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Plurality/Majority

Goal: Ensure that the elected candidate has the

support of a majority.

Method: Each person gets one vote. The candi-

date with the most votes wins.

• Two-candidate Runoff.

– Keep the top two candidates

– Hold a runoff election

• Instant Runoff Voting.

– Rank as many candidates as desired.

– Redistribute non-winning votes.
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Ranked Pairs

Goal: Elect the candidate who would win each

head-to-head election. (A Condorcet winner)

A B C
B C A
C A B

Careful!
A > B > C > A

Method: Each person ranks all the candidates.

• Determine who wins between ci and cj.

• Choose the strongest preference and lock it in.

• Ensure no ambiguity is created.

• Example:

A A C
B C A
C B B
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Borda Count

Goal: Choose a consensus candidate.

Method: Each person ranks all n candidates.

Allot n points to the top-ranked candidate.

Allot n−1 points to the next-top-ranked candidate.

and so on . . .

The candidate with the most number of points

wins.
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Let’s vote!

Plurality/Majority: Tally the first preferences.

Winner:

Instant Runoff: When a candidate is eliminated,

redistribute the votes to the next preferences.

Winner:

Ranked Pairs: Determine and lock in strongest

head-to-head preferences.

Winner:

Borda Count: Allot [n, n − 1, n − 2, . . . ,1] points

based on preferences; determine point winner.

Winner:
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Pros, Cons, and Facts

Plurality Refinements:

Pro: Candidate elected by a majority

Pro: Second preferences expressible

Con: Secondary support may be strong

Fact: Favors candidates with strong ideology

Ranked Pairs and Borda Count:

Pro: (RP) Condorcet winner always elected

Pro: (BC) Tries to maximize voter satisfaction

Pro: All preferences influence election

Con: Requires full ranking by voters

Con: Same weight given to each rank

Con: Subject to strategic voting

Fact: Favors consensus building candidates

Fact: Disincentive for candidates to share ideology

Fact: (BC) May not elect candidate favored by majority

6



Mathematics of the
Borda Count

With three candidates, use the scoring rule:

[3,2,1]

Voter 1 Voter 2 Voter 3

1st A A B → 3

2nd B C C → 2

3rd C B A → 1

Candidate A: 3 + 3 + 1 = 7 points

Candidate B: 2 + 1 + 3 = 6 points

Candidate C: 1 + 2 + 2 = 5 points
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Generalization of the
Borda Count

In the Borda Count, the scoring rule

[n , n−1, n−2, . . . , 3 , 2 , 1]

becomes the normalized scoring rule

[1, n−2
n−1, n−3

n−1, . . . , 2
n−1, 1

n−1,0]
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Modifying the scoring rule

1999 AL baseball MVP voting:

[14,9,8,7,6,5,4,3,2,1]

which yields

[1,0.62,0.54,0.46,0.38,0.31,0.23,0.15,0.08,0]

instead of

[1,0.89,0.78,0.67,0.56,0.44,0.33,0.22,0.11,0]

→ Called positional voting.

A normalized scoring rule is always of the form:

[1, xn−2, xn−3, . . . , x1,0],

with 1 ≥ xn−2 ≥ · · · ≥ x1 ≥ 0

Question: If we vary these x’s, can different

candidates win with the same votes?
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YES!

Consider these candidate preferences of 9 voters:

4 voters 3 voters 2 voters

1st B A A → 1

2nd C C B → x

3rd A B C → 0

Under the scoring rule [1, x,0],

A receives 5 points.

B receives 4 + 2x points.

C receives 7x points.

As x varies, the candidate with the highest

point total changes.
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Everyone wins!

x[2]
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A set of voters’ preferences generates

a hyperplane arrangement.
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Disordering Candidates

We say that m voters can disorder n candidates if

there exists a set of preferences such that each of

the n candidates can win under some scoring rule.

Such a set of preferences is called a disordering.
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Disordering Candidates

We saw that 9 voters can disorder 3 candidates.

Question:

For which values of m and n can

m voters disorder n candidates?

Partial answer:

• the minimum m for 3 candidates

is m = 9.

• Some number of voters can disorder

4 candidates.

13



Disordering Candidates

9 voters can disorder 3 candidates

6 voters can disorder 4 candidates

only 4 voters are necessary to disorder 5 candidates

and 9 candidates can be disordered by 3 voters!

m\n 3 4 5 6 7 8 9
3 × × × × × × ·
4 × × × · · · ·
5 × · · · · · ·
6 × · · · · · ·
7 × · · · · · ·
8 × · · · · · ·
9 · · · · · · ·

for larger m and n,

m voters can always disorder n candidates
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Why?

Analyze the 4-candidate situation:

A scoring rule is now of the form [1, x, y,0],

with 1 ≥ x ≥ y ≥ 0

More degrees of freedom!

A set of voter preferences is now represented by

a 3-D hyperplane arrangement over the triangular

region
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4-candidate example

c3 c1 c1 c2 c2 c1

c2 c2 c3 c3 c3 c4

c4 c4 c4 c4 c4 c3

c1 c3 c2 c1 c1 c2

0.0
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6
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5-candidate example

c1 c1 c5 c4

c2 c3 c2 c2

c3 c5 c3 c5

c4 c4 c4 c3

c5 c2 c1 c1

[1, x, y,0,0] [1, x, y,0.8,0]
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0.8
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0.85
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Theorem

Claim: A collection of m voters can disorder n

candidates whenever m ≥ 3 and n ≥ 3, except

− when m = 3 and n ≤ 8,

− when n = 3 and m ≤ 8, and

− when n = 4 and m = 4,5.

m\n 3 4 5 6 7 8 9 10 11 12
3 × × × × × × · · · ·
4 × × × · · · · · · ·
5 × · · · · · · · · ·
6 × · · · · · · · · ·
7 × · · · · · · · · ·
8 × · · · · · · · · ·
9 · · · · · · · · · ·
10 · · · · · · · · · ·
11 · · · · · · · · · ·
12 · · · · · · · · · ·
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Proof of Theorem

• m 6= 2

• n 6= 2

• Prove ×’s

• Create infinite families of disorderings.

Lemma: From special (m, n): more voters

Lemma: From special (m, n): more candidates

• Generate the special disorderings.
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m, n 6= 2 ×’s ∞-fam special

Simple Cases

Two voters can disorder no number of candidates

No number of voters can disorder two candidates
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m, n 6= 2 ×’s ∞-fam special

A Necessary Condition for
Disorderings

What must be true in a disordering?

c1 c1 c5 c4 → 1

c2 c3 c2 c2 → x3

c3 c5 c3 c5 → x2

c4 c4 c4 c3 → x1

c5 c2 c1 c1 → 0

For candidate c1 to be able to win over c2:

For candidate c2 to be able to win over c1:

Necessary condition: If two candidates c1 and c2

are disordered, then there must exist integers j and

k such that Rj(c1) > Rj(c2) and Rk(c1) < Rk(c2).
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m, n 6= 2 ×’s ∞-fam special

Computer Assistance

• Choose m and n

• Generate all sets of voter preferences.

• Check the necessary condition for each.

• If n.c. satisfied, verify whether disordering.

This condition is not sufficient!

c1 c1 c2 c3

c2 c4 c4 c4

c3 c3 c3 c2

c4 c2 c1 c1
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m, n 6= 2 ×’s ∞-fam special

A New Disordering from an Old

Whenever m voters disorder n candidates,

m + n voters can disorder n candidates as well.

(m, n) → (m + n, n)
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m, n 6= 2 ×’s ∞-fam special

Splittable Disorderings

Sometimes it is possible to add a candidate to an

existing disordering in a simple fashion.

If so, we call the disordering splittable.

Not only can we add one candidate, we can add

n′ candidates.
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m, n 6= 2 ×’s ∞-fam special

Generated Disorderings

m\n 3 4 5 6 7 8 9 10 11 12
3 × × × × × × ⊙ ⊙ ⊙ ·
4 × × × ⊙ ⊙ ⊙ • • • ·
5 × ⊙ ⊙ • • • • • • ·
6 × • • • • • · · · ·
7 × • • • • • · · · ·
8 × • • · · · · · · ·
9 ⊙ • • · · · · · · ·
10 • · · · · · · · · ·
11 • · · · · · · · · ·
12 • · · · · · · · · ·
13 • · · · · · · · · ·
14 • · · · · · · · · ·
15 • · · · · · · · · ·
16 • · · · · · · · · ·
17 • · · · · · · · · ·
18 · · · · · · · · · ·
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Thanks!

I am: Christopher Hanusa

http://qc.edu/∼chanusa/

Additional reading:

Electoral Process: ACE Encyclopaedia (UN)

http://aceproject.org/ace-en

Geometry of the Borda Count:

Millions of election outcomes from a single profile,

by Donald Saari

Preprint of this research:

Ensuring every candidate wins under

positional voting, available on the above website.
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