A combinatorial introduction to reflection groups

Christopher R. H. Hanusa Queens College, CUNY

people.qc.cuny.edu/chanusa > Talks

Groups

Today, we will discuss the combinatorics of **groups**.

- ▶ Made up of a set of elements $W = \{w_1, w_2, \ldots\}$.
- ▶ Multiplication of two elements w_1w_2 stays in the group.
 - ▶ ALTHOUGH, it might **not** be the case that $w_1w_2 = w_2w_1$.
- ▶ There is an identity element (id) & Every element has an inverse.
- Group elements take on the role of both objects and functions.

(Non-zero real numbers)

- ► We can multiply *a* and *b*
- ▶ It is the case that ab = ba
- ▶ 1 is the identity: $a \cdot 1 = a$
- ▶ The inverse of a is 1/a.

(Invertible $n \times n$ matrices.)

- ► We can multiply A and B
- ightharpoonup Rarely is <math>AB = BA
- ▶ I_n is the identity: $A \cdot I_n = A$
- ▶ The inverse of A exists: A^{-1} .

Reflection Groups

More specifically, we will discuss **reflection groups** W.

- ▶ *W* is generated by a set of **generators** $S = \{s_1, s_2, \dots, s_k\}$.
 - Every $w \in W$ can be written as a product of generators.
- Along with a set of relations.
 - ▶ These are rules to convert between expressions.
 - $s_i^2 = id$. $-and-(s_i s_j)^{power} = id$. (Write down

For example, $w = s_3 s_2 s_1 s_1 s_2 s_4 = s_3 s_2 id s_2 s_4 = s_3 id s_4 = s_3 s_4$

Why should we use **these** rules?

Pi in the cold of winter

Behold: The perfect wallpaper design for math majors:

To see the reflections, we insert some **hyperplanes** that act as mirrors.

- ▶ In two dimensions, a hyperplane is simply a line.
- ▶ In three dimensions, a hyperplane is a plane.

Reflection Groups

- ▶ These regions can be thought of as group elements. Place id.
- ▶ The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane H_s . ($s^2 = id$)

We see:

- ► $sts = tst \leftrightarrow ststst = id$ Shows $(st)^3 = id$ is natural.
- Our group has six elements: $\{id, s, t, st, ts, sts\}.$
- This is the group of symmetries of a hexagon.

Reflection Groups

- ▶ When the angle between H_s and H_t is $\frac{\pi}{n}$, relation is $(st)^n = id$.
- ▶ The size of the group is |S| = 2n.
- ▶ All finite reflection groups in the plane are these **dihedral groups**.
- ► Two directions: infinite and higher dimensional.

Permutations are a group

An *n*-permutation is a permutation of $\{1, 2, ..., n\}$.

▶ Write in one-line notation or use a string diagram:

n-Permutations form the **Symmetric group** S_n .

- ► We can multiply permutations.
- ► The identity permutation is id = 1234...n.
- ► Inverse permutation: Flip the string diagram upside down!

Permutations as a reflection group

A special type of permutation is an **adjacent transposition**, switching two adjacent entries.

- ► Write $s_i : (i) \leftrightarrow (i+1)$. (e.g. $s_3 = 12435$).
- ★ Every *n*-permutation is a product of adjacent transpositions.
 - (Construct any string diagram through individual twists.)
 - Example. Write 31425 as $s_1s_3s_2$.
- ▶ $S = \{s_1, s_2, \dots, s_{n-1}\}$ are **generators** of S_n .

12345	12345
21 345	1 32 45
2 31 45	31 245
32 145	3 21 45

A reflection group also has relations:

- First, $s_i^2 = id$.
- ► Consecutive generators don't commute: $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$
- Non-consecutive generators DO commute: $s_i s_j = s_j s_i$

213**45**

Visualizing symmetric groups

We have already seen S_3 , generated by $\{s_1, s_2\}$:

We can visualize S_4 as a **permutohedron**, generated by $\{s_1, s_2, s_3\}$.

sourceforge.net/apps/trac/groupexplorer/wiki/The First Five Symmetric Groups/

They also give a way to see S_5 ...

Higher-dimension symmetric groups

How can we "see" a reflection group in higher dimensions?

The relation $(s_i s_j)^m$ determines the angle between hyperplanes H_i , H_j :

$$(s_i s_i)^2 = id \longleftrightarrow \theta(H_i, H_i) = \pi/2$$

$$(s_i s_j)^3 = \text{id} \quad \longleftrightarrow \quad \theta(H_i, H_j) = \pi/3$$

For S_6 , we expect an angle of 60° between the hyperplane pairs

$$(H_1, H_2)$$
, (H_2, H_3) , (H_3, H_4) , and (H_4, H_5) .

Every other pair will be perpendicular.

All finite reflection groups

Or see with a Coxeter diagram:

- ▶ Vertices: One for every generator *i*
- ▶ Edges: Between i and j when $m_{i,j} \ge 3$. Label edges with $m_{i,j}$ when ≥ 4 .

Dihedral groups

Generators: s and t. Relation: $(st)^m = id$

Wallpaper Groups

The art of M. C. Escher plays upon symmetries in the plane.

An **isometry** of the plane is a transformation that preserves distance.

Think: translations, rotations, reflections, glide reflections.

A **wallpaper group** is a group of isometries of the plane with two independent translations. Some are also reflection groups:

Infinite Reflection Groups

Constructing an infinite reflection group: the **affine permutations** \widetilde{S}_n .

 \triangleright Add a new generator s_0 and a new **affine** hyperplane H_0 .

Elements generated by $\{s_0, s_1, s_2\}$ correspond to alcoves here.

Infinite Groups

Combinatorics of affine permutations

Many ways to reference elements in S_n .

- ▶ **Geometry.** Point to the alcove.
- ▶ **Alcove coordinates.** Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- ▶ Word. Write the element as a (short) product of generators.
- One-line notation. Similar to writing finite permutations as 312.
- Abacus diagram. Columns of numbers.
- **Core partition.** Hook length condition.
- **Bounded partition.** Part size bounded.
- **Others!** Lattice path, order ideal, etc.

Coordinates:

3	1
1	

Word: $s_0 s_1 s_2 s_1 s_0$

Permutation:

(-3, 2, 7)

Affine permutations

(Finite) *n*-Permutations S_n

Visually:

Affine *n*-**Permutations** \widetilde{S}_n

- ▶ Generators: $\{\mathbf{s}_0, s_1, \dots, s_{n-1}\}$
- ▶ s_0 has a braid relation with s_1 and s_{n-1}
- ▶ How does this impact one-line notation?
 - ► Perhaps interchanges 1 and *n*?
 - Not quite! (Would add a relation.)

Window notation

Affine *n*-**Permutations** S_n (G. Lusztig 1983, H. Eriksson, 1994) Write an element $\widetilde{w} \in \widetilde{S}_n$ in 1-line notation as a permutation of \mathbb{Z} .

Generators transpose **infinitely many** pairs of entries:

$$s_i$$
: (i) \leftrightarrow (i+1) ... $(n+i) \leftrightarrow (n+i+1)$... $(-n+i) \leftrightarrow (-n+i+1)$...

In \widetilde{S}_4 ,	· · · w(-4)	w(-3) w(-2) w(-1) w(0)	w(1) w(2) w(3) w(4)	w(5) w(6) w(7) w(8)	w(9)···
s_1	4	-2 -3 -1 0	2 1 3 4	6 5 7 8	10
<i>s</i> ₀	3	-4 -2 -1 1	0 2 3 5	4 6 7 9	8
<i>s</i> ₁ <i>s</i> ₀	2	-4 -3 -1 2	0 1 3 6	4 5 7 10	8

Symmetry: Can think of as integers wrapped around a cylinder.

 \widetilde{w} is defined by the window $[\widetilde{w}(1), \widetilde{w}(2), \dots, \widetilde{w}(n)]$. $s_1 s_0 = [0, 1, 3, 6]$

Research

An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation $[w_1, \ldots, w_n]$,

- Place integers in n runners.
- Circled: beads. Empty: gaps
- Create an abacus where each

Example:
$$[-4, -3, 7, 10]$$

- Generators act nicely.
- $ightharpoonup s_i$ interchanges runners $i \leftrightarrow i+1$. $(s_1:1 \leftrightarrow 2)$
- ▶ s_0 interchanges runners 1 and n (with shifts) $(s_0 : 1 \stackrel{\mathsf{shift}}{\leftrightarrow} 4)$

runner has a lowest bead at wi. 4 **5**1 (1) 2 (3) 4 **5**0 (5) 6 (7) 8

Core partitions

For an integer partition $\lambda = (\lambda_1, \dots, \lambda_k)$ drawn as a Young diagram,

The **hook length** of a box is # boxes below and to the right.

An n-core is a partition with no boxes of hook length dividing n.

Example. λ is a 4-core, 8-core, 11-core, 12-core, etc. λ is NOT a 1-, 2-, 3-, 5-, 6-, 7-, 9-, or 10-core.

Core partition interpretation for affine permutations

Bijection: {abaci} \longleftrightarrow {*n*-cores}

Rule: Read the boundary steps of λ from the abacus:

► A bead ↔ vertical step

► A gap ↔ horizontal step

Fact: This is a bijection!

Action of generators on the core partition

- Label the boxes of λ with residues.
- \triangleright s_i acts by adding or removing boxes with residue i.

Example.
$$\lambda = (5, 3, 3, 1, 1)$$

- has removable 0 boxes
- ▶ has addable 1, 2, 3 boxes.

Idea: We can use this to figure out a *word* for *w*.

Finding a word for an affine permutation.

Example: The word in S_4 corresponding to $\lambda = (6, 4, 4, 2, 2)$: S₁ S₀ S₂ S₁ S₃ S₂ S₀ S₃ S₁ S₀

The bijection between cores and alcoves

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3-cores and 4-cores? 5.

How many simultaneous 4/5-cores? 14.

How many simultaneous 5/6-cores? **42**.

How many simultaneous n/(n+1)-cores? $C_n!$

Jaclyn Anderson proved that the number of s/t-cores is $\frac{1}{s+t} {s+t \choose s}$.

The number of 3/7-cores is $\frac{1}{10} \binom{10}{3} = \frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 12$.

Fishel–Vazirani proved an alcove interpretation of n/(mn+1)-cores.

Research Questions

- ★ Can we extend combinatorial interps to other reflection groups?
 - ► Yes! Involves self-conjugate partitions. $ar\chi iv:1105.5333$
 - ▶ Joint with Brant Jones, James Madison University.

Research Questions

- ★ Can we extend combinatorial interps to other reflection groups?
 - ► Yes! Involves self-conjugate partitions. $ar\chi iv:1105.5333$
 - ▶ Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ► Joint with Rishi Nath, York College. arχiv:1201.6629
 - ▶ We found & proved some impressive numerical conjectures.
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).

Research Questions

- ★ Can we extend combinatorial interps to other reflection groups?
 - ► Yes! Involves self-conjugate partitions. $ar\chi iv:1105.5333$
 - Joint with Brant Jones, James Madison University.
- ★ What numerical properties do self-conjugate core partitions have?
 - ▶ Joint with Rishi Nath, York College. arχiv:1201.6629
 - ▶ We found & proved some impressive numerical conjectures.
 - ▶ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
- \bigstar What is the average size of an s/t-core partition?
 - ▶ In progress. We "know" the answer, but we have to prove it!
 - Working with Drew Armstrong, University of Miami.

Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks
Interact: people.qc.cuny.edu/chanusa > Animations

- M. A. Armstrong.
 Groups and symmetry. Springer, 1988.
 Easy-to-read introduction to groups, (esp. reflection)
- James E. Humphreys Reflection groups and Coxeter groups. Cambridge, 1990. More advanced and the reference for reflection groups.
- http://www.mcescher.com/
- lacktriangle http://www.math.ubc.ca/ \sim cass/coxeter/crm1.html
- http://sourceforge.net/apps/trac/groupexplorer/wiki/

The First Five Symmetric Groups/