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The q-Queens Problem Inside-out polytopes Kronecker Products

The n-Queens Problem

Motivating question:
Can you place n nonattacking queens on an n × n chessboard?

Q
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The n-Queens Problem

Motivating question:
Can you place n nonattacking queens on an n × n chessboard?

Q

Q

Q

Q

Q

Q: In how many ways can you place n nonattacking queens?

n 1 2 3 4 5 6 7 8 9 10

# 1 0 0 2 10 4 40 92 352 724
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The q-Queens Problem and generalizations

Let’s generalize.

� Fix the number of queens. (q)

� Let the size of the board vary. (n × n)

Question: Determine the number of ways in which you can place
q nonattacking queens on an n× n chessboard as a function of n.

Question: Why stop there?
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The q-Queens Problem and generalizations

A problem will have three elements:

� A piece. (A set of basic moves.)

� A board. (A convex polygon and its dilations.)

� A number. (A number of pieces to arrange.)

A piece P moves from z = (x , y) to z + αmr for mr ∈M, α ∈ Z

Two pieces in zi and zj are attacking if zi − zj = αmr .

Examples:

Q Queens: M = {(1, 0), (1, 1), (0, 1), (1,−1)}
B Bishops: M = {(1, 1), (1,−1)}
N Nightrider: M = {(2, 1), (1, 2), (2,−1), (1,−2)}
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The q-Queens Problem and generalizations

A problem will have three elements:
� A piece. (A set of basic moves.)
� A board. (A convex polygon and its dilations.)
� A number. (A number of pieces to arrange.)

A board is the set of integral points on the interior of
an integral multiple of a rational convex polygon B ⊂ R

2
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The q-Queens Problem and generalizations

Question: Given a piece P , a polygon B, and a number q,

Determine the number of ways in which you can place q
nonattacking P pieces on the board tB◦ as a function of t.

In the original q-Queens Problem,

� P = Q

� B = [0, 1]2

� q = q

The n × n case corresponds to t = (n + 1).
n1
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The q-Queens Problem and generalizations

Theorem: (Chaiken, Zaslavsky, 2005)
Given P , B, and q, the number of placements of q nonattacking
P pieces inside tB is a quasipolynomial function of t.

A quasipolynomial is a function f (t) on t ∈ Z+ such that

f (t) = cd td + cd−1t
d−1 + · · ·+ c0,

where each ci is periodic.

Example: f (t) =

{
t2 + 3t + 2 for even t

t2−2t + 1 for odd t
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q-Queens proof sketch

Very briefly:

The rules of nonattack correspond to forbidden hyperplanes in R
2q.

Inside-out polytope theory gives a quasipolynomial function of t.
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q-Queens proof sketch

Less briefly:

� Goal: Count allowed unordered configuration of pieces.

� Instead, count allowed ordered configurations of zi = (xi , yi ).

� A configuration is a point (x1, y1, . . . , xq, yq) ∈ Z
2q ∩ tBq

� Two pieces are attacking when (zj − zi) ·m⊥
r = 0.

� There are
(q
2

)
N of these forbidden hyperplanes in R

2q

� Count lattice points in tBq avoiding H.

� This is a direct application of inside-out polytope theory
Counted by a quasipolynomial with certain properties.
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Inside-out polytopes

(Beck, Zaslavsky, 2006) An inside-out polytope (P ,H)

� Builds upon ideas of Ehrhart theory.

� P is a convex polytope
� Vertices of P have rational coordinates

� H is an arrangement of hyperplanes dissecting P .
� The H have rational equations.
� The H are homogeneous.

� Counts (t−1)-fractional points inside P .

integral points
inside tBq ←→ t−1-fractional points

inside Bq
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Inside-out polytopes

Conclusion: The number of lattice points inside P avoiding H is a
quasipolynomial function of t with

� degree: dim(P).

� leading coefficient: volume of P.

Therefore: The number nonattacking configurations of q pieces P
inside tB is a quasipolynomial function of t with

� degree: dim(Bq) = 2q.

� leading coefficient: |B|q/q!. ←− Now unordered!
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But what does this mean?

So, we have a solution to q-Queens and n-Queens?

� No. The theorem only proves existence.

We must determine the periodic coefficients ci .

Game plan:

� Determine the period of the coefficients.

� Compute initial data to determine the formula.
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Rooks and bishops

Notation: Write uP(q; n) for the number of (unlabeled)
nonattacking configurations of q pieces P on an n × n board.

Translation: B = [0, 1]2 and t = n + 1, implying:

� degree of uP(q; n) is 2q.

� leading coefficient of uP(q; n) is 1/q!.

For a fixed q, we expect a formula of the form:

uP(q; n) = 1
q!n

2q + c2q−1n
2q−1 + · · ·+ c1n + c0

Classic result for rooks R :

R uR(q; n) = q!
(n
q

)2
.
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Rooks and bishops

B For bishops B :

� We will calculate that the period divides 2q−1. (stay tuned!)

� One B: uB(1; n) = n2.

� Two B: quasipolynomial of degree 4, period 1 or 2.

� uB(2; n) = 1
2n4 + c3n

3 + c2n
2 + c1n + c0.

� Initial data for uB(2; n):

n 1 2 3 4 5 6 7 8

uB(2; n) 0 4 26 92 240 520 994 1736

uB(2; n) = 1
2n4 − 2

3n3 + 1
2n2 − 1

3n.
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Rooks and bishops

B (CHZ 20??) For bishops B , the period divides 2.

uB(1; n) = n2.

uB(2; n) = n4

2 − 2n3

3 + n2

2 − n
3

uB(3; n) =
{

n6

6 − 2n5

3 + 5n4

4 − 5n3

3 + 4n2

3 − 2n
3 + 1

8

}
− (−1)n 1

8 .

uB(4; n) =
{

n8

24 − n7

3 + 11n6

9 − 29n5

10 + 355n4

72 − 35n3

6 + 337n2

72 − 73n
30 + 1

2

}
− (−1)n

{
n2

8 − n
2 + 1

2

}
.

uB(5; n) =
{

n10

120 − n9

9 + 49n8

72 − 118n7

45 + 523n6

72 − 2731n5

180 + 3413n4

144 − 4853n3

180

+2599n2

120 − 1321n
120 + 9

4

}
− (−1)n

{
n4

16 − 7n3

12 + 17n2

8 − 85n
24 + 9

4

}
.
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Finding the quasipolynomial period

� The period of the quasipolynomial depends on the vertices of
the inside-out polytope.

� If a vertex has denominator d � the period depends on d .

� Expect: Period divides the lcm over all dv .

Question. How to find the vertices?

Answer. Linear algebra!

Use a matrix to determine intersections of
� The forbidden hyperplanes (for each move m⊥

r = (mr1,mr2))
� Equations: m⊥

r ·
(
(xj , yj)− (xi , yi )

)
= 0

� The faces of the polytope (defined by ajx + bjy ≤ βj)
� Equations: (aj , bj) · (xi , yi ) ≤ βj
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Finding the quasipolynomial period



M −M 0 0 · · · 0 0
M 0 −M 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
M 0 0 0 · · · 0 −M
0 M −M 0 · · · 0 0
0 M 0 −M · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
0 M 0 0 · · · 0 −M

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
0 0 0 0 · · · M −M
B 0 0 0 · · · 0 0
0 B 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
0 0 0 0 · · · 0 B





z1

z2

.

.

.
zq


 =




0
0

.

.

.
0
0
0

.

.

.
0

.

.

.
0
β
β

.

.

.
β




where M is the
moves matrix

M :=


 m⊥

1
m⊥

2

.

.

.

m⊥
|M|




and

B :=


a1 b1

a2 b2

.

.

.

.

.

.
aK bK


.

� Cramer’s Rule � vertex denominator divides a subdet. of A.

� Period of quasipoly. divides lcm of all such subdet’s, lcmd(A).

� A square board simplifies. The structure of A′ is predictable.
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The structure of A′

A′ =




M −M 0 0 · · · 0 0
M 0 −M 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
M 0 0 0 · · · 0 −M
0 M −M 0 · · · 0 0
0 M 0 −M · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
0 M 0 0 · · · 0 −M

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
0 0 0 0 · · · M −M




This reminds us of the incidence matrix for the complete graph Kq:

D(Kq) =




1 1 · · · 1 0 0 · · · 0 · · · 0
−1 0 · · · 0 1 1 · · · 1 · · · 0
0 −1 · · · 0 −1 0 · · · 0 · · · 0
0 0 · · · 0 0 −1 · · · 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 · · · 0 0 0 · · · 0 · · · 1
0 0 · · · −1 0 0 · · · −1 · · · −1



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The structure of FT

For matrices A = (aij)m×k and B = (bij)n×l , the
Kronecker product A⊗B is defined to be the mn× kl block matrix


a11B · · · a1kB

...
. . .

...

am1B · · · amkB


 .

We have (A′)T = D(Kq)⊗MT

� M is the m × 2 moves matrix

� D(Kq) is the incidence matrix for the complete graph Kq.
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About Kronecker Products

About Kronecker products:

� A⊗ B and B ⊗ A only differ by row and column switchings.

� For Am×m and Bn×n, det(A⊗ B) = det(A)n det(B)m.

� Calculating lcmd(A⊗ B) appears difficult for generic A, B .

� We aim to simplify lcmd
(
MT ⊗ D(Kq)

)
.

� Funny story.
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lcmd result

Theorem (Hanusa, Zaslavsky, 2008) Given Mm×2 and q ≥ 1,

lcmd
(
M⊗D(Kq)

)
= lcm

(
(lcmd M)q−1,LCM

K

( ∏
(I ,J)∈K

det M I ,J

))
,

The LCM is over disjoint multisubsets I and J of [m] of size 
q/2�...

� lcmd
(
M ⊗ D(Kq)

)
is simply an lcm over entries of M.
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lcmd result

lcmd
(
M ⊗ D(Kq)

)
= lcm

(
(lcmd M)q−1,LCM

K

( ∏
(I ,J)∈K

det M I ,J

))
,

The LCM is over disjoint multisubsets I and J of [m] of size 
q/2�,

and M I ,J =

(Q
mi1

Q
mi2

Q
mj1

Q
mj2

)
.

Example: For M4×2, we have m = 4.

Find all pairs (I , J) of disjoint 
q/2�-member multisubsets of [4]:

({1a}, {2b, 3c , 4d}), ({2b}, {1a, 3c , 4d}),
({3c}, {1a, 2b, 4d}), ({4d}, {1a, 2b, 3c}),

({1a, 2b}, {3c , 4d}), ({1a, 3c}, {2b, 4d}), ({1a, 4d}, {2b, 3c}),
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lcmd result

lcmd
(
M ⊗ D(Kq)

)
= lcm

(
(lcmd M)q−1,LCM

K

( ∏
(I ,J)∈K

det M I ,J

))
,

The LCM is over disjoint multisubsets I and J of [m] of size 
q/2�,

and M I ,J =

(Q
mi1

Q
mi2

Q
mj1

Q
mj2

)
.

Example: For M4×2, m = 4. Consider (I , J) =
({1a, 2b}, {3c , 4d}).

Then, M I ,J =

(
ma

11m
b
21 ma

12m
b
22

mc
31m

d
41 mc

32m
d
42

)
,

for all a, b, c , and d such that a + b = c + d = 
q/2�.
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Bishop example

Example: When P = B (bishop),

M =

(
1 1
1 −1

)
= MT .

Applying the theorem,

� (I , J) =
({1p}, {2p}).

� lcmd
(
M ⊗ D(Kq)

)
= lcm

(
2q−1,

�q/2�
LCM
p=2

(
(−1)p − 1p

)�q/2p�)
.

� The LCM term generates powers of 2 no larger than 2q/2.

� Hence, lcmd
(
M ⊗ D(Kq)

)
= 2q−1.

� And our quasipolynomial period must divide 2q−1

Back to that funny story. . .
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Sketch of Kronecker theorem proof

lcmd
(
M⊗D(Kq)

)
= lcm

(
(lcmd M)q−1,LCM

K

( ∏
(I ,J)∈K

det M I ,J

))
,

Goal: Show that every Nl×l subdet. of M ⊗ D(Kq) divides RHS.

� Consider only N such that det(N) �= 0.

� N is a choice of l rows and l columns from M ⊗ D(Kq)

� Same as a choice of l vertices and l edges from Kq, with up
to m copies of each vertex and up to two copies of an edge.

M ⊗ D(Kq) =

(
m11D(Kq) m12D(Kq)
m21D(Kq) m22D(Kq)

: :
mm1D(Kq) mm2D(Kq)

)
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Sketch of Kronecker theorem proof

� When two rows correspond to the same vertex v , the rows
contain the same entries except for different multipliers mik .(

m11D(Kq) m12D(Kq)
m21D(Kq) m22D(Kq)

: :
mm1D(Kq) mm2D(Kq)

) (
: : : : : : :

mi1 −mi1 0 · · · 0 mi2 0 · · · −mi2
: : : : : : :

mj1 −mj1 0 · · · 0 mj2 0 · · · −mj2
: : : : : : :

)

� A vertex chosen three or more times would imply lin. dep.

� Simplify detN when a vertex is chosen twice.
(This generates a factor of detM i ,j).

(
: : : : : : :

mi1 −mi1 0 · · · 0 0 0 · · · 0
: : : : : : :
0 0 0 · · · 0 mj2 0 · · · −mj2
: : : : : : :

)
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Sketch of Kronecker theorem proof

� Afterwards, every column has at most two entries.

� If a row (or column) has exactly one non-zero entry, expand.

� Then every row has exactly two non-zero entries as well.

� This matrix breaks down as a product of incidence matrices of
weighted cycles, each of which basically contributes det M I ,J .


y1 0 0 0 0 −z6
−z1 y2 0 0 0 0
0 −z2 y3 0 0 0
0 0 −z3 y4 0 0
0 0 0 −z4 y5 0
0 0 0 0 −z5 y6


 .
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Not Queens

When M =




1 0
0 1
1 1
1 −1


, again lcmd(M) = 2.

Calculate det M I ,J for each pair (I , J):
� For example, when I = {3c} and J = {1a, 2b, 4d}, and

M I ,J =

(
1c 1c

1a0b1d 0a1b(−1)d

)
.

where c = a + b + d = 
q/2�.
� The only non-trivial case is when a = b = 0. Therefore

c = d = 
q/2� and det M I ,J = 0 or − 2.
� This implies that the LCM in the theorem divides 2q−1.

We conclude that lcmd
(
M ⊗ D(Kq)

)
= 2q−1.
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Not Nightriders

Consider M =




1 2
2 1
1 −2
2 −1


 .

� The submatrices(
1 2
2 1

)
,

(
1 2
1 −2

)
, and

(
1 2
2 −1

)

have determinants −3, −4, and −5; hence lcmd(M) = 60.

� We have the same multisubsets of [4] as before.

� det M I ,J is the same form in all cases: ±2u(22�q/2�−2u ± 1),
where u is a number between 0 and 
q/2�.
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The q-Queens Problem Inside-out polytopes Kronecker Products

Not Nightriders

We conclude that

lcmd
(
M ⊗ D(Kq)

)
= lcm

(
60q−1, LCM

1≤p≤q/2
0≤u≤p−1

(22p−2u ± 1)�q/2p�).

When q = 8, lcmd
(
M ⊗ D(K8)

)
=

lcm
(
607, (4 ± 1)�8/2�, (16 ± 1)�8/4�, (64 ± 1)�8/6�, (256 ± 1)�8/8�)

= 607 · 7 · 13 · 172 · 257.
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The q-Queens Problem Inside-out polytopes Kronecker Products

Not Nightriders

The first few values of q give the following numbers:

q lcmd
(
M ⊗ D(Kq)

)
(factored)

2 60 601

3 3600 602

4 3672000 603 · 17
5 220320000 604 · 17
6 1202947200000 605 · 7 · 13 · 17
7 72176832000000 606 · 7 · 13 · 17
8 18920434740480000000 607 · 7 · 13 · 172 · 257
9 1135226084428800000000 608 · 7 · 13 · 172 · 257
10 952295753183943168000000000 609 · 7 · 11 · 13 · 172 · 31 · 41 · 257
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The q-Queens Problem Inside-out polytopes Kronecker Products

View of our wandering from above

� Generalize n-Queens to q-Queens and beyond.

� Apply inside-out polytope theory to prove formula existence.

� Need to know the period; aim to find lcmd(A).

� On a rectangular board, lcmd(A) = lcmd
(
MT ⊗ D(Kq)

)
.

� Prove a theorem that applies to find lcmd
(
M ⊗ D(Kq)

)
.

� The theorem applies for M2×2.
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The q-Queens Problem Inside-out polytopes Kronecker Products

Open problems

� A better way to find the period? (LCMD is “bad”)

⊗ What goes wrong with more than two columns?

¿ Is a formula too much to ask?

lcmd
(
M⊗D(Kq)

)
= lcm

(
(lcmd M)q−1,LCM

K

( ∏
(I ,J)∈K

det M I ,J

))
,

p · q When do two multivariate binomials have a common divisor?

(wx2y − z2u2) and (wy3 − xz2u)
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The q-Queens Problem Inside-out polytopes Kronecker Products

Thank you

Slides available: people.qc.cuny.edu/chanusa > Talks
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