ▶ upper case: ABCDEFGHIJKLMNOPQRSTUVWXYZ
- ► lower case: abcdefghijklmnopqrstuvwxyz

(That's 102 variables!!! Plus the reuse of indices!)

What is next?

- ► Fun test case for Ehrhart Theory (lattice point) questions.
 - ightharpoonup Period of quasipolynomial \neq LCM of denominators

What is next?

- ► Fun test case for Ehrhart Theory (lattice point) questions.
 - ightharpoonup Period of quasipolynomial \neq LCM of denominators
- Special pieces
 - One-move riders show that period of quasip. depends on move
 - Other fairy pieces (Progress made with Arvind Mahankali)

q-Queens Formulas What's Next?

What is next?

- ► Fun test case for Ehrhart Theory (lattice point) questions.
 - ightharpoonup Period of quasipolynomial \neq LCM of denominators
- Special pieces
 - ▶ One-move riders show that period of quasip. depends on move
 - Other fairy pieces (Progress made with Arvind Mahankali)
- Special boards
 - ► Rook placement theory on other boards
 - ▶ Nice pieces on nice boards (Angles of 45, 90, 135 degrees)

q-Queens Formulas What's Next?

What is next?

- ► Fun test case for Ehrhart Theory (lattice point) questions.
 - ightharpoonup Period of quasipolynomial \neq LCM of denominators
- Special pieces
 - ▶ One-move riders show that period of quasip. depends on move
 - Other fairy pieces (Progress made with Arvind Mahankali)
- Special boards
 - ► Rook placement theory on other boards
 - Nice pieces on nice boards (Angles of 45, 90, 135 degrees)
- ▶ Determining all subspaces \mathcal{U} ; What is structure of posets?
- Discrete Geometry: Fibonacci spiral.

Thank you!

Chaiken, Hanusa, Zaslavsky:

Our "A q-Queens Problem" Series:

- II. The square board. J Alg Comb 2015
- III. Partial queens. Australasian J Comb 2019
- IV. Attacking config's and their denom's. Discrete Math 2020
- V. A few of our favorite pieces. J Korean Math Soc 202?
- VI. The bishops' period. Ars Math Contemp 2019
- VII. Combinatorial types of riders. Australasian J Comb. 2020

Slides available: qc.edu/chanusa > Research > Talks

3D Printed Mathematical Jewelry: hanusadesign.com

