Voting Methods and Colluding Voters

Christopher Hanusa

Outline

- Voting Methods
 - Plurality/Majority and refinements
 - Ranked Pairs
 - Borda Count
- Let's vote!
- Mathematics of the Borda Count
- Disorderings of Candidates
- Proofs involving Disorderings

Plurality/Majority

Goal: Ensure that the elected candidate has the support of a majority.

Method: Each person gets one vote. The candidate with the most votes wins.

- Two-candidate Runoff.
 - Keep the top two candidates
 - Hold a runoff election
- Instant Runoff Voting.
 - Rank as many candidates as desired.
 - Redistribute non-winning votes.

Ranked Pairs

Goal: Elect the candidate who would win each head-to-head election. (A Condorcet winner)

$$egin{array}{cccccc} A & B & C & & & & & \\ B & C & A & & & & & & \\ C & A & B & & & & & & \\ A > B > C > A & & & & \\ \end{array}$$

Method: Each person ranks all the candidates.

- ullet Determine who wins between c_i and c_j .
- Choose the strongest preference and lock it in.
- Ensure no ambiguity is created.
- Example:

Borda Count

Goal: Choose a consensus candidate.

Method: Each person ranks all n candidates.

Allot n points to the top-ranked candidate.

Allot n-1 points to the next-top-ranked candidate.

and so on ...

The candidate with the most number of points wins.

Let's vote!

Plurality/Majority: Tally the first preferences.
Winner:
Instant Runoff: When a candidate is eliminated redistribute the votes to the next preferences.
Winner:
Ranked Pairs: Determine and lock in strongest head-to-head preferences.
Winner:
Borda Count: Allot $[n,n-1,n-2,\ldots,1]$ points based on preferences; determine point winner.
Winner:

Pros, Cons, and Facts

Plurality Refinements:

Pro: Candidate elected by a majority

Pro: Second preferences expressible

Con: Secondary support may be strong

Fact: Favors candidates with strong ideology

Ranked Pairs and Borda Count:

Pro: (RP) Condorcet winner always elected

Pro: (BC) Tries to maximize voter satisfaction

Pro: All preferences influence election

Con: Requires full ranking by voters

Con: Same weight given to each rank

Con: Subject to strategic voting

Fact: Favors consensus building candidates

Fact: Disincentive for candidates to share ideology

Fact: (BC) May not elect candidate favored by majority

Mathematics of the Borda Count

With three candidates, use the scoring rule:

Candidate A: 3 + 3 + 1 = 7 points

Candidate B: 2+1+3=6 points

Candidate C: 1+2+2=5 points

Generalization of the Borda Count

In the Borda Count, the scoring rule

$$[n, n-1, n-2, ..., 3, 2, 1]$$

becomes the normalized scoring rule

$$[1, \frac{n-2}{n-1}, \frac{n-3}{n-1}, \dots, \frac{2}{n-1}, \frac{1}{n-1}, 0]$$

Modifying the scoring rule

1999 AL baseball MVP voting:

which yields

$$[1, 0.89, 0.78, 0.67, 0.56, 0.44, 0.33, 0.22, 0.11, 0]$$

→ Called *positional voting*.

A normalized scoring rule is always of the form:

$$[1, x_{n-2}, x_{n-3}, \dots, x_1, 0],$$

with
$$1 \ge x_{n-2} \ge \dots \ge x_1 \ge 0$$

Question: If we vary these x's, can different candidates win with the same votes?

YES!

Consider these candidate preferences of 9 voters:

Under the scoring rule [1, x, 0],

A receives 5 points.

B receives 4 + 2x points.

C receives 7x points.

As x varies, the candidate with the highest point total changes.

Everyone wins!

A set of voters' preferences generates a hyperplane arrangement.

Disordering Candidates

We say that m voters can **disorder** n candidates if there exists a set of preferences such that each of the n candidates can win under some scoring rule.

Such a set of preferences is called a disordering.

Disordering Candidates

We saw that 9 voters can disorder 3 candidates.

Question:

For which values of m and n can m voters disorder n candidates?

Partial answer:

- the minimum m for 3 candidates is m = 9.
- Some number of voters can disorder 4 candidates.

Disordering Candidates

9 voters can disorder 3 candidates

6 voters can disorder 4 candidates

only 4 voters are necessary to disorder 5 candidates

and 9 candidates can be disordered by 3 voters!

for larger m and n, m voters can always disorder n candidates

Why?

Analyze the 4-candidate situation:

A scoring rule is now of the form [1,x,y,0], with $1 \ge x \ge y \ge 0$

More degrees of freedom!

A set of voter preferences is now represented by a 3-D hyperplane arrangement over the triangular region

4-candidate example

5-candidate example

Theorem

Claim: A collection of m voters can disorder n candidates whenever $m \geq 3$ and $n \geq 3$, **except**

- when m = 3 and $n \le 8$,
- when n=3 and $m\leq 8$, and
- when n = 4 and m = 4, 5.

$m \setminus n$	3	4	5	6	7	8	9	10	11	12
3	\times	\times	×	×	×	×	•	•	•	•
4	\times	×	×	•	•	•	•	•	•	•
5	\times	•	•	•	•	•	•	•	•	•
6	\times	•	•	•	•	•	•	•	•	•
7	\times	•	•	•	•	•	•	•	•	•
8	\times	•	•	•	•	•	•	•	•	•
9	•	•	•	•	•	•	•	•	•	•
10	•	•	•	•	•	•	•	•	•	•
11	•	•	•	•	•	•	•	•	•	•
12	•	•	•	•	•	•	•	•	•	•

Proof of Theorem

- $m \neq 2$
- n ≠ 2
- Prove x's
- Create infinite families of disorderings.

Lemma: From special (m, n): more voters

Lemma: From special (m, n): more candidates

• Generate the special disorderings.

$$m,n \neq 2$$
 x's ∞ -fam special Simple Cases

Two voters can disorder no number of candidates

No number of voters can disorder two candidates

$$m, n \neq 2$$
 ×'s ∞ -fam special

A Necessary Condition for Disorderings

What must be true in a disordering?

For candidate c_1 to be able to win over c_2 :

For candidate c_2 to be able to win over c_1 :

Necessary condition: If two candidates c_1 and c_2 are disordered, then there must exist integers j and k such that $R_j(c_1) > R_j(c_2)$ and $R_k(c_1) < R_k(c_2)$.

 $m, n \neq 2$ x's ∞ -fam special

Computer Assistance

- ullet Choose m and n
- Generate all sets of voter preferences.
- Check the necessary condition for each.
- If n.c. satisfied, verify whether disordering.

This condition is not sufficient!

 $m, n \neq 2$ ×'s ∞ -fam special

A New Disordering from an Old

Whenever m voters disorder n candidates, m+n voters can disorder n candidates as well.

(m,n) \rightarrow (m+n,n)

 $m, n \neq 2$ ×'s ∞ -fam special

Splittable Disorderings

Sometimes it is possible to add a candidate to an existing disordering in a simple fashion.

If so, we call the disordering splittable.

Not only can we add one candidate, we can add n^\prime candidates.

 $m,n \neq 2$ ×'s ∞ -fam special

Generated Disorderings

$m \setminus n$	3	4	5	6	7	8	9	10	11	12
3	×	×	×	×	×	×	\odot	lacksquare	\odot	•
4	×	×	×	\odot	\odot	\odot	•	•	•	•
5	×	\odot	\odot	•	•	•	•	•	•	•
6	×	•	•	•	•	•	•	•	•	•
7	×	•	•	•	•	•	•	•	•	•
8	×	•	•	•	•	•	•	•	•	•
9	\odot	•	•	•	•	•	•	•	•	•
10	•	•	•	•	•	•	•	•	•	•
11	•	•	•	•	•	•	•	•	•	•
12	•	•	•	•	•	•	•	•	•	•
13	•	•	•	•	•	•	•	•	•	•
14	•	•	•	•	•	•	•	•	•	•
15	•	•	•	•	•	•	•	•	•	•
16	•	•	•	•	•	•	•	•	•	•
17	•	•	•	•	•	•	•	•	•	•
18	•	•	•	•	•	•	•	•	•	•

Thanks!

I am: Christopher Hanusa

http://qc.edu/~chanusa/

Additional reading:

Electoral Process: ACE Encyclopaedia (UN)

http://aceproject.org/ace-en

Geometry of the Borda Count:

Millions of election outcomes from a single profile,
by Donald Saari

Preprint of this research:

Ensuring every candidate wins under positional voting, available on the above website.