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The n-Queens Problem

Motivating question:
Can you place n nonattacking queens on an n x n chessboard?
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The n-Queens Problem

Motivating question:
Can you place n nonattacking queens on an n x n chessboard?
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Q: In how many ways can you place n nonattacking queens?

n|l 2 3 4 5 6 7 8 9 10
#11 0 0 2 10 4 40 92 352 724
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The g-Queens Problem and generalizations

Let's generalize.

» Fix the number of queens. (q)

» Let the size of the board vary. (n x n)

Question: Determine the number of ways in which you can place
g nonattacking queens on an n x n chessboard as a function of n.

Question: Why stop there?
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The g-Queens Problem and generalizations

A problem will have three elements:
» A piece. (A set of basic moves.)
» A board. (A convex polygon and its dilations.)

» A number. (A number of pieces to arrange.)

A piece P moves from z = (x,y) to z+am, for m, e M, a € Z
Two pieces in z; and z; are attacking if z; — z; = am,.

Examples:

W Queens: M = {(1,0),(1,1),(0,1),(1,-1)}

£ Bishops: M = {(1,1),(1,-1)}

& Nightrider: M = {(2,1),(1,2),(2,—1),(1,-2)}
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The g-Queens Problem and generalizations

A problem will have three elements:
» A piece. (A set of basic moves.)
» A board. (A convex polygon and its dilations.)
» A number. (A number of pieces to arrange.)

A board is the set of integral points on the interior of
an integral multiple of a rational convex polygon B C R?
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The g-Queens Problem and generalizations

Question: Given a piece P, a polygon 3, and a number g,

Determine the number of ways in which you can place g
nonattacking P pieces on the board t3° as a function of t.

In the original g-Queens Problem,

» P=%
» B=10,1]?
> g=gq o o o o
The n x n case corresponds to t = (n+ 1). Ce e
1 n
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The g-Queens Problem

The g-Queens Problem and generalizations

Theorem: (Chaiken, Zaslavsky, 2005)
Given P, B3, and g, the number of placements of g nonattacking
P pieces inside t53 is a quasipolynomial function of t.

A quasipolynomial is a function f(t) on t € Z, such that

f(t) = cqt? + g1t + - + o,

where each ¢; is periodic.

t24+3t+2 forevent
22t +1 for odd t

Example: f(t) = {
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g-Queens proof sketch

Very briefly:
The rules of nonattack correspond to forbidden hyperplanes in R29.

Inside-out polytope theory gives a quasipolynomial function of t.
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g-Queens proof sketch

Less briefly:

v

Goal: Count allowed unordered configuration of pieces.

v

Instead, count allowed ordered configurations of z; = (x;, yi).

v

A configuration is a point (x1,y1,. .., Xq, Yq) € Z29 N t39

v

Two pieces are attacking when (zj — z) - m* = 0.
There are (‘2’)N of these forbidden hyperplanes in R29

v

v

Count lattice points in t39 avoiding H.

v

This is a direct application of inside-out polytope theory
Counted by a quasipolynomial with certain properties.
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Inside-out polytopes

Inside-out polytopes

(Beck, Zaslavsky, 2006) An inside-out polytope (P, H)
» Builds upon ideas of Ehrhart theory.

» P is a convex polytope
» Vertices of P have rational coordinates

» H is an arrangement of hyperplanes dissecting P.
» The H have rational equations.
» The H are homogeneous.

» Counts (t~1!)-fractional points inside 7.

integral points t~L-fractional points
inside tB9 inside B9
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Inside-out polytopes

Conclusion: The number of lattice points inside P avoiding H is a
quasipolynomial function of t with

> degree: dim(P).

» leading coefficient: volume of P.

Therefore: The number nonattacking configurations of g pieces P
inside tI5 is a quasipolynomial function of t with

> degree: dim(B9) = 2gq.
» leading coefficient: |B]9/q!. «— Now unordered!
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But what does this mean?

So, we have a solution to g-Queens and n-Queens?

» No. The theorem only proves existence.

We must determine the periodic coefficients ¢;.

Game plan:
» Determine the period of the coefficients.

» Compute initial data to determine the formula.
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Rooks and bishops

Notation: Write up(g; n) for the number of (unlabeled)
nonattacking configurations of g pieces P on an n X n board.

Translation: B = [0,1]?> and t = n+ 1, implying:
> degree of up(qg;n) is 2q.
» leading coefficient of up(g; n) is 1/q!.
For a fixed g, we expect a formula of the form:
up(g; n) = %nm’ + g1+ an+ o
Classic result for rooks R:

E ug(qg;n) = q!(2)2.
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Rooks and bishops

£ For bishops B:
We will calculate that the period divides 2971, (stay tuned!)

v

v

One &: ug(1l;n) = n%
Two &.: quasipolynomial of degree 4, period 1 or 2.
ug(2;n) = %n“ +am 4+ on®+ an+ .

v

v

» Initial data for ug(2; n):
n 1 2 3 4 5 6 7 8
us(2in) |0 4 26 92 240 520 994 1736
ug(2;n) = 3n*— 3+ 10— in
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Rooks and bishops

£ (CHZ 207?7) For bishops B, the period divides 2.

us(2in) =~ 45 -3

up(3im) = {B -+ -2y Bt

ug(4;n) = {n_z _ %7 i 119n6 _ 2%5 n 35752n4 _ 356n3 i 33772n2 _ % i %}
-~ {F -5+

UB(5; n) _ { f_;f()) i %9 4358 _ 11485n + 523n 271%10,15 + 341?4,14 _ 4815830n3
+25192%,,2 _ 1%(1)n i %} —(~1)" {% _ 71_r123 n 178n 85n L9 }

A quasi-polynomial g-Queens result and related Kronecker products of matrices

Christopher R. H. Hanusa  Queens College, CUNY

CUNY Combinatorics Seminar
February 3, 2012



Finding the quasipolynomial period

» The period of the quasipolynomial depends on the vertices of
the inside-out polytope.

» If a vertex has denominator d ~~ the period depends on d.

» Expect: Period divides the lcm over all d,.

Question. How to find the vertices?
Answer. Linear algebra!
Use a matrix to determine intersections of
» The forbidden hyperplanes (for each move m; = (m,1, m,»))
» Equations: m} - ((x5,y;) — (xi,y)) =0
» The faces of the polytope (defined by ajx + bjy < [3;)
» Equations: (a;, b)) - (xi,y:) < 5;
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Inside-out polytopes

Finding the quasipolynomial period

M —-M 0 0 0 0 0 .
M 0 -M 0 0 0 0 where M is the
: : ; : moves matrix
M 0 0 0 0o -M 0 mi-
o M -M 0 -~ 0 0 0 m3
0o M 0 -M .0 0 0
7 M .= .
: : : : 2 : :
- J— €
0 M 0 0 0o —-M — 0 mim|
: : % : and
0 0 0 0 M —M 0 )
B 0 0 0 0 0 3 21 bl
0 B 0 0 0 0 3 B — 2 b2
o 0 0 o - 0o B 8 K b

» Cramer's Rule ~~ vertex denominator divides a subdet. of A.
» Period of quasipoly. divides lcm of all such subdet’s, Icmd(A).
» A square board simplifies. The structure of A’ is predictable.
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Kronecker Products

The structure of A’

M -M 0 0 0 0
M 0 -M 0 0 0
M0 0 0 0o M
o M -M 0 0 0
A =0 wm N 0 0
o M 0o o 0o -Mm
0 0 0 0 M M

This reminds us of the incidence matrix for the complete graph Kj:

1 1 cee 1 0 0 0 0
—1 0 c 0 1 1 R 1 0
0 -1 .- 0 -1 0 oo 0 0
D(K ) _ 0 0 e 0 0 -1 0 0
a’ — . . . . .
0 0 --- 0 0 0 - 0 .- 1
0 0 R —1 0 0 R —1 ... —1
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The structure of FT

For matrices A = (ajj)mxk and B = (bjj)nx, the
Kronecker product A® B is defined to be the mn x kI block matrix

We have (A)T = D(K,) @ MT
» M is the m x 2 moves matrix

» D(Kg) is the incidence matrix for the complete graph K.
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About Kronecker Products

About Kronecker products:
» A® B and B ® A only differ by row and column switchings.
» For Amxm and By, det(A ® B) = det(A)" det(B)™.

» Calculating lemd(A ® B) appears difficult for generic A, B.
» We aim to simplify lcmd (MT ® D(Kq)).
» Funny story.
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Kronecker Products

lcmd result

Theorem (Hanusa, Zaslavsky, 2008) Given M2 and g > 1,

lemd (M@D(Ky)) = lem ((Icmd M)TE LEM ( [T detm” J>>

(1,D)eK

The LCM is over disjoint multisubsets

> lemd (M ® D(Kjy)) is simply an lem over entries of /M.
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Kronecker Products

lcmd result

LCM< H detM”)

(1,.))ek
The LCM is over disjoint multisubsets / and J of [m] of size |q/2],

and M7 = <Hm” Hm,-2> .
Hmjl Hmj2

Example: For M4yo, we have m = 4.
Find all pairs (/,J) of disjoint |g/2]-member multisubsets of [4]:
({17}, {25,3%,47}),  ({2°},{17,3°,4%)),
({33, {1%,2°,4%}), ({47}, {17,2°,3Y),
({12,2°),{39,4%)),  ({17,3°}, {2°.49}), ({17,479}, {2°,3°Y),

A quasi-polynomial g-Queens result and related Kronecker products of matrices CUNY Combinatorics Seminar

Christopher R. H. Hanusa  Queens College, CUNY February 3, 2012



Kronecker Products

lcmd result

LCM< H detM’J>

(1,0)ek

The LCM is over disjoint multisubsets / and J of [m] of size [q/2],

Imy 11 m,-2>

and M = <
[Imir TImjp

— 4. Consider (1,J) = ({12,2b}, {3¢,47}).

Example: For Myyo, m
Then, M = (

for all a, b, ¢, and d such that a+ b=c+d = [q/2].

a b a b
miimz Mo m22>
bl

c d c d
M3 My M3pMyy
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Kronecker Products

Bishop example

Example: When P = £ (bishop),

(1 1N\ 7
we(t L)

Applying the theorem,
> (1,J) = ({17}, {2°}).
la/2]

> lemd (M ® D(Kp)) = lem (274, LW (1) —19) 7).

» The LCM term generates powers of 2 no larger than 29/2.
> Hence, lemd (M @ D(Kg)) = 2971,

» And our quasipolynomial period must divide 2971

Back to that funny story. ..
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Kronecker Products

Sketch of Kronecker theorem proof

lemd (M®D(Kg)) = lem ((Icmd M)"_l,L%M ( 11 dechJ>>,
(1,N)eK

Goal: Show that every Ny, subdet. of M ® D(Kj) divides RHS.

» Consider only N such that det(N) # 0.
» N is a choice of / rows and / columns from M ® D(Kj)

» Same as a choice of / vertices and / edges from K, with up
to m copies of each vertex and up to two copies of an edge.

m11D(Kq) m12D(Kq)
o - (88 )

mm1D(Kq)  mpm2D(Kg)
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Kronecker Products

Sketch of Kronecker theorem proof

» When two rows correspond to the same vertex v, the rows
contain the same entries except for different multipliers mj.

m1D(Kg)  mi2D(Kq) S -
( mp1D(Kq)  maoD(Kg) > m:'l ’:n/l O 0 mi2 O

7""!'2
mmiD(Kg)  mm2D(Kg) muooTm 0 0mp 0
> A vertex chosen three or more times would imply lin. dep.
» Simplify det N when a vertex is chosen twice.
(This generates a factor of det M'/).
mjp  —mj;p 0 0 0 O 0
0 o o 0 mp 0 o —mp
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Kronecker Products

Sketch of Kronecker theorem proof

» Afterwards, every column has at most two entries.
» If a row (or column) has exactly one non-zero entry, expand.
» Then every row has exactly two non-zero entries as well.

» This matrix breaks down as a product of incidence matrices of
weighted cycles, each of which basically contributes det M7,

3% 0 0 0 0 —zp

—z1 2 0 0 0 0
0 —2z 3 0 0 0
0 0 —z3 va 0 0
0 0 0 —2z Y5 0
0 0 0 0 —2z5 Yo
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Kronecker Products

Not Queens
1 0
0 1 .
When M = L 1 | 2sain lemd(M) = 2.
1 -1

Calculate det M/ for each pair (1, J):
» For example, when | = {3¢} and J = {1,25 49}, and

N 1C 1C
M = <1aob1d 031b(_1)d> .
where c=a+b+d = |q/2].
» The only non-trivial case is when a = b = 0. Therefore
c=d=|qg/2| and det M/ =0 or —2.
» This implies that the LCM in the theorem divides 2971,
We conclude that lemd (M @ D(Ky)) = 2971,
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Kronecker Products

Not Nightriders

2
1
-2
2 -1

Consider M =

N

» The submatrices

GG ) 5

have determinants —3, —4, and —5; hence lemd(M) = 60.

» We have the same multisubsets of [4] as before.

» det M'+7 is the same form in all cases: +2¥(22l9/2]=2v 4 1),
where u is a number between 0 and |q/2].
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Not Nightriders

We conclude that

lemd (M ® D(Kg)) = lem (60971, LCM (22P=2v £ 1)la/2e]),
1<p<q/2
0<u<p-1

When g =8, lemd (M @ D(Ks)) =
lem (607, (4 +1)(8/2) (16 +1)\8/%) (64 + 1)8/0) (256 + 1)I8/8])

=60"-7-13-17% . 257.
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Not Nightriders

The first few values of g give the following numbers:

g | lemd (M ® D(Ky)) (factored)

2 |60 60!

3 | 3600 602

4 | 3672000 603 - 17

5 | 220320000 60% - 17

6 | 1202947200000 60°-7-13-17

7 | 72176832000000 60°.7-13-17

8 | 18920434740480000000 607 -7-13-17%.257

9 | 1135226084428800000000 608 -7 -13-172- 257

10 | 952295753183943168000000000 | 60° -7 -11-13-17%-31-41-257
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Kronecker Products

View of our wandering from above

» Generalize n-Queens to g-Queens and beyond.
» Apply inside-out polytope theory to prove formula existence.
» Need to know the period; aim to find lcmd(A).
» On a rectangular board, lemd(A) = lemd (M7 ® D(Ky)).
> Prove a theorem that applies to find lemd (M ® D(Kj)).
» The theorem applies for Myyo.
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Kronecker Products

Open problems

» A better way to find the period? (LCMD is “bad")
® What goes wrong with more than two columns?

i |s a formula too much to ask?

lemd (M®D(Kjy)) = lem ((Icmd Mya—1 LCM ( ] detm" J>>

(1,0)ek

p - g When do two multivariate binomials have a common divisor?

(wx%y — z2u?) and (wy3 — xz2u)

A quasi-polynomial g-Queens result and related Kronecker products of matrices CUNY Combinatorics Seminar
Christopher R. H. Hanusa  Queens College, CUNY February 3, 2012



Kronecker Products

Thank you
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