Self-conjugate core partitions: It's storytime!

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Rishi Nath, York College, CUNY

people.qc.cuny.edu/chanusa > Talks

Meet Mr. Core Partition

Meet our actors: Core Partitions

Coxeter groups:

t-cores biject with min. wt. coset reps in A_t/A_t . (action) elements of

Let $c_t(n)$ be the number of t-core partitions of n.

Representation Theory:

t-cores label the t-blocks of irreducible characters of S_n .

Mock theta functions

The **Young diagram** of $\lambda = (\lambda_1, \dots, \lambda_k)$ has λ_i boxes in row i. The **hook length** of a box = # boxes below + # boxes to right + box λ is a **t-core** if no boxes have hook length t.

Example: Mr. Core is not 3-, 5-, 6-core; is a 4-, 8-, 11-core.

Self-conjugate core partitions

Meet Mrs. Core Partition

Let $sc_t(n)$ be the number of self-conjugate t-core partitions of n.

Representation Theory:

s-c t-cores label defect zero t-blocks of A_n that arise from splitting t-blocks of S_n .

(Ask Rishi)

A partition is **self-conjugate** if it is symmetric about its main diagonal.

In this talk: Understanding self-conjugate core partitions.

Beauty contest

Core partitions

Generating function:

(Olsson, 1976)

$$\sum_{n\geq 0} c_t(n)q^n = \prod_{n\geq 1} \frac{(1-q^{nt})^t}{1-q^n}$$

Positivity. (Granville, Ono, '96) $c_t(n) > 0$ when t > 4.

Monotonicity. (Stanton '99) Conjecture: $c_{t+1}(n) \geq c_t(n)$

(Craven '06) (Anderson '08)

Self-conjugate core partitions

Generating function:

$$(\mathsf{Olsson},\ 1990)\ \sum_{n\geq 0} \mathit{sc}_t(n)q^n =$$

$$\begin{cases} \prod_{n\geq 1} \frac{(1+q^{2n-1})(1-q^{2tn})^{(t-1)/2}}{1+q^{t(2n-1)}} \ t \text{ odd} \\ \prod_{n\geq 1} (1-q^{2tn})^{t/2}(1+q^{2n-1}) \ t \text{ even} \end{cases}$$

Positivity? ✓ (Baldwin et al, '06) $sc_t(n) > 0$ for $t = 8, \ge 10, n > 2$. Monotonicity? What else can we say?

Self-conjugate core partitions

Understanding Monotonicity

Self-conjugate partitions of 22

	con conjugate particione or ==									
										Total
	6-core	×	×	\checkmark	×	×	\checkmark	×	×	2
	7-core	×	×	×	×	\checkmark	×	×	×	1
	8-core	×	\checkmark	×	\checkmark	\checkmark	×	\checkmark	×	4
	9-core	×	×	\checkmark	\checkmark	×	×	×	×	2
	10-core	\checkmark	8							
	11-core	×	×	×	×	×	\checkmark	×	\checkmark	2
	12-core	\checkmark	8							
	13-core	\checkmark	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	6
	14-core	\checkmark	8							
	15-core	1	1	1	×	1	1	1	1	7

- Much variability!
- Self-conjugate cores do not satisfy $sc_{t+1}(n) \ge sc_t(n)$.
- ► Most partitions are t-cores (t large)
- Self-conjugate cores might satisfy $sc_{t+2}(n) \ge sc_t(n)$.

Self-conjugate core partitions

Monotonicity Conjectures & Theorems

Monotonicity Conjecture. (Stanton '99)

 $c_{t+1}(n) > c_t(n)$ when 4 < t < n-1.

Even Monotonicity Conjecture. (Hanusa, Nath '12) $sc_{2t+2}(n) > sc_{2t}(n)$ for all n > 20 and 6 < 2t < 2|n/4| - 4

$$sc_{2t+3}(n) > sc_{2t+1}(n)$$
 for all $n \ge 56$ and $9 \le 2t + 1 \le n - 17$

Some progress:

Theorem. $sc_{2t+2}(n) > sc_{2t}(n)$ when n/4 < 2t < 2|n/4| - 4.

And: $sc_{2t+3}(n) > sc_{2t+1}(n)$ for all n > 48 and n/3 < 2t + 1 < n-17.

Key idea: The t-quotient of λ

We can define the *t*-core λ^0 of any partition λ . Successively remove hooks of hooklength t and keep track in λ 's t-quotient.

Self-conjugate core partitions

Key idea: The *t*-quotient of λ

Since $sc_t(n) = sc(n) - nsc_t(n)$, we can prove results like:

Proposition. For
$$n/3 < 2t + 1 \le n/2$$
, $sc_{2t+1}(n) = sc(n) - sc(n-2t-1) - (t-1)sc(n-4t-2)$.

Proposition. For
$$n/4 < 2t \le n/2$$
, $sc_{2t}(n) = sc(n) - t sc(n - 4t)$.

Consequence: For $n/4 < 2t \le n/2$,

$$t sc(n-4t-4) > (t+1)sc(n-4t)$$
.

$$sc_{2t+2}(n) > sc_{2t}(n) \longleftrightarrow$$
 or instead $\frac{sc(n-4t-4)}{sc(n-4)} \le \frac{t}{t+1}.$

Look Ma, No cores!

Self-conjugate core partitions

Positivity for small t

We found some holes in the literature:

```
sc_2(n) = 0 except when n triangular.

sc_4(n) = 0 when \begin{cases} \text{factorization of } 8n + 5 \text{ contains a } (4k + 3)\text{-prime to an odd power. (Ono, Sze, '97)} \\ sc_6(n) = 0 \text{ when } n \in \{2, 12, 13, 73\}. \end{cases}
```

$$sc_3(n) = 0$$
 except when $n = 3d^2 \pm 2d$
 $sc_5(n) = 0$ when $\begin{cases} \text{factorization of } n \text{ contains a } (4k+3)\text{-prime to an odd power. (Garvan, Kim, Stanton '90)} \end{cases}$

$$sc_7(n) = 0$$
 when $n = (8m + 1)4^k - 2$

 $sc_9(n) = 0$ when $n = (4^k - 10)/3$ (Baldwin et al + Montgomery '06)

Self-conjugate core partitions

Sums of squares

Theorem. If $n = (8m+1)4^k - 2$ for m,k > 0, then $sc_7(n) = 0$. *Proof.* (Garvan, Kim, Stanton '90) shows that

$$sc_7(n) =$$
triples (x_1, x_2, x_3) satisfying
$$n = 7x_1^2 + 2x_1 + 7x_2^2 + 4x_2 + 7x_3^2 + 6x_3$$

Consider a minimal n of the above type. After substituting, rewriting:

$$7(8m+1)4^{k} = (7x_{1}+1)^{2} + (7x_{2}+2)^{2} + (7x_{3}+3)^{2}$$

$$\equiv 0 \text{ or } 4 \mod 8 \qquad \uparrow \text{ So these are all even.} \uparrow$$

Choosing
$$\left(\frac{x_2}{2}, -\frac{x_3+1}{2}, -\frac{x_1+1}{2}\right)$$
 gives a smaller n .

Legendre: The only integers NOT sum of 3 squares: $n = (8m + 7)4^k$.

Here: The only integers NOT sum of 3 squares of diff. residues mod 7: $n = (56m + 7)4^k$.

Self-conjugate core partitions

Unimodality and Asymptotics

We conjecture $sc_{t+2}(n) > sc_t(n)$; structure of increase?

Plot Normalized increase for different *n*: $(sc_{t+2}(n) - sc_t(n))/sc(n)$

Other peculiarities

Conjecture: There are infinitely many n such that $sc_9(n) < sc_7(n)$. Includes many (but not all) values of $n \equiv 82 \mod 128$:

```
{9, 18, 21, 82, 114, 146, 178, 210, 338, 402, 466, 594, 658, 722, 786, 850, 978, 1106, 1362, 1426, 1618, 1746, 1874, 2130, 2386, 2514, 2642, 2770, 2898, 3154, 3282, 3410, 3666, 3922, 4050, 4178, 4306, 4434, 4690, 4818, 4946, 5202, 5458, 5586, 5970, 6226, 6482, 6738, 6994, 7250, 7506, 8018, 8274, 8530, 8786, 9042, 9298, 9554, 9810}.
```

Conjecture: For $n \ge 0$, $sc_7(4n + 6) = sc_7(n)$.

Conjecture: Let *n* be a non-negative integer.

- 1. Suppose $n \ge 49$. Then $sc_9(4n) > 3 sc_9(n)$.
- 2. Suppose $n \ge 1$. Then $sc_9(4n + 1) > 1.9 sc_9(n)$.
- 3. Suppose $n \ge 17$. Then $sc_9(4n+3) > 1.9 sc_9(n)$.
- 4. Suppose $n \ge 1$. Then $sc_9(4n+4) > 2.6 sc_9(n)$.

What's next?

- Core survey
 - Coxeter Gp. POV: Fix t, let n vary. Rep. Theory POV: Fix n, let t vary.
 - ► Can they be unified? Can we help each other?
 - Gathering sources stage What do you know?
- ▶ Simultaneous core partitions (λ is both an s-core and a t-core)
 - Geometrical interpretation of cores:

The bijection between 3-cores and alcoves

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? 5.

How many simultaneous 4/5-cores? 14.

How many simultaneous 5/6-cores? **42**.

How many simultaneous n/(n+1)-cores? $C_n!$

Jaclyn Anderson proved that the number of s/t-cores is $\frac{1}{s+t} {s+t \choose s}$.

The number of 3/7-cores is $\frac{1}{10} \binom{10}{3} = \frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 12$.

Fishel–Vazirani proved an alcove interpretation of n/(mn+1)-cores.

Self-conjugate core partitions

What's next?

- Core survey
 - Coxeter Gp. POV: Fix t, let n vary. Rep. Theory POV: Fix n, let t vary.
 - Can they be unified? Can we help each other?
 - Gathering sources What do you know?
- ▶ Simultaneous core partitions (λ is an *s*-core and a *t*-core)
 - Geometrical interpretation of cores.
- **Question:** What is the average size of an s/t-core partition?
 - ▶ In progress (on pause).
 We "know" the answer, but we have to prove it!
 - Working with Drew Armstrong, University of Miami.

Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks

Interact: people.qc.cuny.edu/chanusa > Animations

- Gordon James and Adalbert Kerber.
 The representation theory of the symmetric group,
 - Addison-Wesley, 1981.
- Christopher R. H. Hanusa and Rishi Nath. The number of self-conjugate core partitions. $ar\chi iv:1201.6629$
- The Christopher R. H. Hanusa and Brant C. Jones.

 Abacus models for parabolic quotients of affine Coxeter groups

 Journal of Algebra. Vol. 361, 134–162. (2012) arχiv:1105.5333