A quasi-polynomial q-Queens result and related Kronecker products of matrices

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Seth Chaiken, University at Albany and Tom Zaslavsky, Binghamton University

people.qc.cuny.edu/chanusa > Talks

The *n*-Queens Problem

Motivating question:

Can you place n nonattacking queens on an $n \times n$ chessboard?

The *n*-Queens Problem

Motivating question:

Can you place n nonattacking queens on an $n \times n$ chessboard?

Q: In how many ways can you place n nonattacking queens?

n	1	2	3	4	5	6	7	8	9	10 724
#	1	0	0	2	10	4	40	92	352	724

Let's generalize.

- Fix the number of queens. (q)
- ▶ Let the size of the board vary. $(n \times n)$

Question: Determine the number of ways in which you can place q nonattacking queens on an $n \times n$ chessboard as a function of n.

Question: Why stop there?

A problem will have three elements:

- A piece. (A set of basic moves.)
- ▶ A board. (A convex polygon and its dilations.)
- A number. (A number of pieces to arrange.)

A **piece** P moves from z = (x, y) to $z + \alpha m_r$ for $m_r \in M$, $\alpha \in \mathbb{Z}$

Two pieces in z_i and z_j are attacking if $z_i - z_j = \alpha m_r$.

Examples:

- \triangle Bishops: $\mathbf{M} = \{(1,1), (1,-1)\}$
- \triangle Nightrider: $\mathbf{M} = \{(2,1), (1,2), (2,-1), (1,-2)\}$

CUNY Combinatorics Seminar

A problem will have three elements:

- A piece. (A set of basic moves.)
- ▶ A board. (A convex polygon and its dilations.)
- ▶ A number. (A number of pieces to arrange.)

A **board** is the set of integral points on the interior of an integral multiple of a rational convex polygon $\mathcal{B} \subset \mathbb{R}^2$

February 3, 2012

Question: Given a piece P, a polygon \mathcal{B} , and a number q,

Determine the number of ways in which you can place q nonattacking P pieces on the board $t\mathcal{B}^{\circ}$ as a function of t.

In the original q-Queens Problem,

- ▶ P =
- ▶ $\mathcal{B} = [0, 1]^2$
- ightharpoonup q = q

The $n \times n$ case corresponds to t = (n + 1).

February 3, 2012

Theorem: (Chaiken, Zaslavsky, 2005) Given P, \mathcal{B} , and q, the number of placements of q nonattacking P pieces inside $t\mathcal{B}$ is a quasipolynomial function of t.

A *quasipolynomial* is a function f(t) on $t \in \mathbb{Z}_+$ such that

$$f(t) = c_d t^d + c_{d-1} t^{d-1} + \cdots + c_0,$$

where each c_i is periodic.

Example:
$$f(t) = \begin{cases} t^2 + 3t + 2 & \text{for even } t \\ t^2 - 2t + 1 & \text{for odd } t \end{cases}$$

q-Queens proof sketch

Very briefly:

The rules of nonattack correspond to forbidden hyperplanes in \mathbb{R}^{2q} .

Inside-out polytope theory gives a quasipolynomial function of t.

February 3, 2012

q-Queens proof sketch

Less briefly:

- ▶ Goal: Count allowed unordered configuration of pieces.
- ▶ Instead, count allowed *ordered* configurations of $z_i = (x_i, y_i)$.
- ▶ A configuration is a point $(x_1, y_1, ..., x_q, y_q) \in \mathbb{Z}^{2q} \cap t\mathcal{B}^q$
- ▶ Two pieces are attacking when $(z_i z_i) \cdot m_r^{\perp} = 0$.
- ▶ There are $\binom{q}{2}N$ of these forbidden hyperplanes in \mathbb{R}^{2q}
- ▶ Count lattice points in tB^q avoiding \mathcal{H} .
- ► This is a direct application of inside-out polytope theory Counted by a quasipolynomial with certain properties.

Inside-out polytopes

(Beck, Zaslavsky, 2006) An inside-out polytope $(\mathcal{P},\mathcal{H})$

- Builds upon ideas of Ehrhart theory.
- $ightharpoonup \mathcal{P}$ is a convex polytope
 - ▶ Vertices of *P* have rational coordinates
- $ightharpoonup \mathcal{H}$ is an arrangement of hyperplanes dissecting $\mathcal{P}.$
 - ► The H have rational equations.
 - ▶ The \mathcal{H} are homogeneous.
- ▶ Counts (t^{-1}) -fractional points inside \mathcal{P} .

Inside-out polytopes

Conclusion: The number of lattice points inside \mathcal{P} avoiding \mathcal{H} is a quasipolynomial function of t with

- ▶ degree: dim(P).
- ▶ leading coefficient: volume of \mathcal{P} .

Therefore: The number nonattacking configurations of q pieces P inside $t\mathcal{B}$ is a quasipolynomial function of t with

- degree: $\dim(\mathcal{B}^q) = 2q$.
- ▶ leading coefficient: $|\mathcal{B}|^q/q!$. ← Now unordered!

But what does this mean?

So, we have a solution to q-Queens and n-Queens?

▶ No. The theorem only proves existence.

We must determine the periodic coefficients c_i .

Game plan:

- Determine the period of the coefficients.
- Compute initial data to determine the formula.

Rooks and bishops

Notation: Write $u_P(q; n)$ for the number of (unlabeled) nonattacking configurations of q pieces P on an $n \times n$ board.

Translation: $\mathcal{B} = [0, 1]^2$ and t = n + 1, implying:

- ▶ degree of $u_P(q; n)$ is 2q.
- ▶ leading coefficient of $u_P(q; n)$ is 1/q!.

For a fixed q, we expect a formula of the form:

$$u_P(q;n) = \frac{1}{q!}n^{2q} + c_{2q-1}n^{2q-1} + \cdots + c_1n + c_0$$

Classic result for rooks R:

$$\square$$
 $u_R(q; n) = q! \binom{n}{q}^2$.

Rooks and bishops

- For bishops B:
- ▶ We will calculate that the period divides 2^{q-1} . (stay tuned!)
- One $\&: u_B(1; n) = n^2$.
- ► Two ♠: quasipolynomial of degree 4, period 1 or 2.
- $u_B(2; n) = \frac{1}{2}n^4 + c_3n^3 + c_2n^2 + c_1n + c_0.$
- ▶ Initial data for $u_B(2; n)$:

n		1	2	3	4	5	6	7	8
$u_B(2)$; n)	0	4	26	92	240	520	994	1736

$$u_B(2; n) = \frac{1}{2}n^4 - \frac{2}{3}n^3 + \frac{1}{2}n^2 - \frac{1}{3}n.$$

CUNY Combinatorics Seminar

Rooks and bishops

 \triangle (CHZ 20??) For bishops B, the period divides 2.

$$u_{B}(1; n) = n^{2}.$$

$$u_{B}(2; n) = \frac{n^{4}}{2} - \frac{2n^{3}}{3} + \frac{n^{2}}{2} - \frac{n}{3}$$

$$u_{B}(3; n) = \left\{ \frac{n^{6}}{6} - \frac{2n^{5}}{3} + \frac{5n^{4}}{4} - \frac{5n^{3}}{3} + \frac{4n^{2}}{3} - \frac{2n}{3} + \frac{1}{8} \right\} - (-1)^{n} \frac{1}{8}.$$

$$u_{B}(4; n) = \left\{ \frac{n^{8}}{24} - \frac{n^{7}}{3} + \frac{11n^{6}}{9} - \frac{29n^{5}}{10} + \frac{355n^{4}}{72} - \frac{35n^{3}}{6} + \frac{337n^{2}}{72} - \frac{73n}{30} + \frac{1}{2} \right\}$$

$$- (-1)^{n} \left\{ \frac{n^{2}}{8} - \frac{n}{2} + \frac{1}{2} \right\}.$$

$$u_B(5;n) = \left\{ \frac{n^{10}}{120} - \frac{n^9}{9} + \frac{49n^8}{72} - \frac{118n^7}{45} + \frac{523n^6}{72} - \frac{2731n^5}{180} + \frac{3413n^4}{144} - \frac{4853n^3}{180} + \frac{2599n^2}{120} - \frac{1321n}{120} + \frac{9}{4} \right\} - (-1)^n \left\{ \frac{n^4}{16} - \frac{7n^3}{12} + \frac{17n^2}{8} - \frac{85n}{24} + \frac{9}{4} \right\}.$$

Finding the quasipolynomial period

- The period of the quasipolynomial depends on the vertices of the inside-out polytope.
- ▶ If a vertex has denominator $d \rightsquigarrow$ the period depends on d.
- **Expect**: Period divides the **Icm** over all d_v .

Question. How to find the vertices?

Answer. Linear algebra!

Use a matrix to determine intersections of

- ▶ The forbidden hyperplanes (for each move $m_r^{\perp} = (m_{r1}, m_{r2})$)
 - Equations: $m_r^{\perp} \cdot ((x_j, y_j) (x_i, y_i)) = 0$
- ▶ The faces of the polytope (defined by $a_j x + b_j y \leq \beta_j$)
 - ▶ Equations: $(a_j, b_j) \cdot (x_i, y_i) \leq \beta_j$

Finding the quasipolynomial period

$$\begin{pmatrix} M & -M & 0 & 0 & \cdots & 0 & 0 \\ M & 0 & -M & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ M & 0 & 0 & 0 & 0 & \cdots & 0 & -M \\ 0 & M & -M & 0 & \cdots & 0 & 0 \\ 0 & M & 0 & -M & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & M & 0 & 0 & \cdots & 0 & -M \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & M & -M \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & M & -M \\ 0 & B & 0 & 0 & \cdots & 0 & 0 \\ 0 & B & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0$$

- Cramer's Rule \rightsquigarrow vertex denominator divides a subdet. of A.
- Period of quasipoly. divides **lcm of all such subdet's**, lcmd(A).
- A square board simplifies. The structure of A' is predictable.

The structure of A'

$$A' = \begin{pmatrix} M & -M & 0 & 0 & \cdots & 0 & 0 \\ M & 0 & -M & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ M & 0 & 0 & 0 & \cdots & 0 & -M \\ 0 & M & -M & 0 & \cdots & 0 & 0 \\ 0 & M & 0 & -M & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & M & 0 & 0 & \cdots & 0 & -M \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & M & -M \end{pmatrix}$$

This reminds us of the incidence matrix for the complete graph K_q :

$$D(\mathcal{K}_q) = \begin{pmatrix} 1 & 1 & \cdots & 1 & 0 & 0 & \cdots & 0 & \cdots & 0 \\ -1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 & \cdots & 0 \\ 0 & -1 & \cdots & 0 & -1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & -1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & \cdots & 0 & \cdots & 1 \\ 0 & 0 & \cdots & -1 & 0 & 0 & \cdots & -1 & \cdots & -1 \end{pmatrix}$$

A quasi-polynomial q-Queens result and related Kronecker products of matrices

The structure of F^T

For matrices $A = (a_{ij})_{m \times k}$ and $B = (b_{ij})_{n \times l}$, the Kronecker product $A \otimes B$ is defined to be the $mn \times kl$ block matrix

$$\begin{bmatrix} a_{11}B & \cdots & a_{1k}B \\ \vdots & \vdots & \vdots \\ a_{m1}B & \cdots & a_{mk}B \end{bmatrix}.$$

We have $(A')^T = D(K_q) \otimes M^T$

- \blacktriangleright *M* is the $m \times 2$ moves matrix
- \triangleright $D(K_q)$ is the incidence matrix for the complete graph K_q .

About Kronecker Products

About Kronecker products:

- ▶ $A \otimes B$ and $B \otimes A$ only differ by row and column switchings.
- ▶ For $A_{m \times m}$ and $B_{n \times n}$, $\det(A \otimes B) = \det(A)^n \det(B)^m$.
- ▶ Calculating lcmd($A \otimes B$) appears difficult for generic A, B.
- ▶ We aim to simplify lcmd $(M^T \otimes D(K_q))$.
- Funny story.

Icmd result

Theorem (Hanusa, Zaslavsky, 2008) Given $M_{m\times 2}$ and $q \ge 1$,

$$\operatorname{lcmd}\left({\color{red}M} \otimes D({\color{red}K_q}) \right) = \operatorname{lcm}\left((\operatorname{lcmd}M)^{{\color{red}q}-1}, \operatorname{LCM}_{\mathcal{K}} \left(\prod_{(I,J) \in \mathcal{K}} \det M^{I,J} \right) \right),$$

The LCM is over disjoint multisubsets I and J of [m] of size $\lfloor q/2 \rfloor ...$

▶ lcmd $(M \otimes D(K_q))$ is simply an lcm over entries of M.

lcmd result

$$\operatorname{lcmd}\left(M\otimes D(K_q)\right)=\operatorname{lcm}\left(\left(\operatorname{lcmd}M\right)^{q-1},\operatorname{LCM}_{\mathcal{K}}\left(\prod_{(I,J)\in\mathcal{K}}\det M^{I,J}\right)\right),$$

The LCM is over disjoint multisubsets I and J of [m] of size $\lfloor q/2 \rfloor$,

and
$$M^{I,J} = \begin{pmatrix} \prod m_{i1} & \prod m_{i2} \\ \prod m_{j1} & \prod m_{j2} \end{pmatrix}$$
.

Example: For $M_{4\times 2}$, we have m=4.

Find all pairs (I, J) of disjoint $\lfloor q/2 \rfloor$ -member multisubsets of [4]:

$$\begin{aligned} & \big(\{1^a\},\{2^b,3^c,4^d\}\big), \quad \big(\{2^b\},\{1^a,3^c,4^d\}\big), \\ & \big(\{3^c\},\{1^a,2^b,4^d\}\big), \quad \big(\{4^d\},\{1^a,2^b,3^c\}\big), \\ & \big(\{1^a,2^b\},\{3^c,4^d\}\big), \quad \big(\{1^a,3^c\},\{2^b,4^d\}\big), \quad \big(\{1^a,4^d\},\{2^b,3^c\}\big), \end{aligned}$$

A quasi-polynomial *q*-Queens result and related Kronecker products of matrices

CUNY Combinatorics Seminar

Icmd result

$$\operatorname{lcmd}\left(M\otimes D(K_q)\right)=\operatorname{lcm}\left((\operatorname{lcmd}M)^{q-1},\operatorname{LCM}_{\mathcal{K}}\left(\prod_{(I,J)\in\mathcal{K}}\det M^{I,J}\right)\right),$$

The LCM is over disjoint multisubsets I and J of [m] of size $\lfloor q/2 \rfloor$,

and
$$M^{I,J} = \begin{pmatrix} \prod m_{i1} & \prod m_{i2} \\ \prod m_{j1} & \prod m_{j2} \end{pmatrix}$$
.

Example: For $M_{4\times 2}$, m = 4. Consider $(I, J) = (\{1^a, 2^b\}, \{3^c, 4^d\})$.

Then,
$$M^{I,J} = \begin{pmatrix} m_{11}^a m_{21}^b & m_{12}^a m_{22}^b \\ m_{31}^c m_{41}^d & m_{32}^c m_{42}^d \end{pmatrix}$$
,

for all a, b, c, and d such that $a + b = c + d = \lfloor q/2 \rfloor$.

Bishop example

Example: When P = 4 (bishop),

$$M = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = M^T.$$

Applying the theorem,

- $(I,J) = (\{1^p\},\{2^p\}).$
- ► lcmd $(M \otimes D(K_q))$ = lcm $(2^{q-1}, \underset{p=2}{\overset{\lfloor q/2 \rfloor}{\mathsf{LCM}}} ((-1)^p 1^p)^{\lfloor q/2p \rfloor})$.
- ► The LCM term generates powers of 2 no larger than 2^{q/2}.
- ► Hence, lcmd $(M \otimes D(K_q)) = 2^{q-1}$.
- ► And our quasipolynomial period must divide 2^{q-1}

Back to that funny story...

Sketch of Kronecker theorem proof

$$\operatorname{lcmd} \left(M \otimes D(K_q) \right) = \operatorname{lcm} \left((\operatorname{lcmd} M)^{q-1}, \operatorname{LCM}_{\mathcal{K}} \left(\prod_{(I,J) \in \mathcal{K}} \det M^{I,J} \right) \right),$$

Goal: Show that every $N_{l\times l}$ subdet. of $M\otimes D(K_q)$ divides RHS.

- ▶ Consider only N such that $det(N) \neq 0$.
- ▶ N is a choice of I rows and I columns from $M \otimes D(K_q)$
- Same as a choice of l vertices and l edges from K_q , with up to m copies of each vertex and up to two copies of an edge.

$$M \otimes D(K_q) = \begin{pmatrix} \frac{m_{11}D(K_q)}{m_{21}D(K_q)} & \frac{m_{12}D(K_q)}{m_{22}D(K_q)} \\ \vdots \\ \frac{m_{n1}D(K_q)}{m_{n2}D(K_q)} & \frac{m_{n2}D(K_q)}{m_{n2}D(K_q)} \end{pmatrix}$$

Sketch of Kronecker theorem proof

When two rows correspond to the same vertex v, the rows contain the same entries except for different multipliers m_{ik}.

$$\begin{pmatrix} m_{11}D(K_q) & m_{12}D(K_q) \\ m_{21}D(K_q) & m_{22}D(K_q) \\ \vdots & \vdots & \vdots \\ m_{m1}D(K_q) & m_{m2}D(K_q) \end{pmatrix} \qquad \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ m_{i1} & -m_{i1} & 0 & \cdots & 0 & m_{i2} & 0 & \cdots & -m_{i2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ m_{j1} & -m_{j1} & 0 & \cdots & 0 & m_{j2} & 0 & \cdots & -m_{j2} \\ \vdots & \vdots \\ m_{j1} & -m_{j1} & 0 & \cdots & 0 & m_{j2} & 0 & \cdots & -m_{j2} \\ \vdots & \vdots \\ m_{j1} & -m_{j1} & 0 & \cdots & 0 & m_{j2} & 0 & \cdots & -m_{j2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ m_{j1} & -m_{j1} & 0 & \cdots & 0 & m_{j2} & 0 & \cdots & -m_{j2} \\ \end{pmatrix}$$

- A vertex chosen three or more times would imply lin. dep.
- ► Simplify det N when a vertex is chosen twice. (This generates a factor of det M^{i,j}).

$$\begin{pmatrix} \vdots & \vdots \\ m_{i1} & -m_{i1} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & m_{j2} & 0 & \cdots & -m_{j2} \end{pmatrix}$$

Sketch of Kronecker theorem proof

- Afterwards, every column has at most two entries.
- ▶ If a row (or column) has exactly one non-zero entry, expand.
- ▶ Then every row has exactly two non-zero entries as well.
- ► This matrix breaks down as a product of incidence matrices of weighted cycles, each of which basically contributes det M^{I,J}.

$$\begin{pmatrix} y_1 & 0 & 0 & 0 & 0 & -z_6 \\ -z_1 & y_2 & 0 & 0 & 0 & 0 \\ 0 & -z_2 & y_3 & 0 & 0 & 0 \\ 0 & 0 & -z_3 & y_4 & 0 & 0 \\ 0 & 0 & 0 & -z_4 & y_5 & 0 \\ 0 & 0 & 0 & 0 & -z_5 & y_6 \end{pmatrix}.$$

Not Queens

When
$$M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, again $lcmd(M) = 2$.

Calculate det $M^{I,J}$ for each pair (I,J):

▶ For example, when $I = \{3^c\}$ and $J = \{1^a, 2^b, 4^d\}$, and

$$M^{I,J} = \begin{pmatrix} 1^c & 1^c \\ 1^a 0^b 1^d & 0^a 1^b (-1)^d \end{pmatrix}.$$

where $c = a + b + d = \lfloor \frac{q}{2} \rfloor$.

- ► The only non-trivial case is when a = b = 0. Therefore $c = d = \lfloor q/2 \rfloor$ and det $M^{I,J} = 0$ or -2.
- ▶ This implies that the LCM in the theorem divides 2^{q-1} .

We conclude that lcmd $(M \otimes D(K_q)) = 2^{q-1}$.

Not Nightriders

Consider
$$M = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & -2 \\ 2 & -1 \end{pmatrix}$$
.

The submatrices

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}, \text{ and } \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$

have determinants -3, -4, and -5; hence lcmd(M) = 60.

- ▶ We have the same multisubsets of [4] as before.
- ▶ det $M^{I,J}$ is the same form in all cases: $\pm 2^{u}(2^{2\lfloor q/2\rfloor 2u} \pm 1)$, where u is a number between 0 and $\lfloor q/2 \rfloor$.

Not Nightriders

We conclude that

$$\operatorname{lcmd}\left(M\otimes D(K_{q})\right)=\operatorname{lcm}\left(60^{q-1}, \underset{\substack{1\leq p\leq q/2\\0\leq u\leq p-1}}{\operatorname{LCM}}(2^{2p-2u}\pm 1)^{\lfloor q/2p\rfloor}\right).$$

When
$$q = 8$$
, $\operatorname{lcmd} (M \otimes D(K_8)) =$

$$\operatorname{lcm} (60^7, (4 \pm 1)^{\lfloor 8/2 \rfloor}, (16 \pm 1)^{\lfloor 8/4 \rfloor}, (64 \pm 1)^{\lfloor 8/6 \rfloor}, (256 \pm 1)^{\lfloor 8/8 \rfloor})$$

$$= 60^7 \cdot 7 \cdot 13 \cdot 17^2 \cdot 257.$$

Not Nightriders

The first few values of q give the following numbers:

q	$Icmd\left(M\otimes D(K_q) ight)$	(factored)
2	60	60 ¹
3	3600	60^2
4	3672000	$60^3 \cdot 17$
5	220320000	$60^4 \cdot 17$
6	1202947200000	$60^5 \cdot 7 \cdot 13 \cdot 17$
7	72176832000000	$60^6 \cdot 7 \cdot 13 \cdot 17$
8	18920434740480000000	$60^7 \cdot 7 \cdot 13 \cdot 17^2 \cdot 257$
9	1135226084428800000000	$60^8 \cdot 7 \cdot 13 \cdot 17^2 \cdot 257$
10	952295753183943168000000000	$60^9 \cdot 7 \cdot 11 \cdot 13 \cdot 17^2 \cdot 31 \cdot 41 \cdot 257$

View of our wandering from above

- Generalize n-Queens to q-Queens and beyond.
- ▶ Apply inside-out polytope theory to prove formula existence.
- Need to know the period; aim to find lcmd(A).
- ▶ On a rectangular board, $lcmd(A) = lcmd(M^T \otimes D(K_q))$.
- ▶ Prove a theorem that applies to find lcmd $(M \otimes D(K_q))$.
- ▶ The theorem applies for $M_{2\times 2}$.

Open problems

- A better way to find the period? (LCMD is "bad")
- What goes wrong with more than two columns?
- ; Is a formula too much to ask?

$$\operatorname{lcmd}\left(M\otimes D(K_q)\right)=\operatorname{lcm}\left(\left(\operatorname{lcmd}M\right)^{q-1},\operatorname{LCM}_{\mathcal{K}}\left(\prod_{(I,J)\in\mathcal{K}}\det M^{I,J}\right)\right),$$

 $p \cdot q$ When do two multivariate binomials have a common divisor?

$$(wx^2y - z^2u^2)$$
 and $(wy^3 - xz^2u)$

February 3, 2012

Thank you

Slides available: people.qc.cuny.edu/chanusa > Talks

- Matthias Beck and Thomas Zaslavsky, Inside-out polytopes.

 Adv. Math. 205:1, 134–162. (2006)
- Christopher R. H. Hanusa and Thomas Zaslavsky, Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph. *Lin. Multilin. Alg.* **59**, 399–411. (2011)
- Seth Chaiken, Christopher R. H. Hanusa and Thomas Zaslavsky, Mathematical Analysis of a *q*-Queens Problem. In preparation.