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Introduction Finite Groups Infinite Groups Research

Groups

Today, we will discuss the combinatorics of groups.

◮ Made up of a set of elements W = {w1,w2, . . .}.
◮ Multiplication of two elements w1w2 stays in the group.

◮ ALTHOUGH, it might not be the case that w1w2 = w2w1.

◮ There is an identity element (id) & Every element has an inverse.

◮ Group elements take on the role of both objects and functions.

(Non-zero real numbers)

◮ We can multiply a and b

◮ It is the case that ab = ba

◮ 1 is the identity: a · 1 = a

◮ The inverse of a is 1/a.

(Invertible n × n matrices.)

◮ We can multiply A and B

◮ Rarely is AB = BA

◮ In is the identity: A · In = A

◮ The inverse of A exists: A−1.
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Reflection Groups

More specifically, we will discuss reflection groups W .

◮ W is generated by a set of generators S = {s1, s2, . . . , sk}.
◮ Every w ∈W can be written as a product of generators.

◮ Along with a set of relations.
◮ These are rules to convert between expressions.
◮ s2

i = id. –and– (si sj)
power = id. (Write down)

For example, w = s3s2s1s1s2s4 = s3s2ids2s4 = s3ids4 = s3s4

Why should we use these rules?
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Pi in the cold of winter

Behold: The perfect wallpaper design for math majors:
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To see the reflections, we insert some hyperplanes that act as mirrors.

◮ In two dimensions, a hyperplane is simply a line.

◮ In three dimensions, a hyperplane is a plane.
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Reflection Groups

◮ These regions can be thought of as group elements. Place id.

◮ The action of multiplying (on the left) by a generator s

corresponds to a reflection across a hyperplane Hs . (s2 = id)

s

t

t

ts

s

st

We see:

◮ sts = tst ↔ ststst = id
Shows (st)3 = id is natural.

◮ Our group has six elements:
{id, s, t, st, ts, sts}.

◮ This is the group of
symmetries of a hexagon.
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Reflection Groups

s

t

◮ When the angle between Hs and Ht is π

n
, relation is (st)n = id.

◮ The size of the group is |S |=2n.

◮ All finite reflection groups in the plane are these dihedral groups.

◮ Two directions: infinite and higher dimensional.
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Permutations are a group

An n-permutation is a permutation of {1, 2, . . . , n}.

◮ Write in one-line notation or use a string diagram:

1

3

2

1

3

4

4

2

5

5

31425
1

5

2

2

3

3

4

4

5

1

52341

n-Permutations form
the Symmetric group Sn.

◮ We can multiply permutations.

◮ The identity permutation
is id = 1 2 3 4 . . . n.

◮ Inverse permutation: Flip the
string diagram upside down!

1

3

2

1

3

4

4

2

5

5

52 3 41

31425 ´ 52341 = 35421
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Permutations as a reflection group

A special type of permutation is an adjacent
transposition, switching two adjacent entries.

1

1

2

2

3

4

4

3

5

5

12435

◮ Write si : (i)↔ (i + 1). (e.g. s3 = 124 3 5).

⋆ Every n-permutation is a product of adjacent transpositions.
◮ (Construct any string diagram through individual twists.)
◮ Example. Write 3 1 4 2 5 as s1s3s2.

◮ S = {s1, s2, . . . , sn−1} are generators of Sn.

A reflection group also has relations:

12345 12345
21345 13245
23145 31245
32145 32145

◮ First, s2
i = id.

◮ Consecutive generators don’t commute: si si+1si = si+1si si+1

◮ Non-consecutive generators DO commute: sisj = sjsi 21345
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Visualizing symmetric groups

We have already seen S3, generated by {s1, s2}:

123

213

132

312

231

321

We can visualize S4 as a permutohedron, generated by {s1, s2, s3}.
sourceforge.net/apps/trac/groupexplorer/wiki/The First Five Symmetric Groups/

They also give a way to see S5 . . .
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Higher-dimension symmetric groups

How can we “see” a reflection group in higher dimensions?

The relation (si sj)
m determines the angle between hyperplanes Hi , Hj :

◮ (si sj)
2 = id ←→ θ(Hi ,Hj ) = π/2

◮ (si sj)
3 = id ←→ θ(Hi ,Hj ) = π/3

For S6, we expect an angle of 60◦ between the hyperplane pairs

(H1,H2), (H2,H3), (H3,H4), and (H4,H5).

Every other pair will be perpendicular.
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All finite reflection groups

Or see with a Coxeter diagram:

◮ Vertices: One for every generator i

◮ Edges: Between i and j when mi ,j ≥ 3.
Label edges with mi ,j when ≥ 4.

Dihedral groups
m

ts

Generators: s and t.
Relation: (st)m = id

Symmetric groups: 1 2 .. .. n

Infinite families: 1 2 .. .. n
4

1

3

2

.. .. n

Exceptional types:

4 5 5
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Wallpaper Groups

The art of M. C. Escher plays upon symmetries in the plane.

An isometry of the plane is a transformation that preserves distance.
Think: translations, rotations, reflections, glide reflections.

A wallpaper group is a group of isometries of the plane with two
independent translations. Some are also reflection groups:

Combinatorial interpretations in affine Coxeter groups QCC Colloquium

Christopher R. H. Hanusa Queens College, CUNY September 12, 2012 11 / 24



Introduction Finite Groups Infinite Groups Research

Infinite Reflection Groups

Constructing an infinite reflection group: the affine permutations S̃n.

◮ Add a new generator s0 and a new affine hyperplane H0.

s1

s2

s0

Elements generated by {s0, s1, s2} correspond to alcoves here.
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Combinatorics of affine permutations

Many ways to reference elements in S̃n.

◮ Geometry. Point to the alcove.

◮ Alcove coordinates. Keep track of
how many hyperplanes of each type
you have crossed to get to your alcove.

◮ Word. Write the element as a
(short) product of generators.

◮ One-line notation. Similar to
writing finite permutations as 312.

◮ Abacus diagram. Columns of numbers.

◮ Core partition. Hook length condition.

◮ Bounded partition. Part size bounded.

◮ Others! Lattice path, order ideal, etc.

H1

H2

H0

Coordinates:

3 1

1

Word: s0s1s2s1s0

Permutation:

(−3, 2, 7)
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Affine permutations

(Finite) n-Permutations Sn

◮ Visually: s1 s2 s3 ... sn- 2 sn- 1

s0
Affine n-Permutations S̃n

◮ Generators: {s0, s1, . . . , sn−1}

◮ s0 has a braid relation with s1 and sn−1

◮ How does this impact one-line notation?
◮ Perhaps interchanges 1 and n?
◮ Not quite! (Would add a relation.)
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Window notation

Affine n-Permutations S̃n (G. Lusztig 1983, H. Eriksson, 1994)
Write an element w̃ ∈ S̃n in 1-line notation as a permutation of Z.

Generators transpose infinitely many pairs of entries:
si : (i) ↔ (i+1) . . . (n + i)↔ (n + i +1) . . . (−n + i)↔ (−n + i +1) . . .

In S̃4, · · · w(-4) w(-3) w(-2) w(-1) w(0) w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9)· · ·

s1 · · · -4 -2 -3 -1 0 2 1 3 4 6 5 7 8 10 · · ·

s0 · · · -3 -4 -2 -1 1 0 2 3 5 4 6 7 9 8 · · ·

s1s0 · · · -2 -4 -3 -1 2 0 1 3 6 4 5 7 10 8 · · ·

Symmetry: Can think of as integers wrapped around a cylinder.

w̃ is defined by the window [w̃ (1), w̃ (2), . . . , w̃(n)]. s1s0 = [0, 1, 3, 6]
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An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation [w1, . . . ,wn],

◮ Place integers in n runners.

◮ Circled: beads. Empty: gaps

◮ Create an abacus where each
runner has a lowest bead at wi .

Example: [−4,−3, 7, 10]
17

13

9

5

1

- 3

-7

-11

-15

18

14

10

6

2

-2

-6

-10

-14

19

15

11

7

3

-1

-5

-9

-13

20

16

12

8

4

0

- 4

-8

-12

s1→

17

13

9

5

1

-3

-7

-11

-15

18

14

10

6

2

- 2

-6

-10

-14

19

15

11

7

3

-1

-5

-9

-13

20

16

12

8

4

0

- 4

-8

-12

s0→

17

13

9

5

1

- 3

-7

-11

-15

18

14

10

6

2

- 2

-6

-10

-14

19

15

11

7

3

-1

-5

-9

-13

20

16

12

8

4

0

-4

-8

-12

◮ Generators act nicely.

◮ si interchanges runners i ↔ i + 1. (s1 : 1↔ 2)

◮ s0 interchanges runners 1 and n (with shifts) (s0 : 1
shift
↔ 4)
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Core partitions

For an integer partition λ = (λ1, . . . , λk) drawn as a Young diagram,

The hook length of a box is # boxes below and to the right.
10 9 6 5 2 1

7 6 3 2

6 5 2 1

3 2

2 1

An n-core is a partition with no boxes of hook length dividing n.

Example. λ is a 4-core, 8-core, 11-core, 12-core, etc.
λ is NOT a 1-, 2-, 3-, 5-, 6-, 7-, 9-, or 10-core.
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Core partition interpretation for affine permutations

Bijection: {abaci} ←→ {n-cores}

Rule: Read the boundary steps of λ from the abacus:

◮ A bead ↔ vertical step ◮ A gap ↔ horizontal step

13

9

5

1

-3

-7

-11

14

10

6

2

-2

-6

-10

15

11

7

3

-1

-5

-9

16

12

8

4

0

-4

-8

←→

Fact: This is a bijection!
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Action of generators on the core partition

◮ Label the boxes of λ with residues.

◮ si acts by adding or removing boxes
with residue i .

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

Example. λ = (5, 3, 3, 1, 1)

◮ has removable 0 boxes

◮ has addable 1, 2, 3 boxes.

s2

0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

s0→

0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

s1 ↓ ց
0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

0 1 2 3 0 1
3 0 1 2 3 0
2 3 0 1 2 3
1 2 3 0 1 2
0 1 2 3 0 1
3 0 1 2 3 0

Idea: We can use this to
figure out a word for w .
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Finding a word for an affine permutation.

Example: The word in S4

corresponding to λ = (6, 4, 4, 2, 2):

s1s0s2s1s3s2s0s3s1s0

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s1→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s0→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s2→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s1→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s3→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s2→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s0→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s3→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s1→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0

s0→

0 1 2 3 0 1

3 0 1 2 3 0

2 3 0 1 2 3

1 2 3 0 1 2

0 1 2 3 0 1

3 0 1 2 3 0
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The bijection between cores and alcoves

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0
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Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

0 1
0 1 2 0

2 0

0 1 2 0 1 2

2 0 1 2

1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1

1 2 0 1

0 1

0

2

0 1 2

2

1

0 1 2 0 1

2 0 1

1

0

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

2

0 1

2 0

1

0

0 1 2 0

2 0

1 2

0

2

0 1 2 0 1 2

2 0 1 2

1 2

0 1

2

1

0 1 2

2 0 1

1 2

0 1

2

1

0 1 2 0 1

2 0 1

1 2 0

0 1

2 0

1

0

0 1 2 0

2 0 1 2

1 2 0

0 1 2

2 0

1 2

0

2

0
0 1 2

2

0 1 2 0 1

2 0 1

1

0 1 2 0 1 2 0

2 0 1 2 0

1 2 0

0

0 1

2

1

0 1 2 0

2 0

1

0

0 1 2 0 1 2

2 0 1 2

1 2

0

2

0 1 2

2 0

1 2

0

2

0 1 2 0 1

2 0 1

1 2

0 1

2

1

0 1 2 0

2 0 1

1 2 0

0 1

2 0

1

0

How many partitions are both 3-cores and 4-cores? 5.
How many simultaneous 4/5-cores? 14.
How many simultaneous 5/6-cores? 42.
How many simultaneous n/(n + 1)-cores? Cn!

Jaclyn Anderson proved that the number of s/t-cores is 1
s+t

(
s+t
s

)
.

The number of 3/7-cores is 1
10

(10
3

)
= 1

10
10·9·8
3·2·1 = 12.

Fishel–Vazirani proved an alcove interpretation of n/(mn+1)-cores.
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Research Questions

⋆ Can we extend combinatorial interps to other reflection groups?

◮ Yes! Involves self-conjugate partitions. arχiv:1105.5333

◮ Joint with Brant Jones, James Madison University.

22

15
8
1

-6

-13

-20

23

16
9
2

-5

-12

-19

24

17

10
3

-4

-11

-18

25

18

11
4

-3

-10

-17

26

19

12
5

- 2

-9

-16

27

20

13
6

- 1

-8

-15

←→
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Research Questions

⋆ Can we extend combinatorial interps to other reflection groups?

◮ Yes! Involves self-conjugate partitions. arχiv:1105.5333

◮ Joint with Brant Jones, James Madison University.

⋆ What numerical properties do self-conjugate core partitions have?

◮ Joint with Rishi Nath, York College. arχiv:1201.6629

◮ We found & proved some impressive numerical conjectures.

◮ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).
4-cores of 22 6-cores of 22 8-cores of 22

13 11 6 5 4 3 1

11 9 4 3 2 1

6 4

5 3

4 2

3 1

1

17 11 8 7 5 4 3 2 1

11 5 2 1

8 2

7 1

5

4

3

2

1

13 9 8 7 3 2 1

9 5 4 3

8 4 3 2

7 3 2 1

3

2

1

19 11 9 7 6 5 4 3 2 1

11 3 1

9 1

7

6

5

4

3

2

1

13 11 6 5 4 3 1

11 9 4 3 2 1

6 4

5 3

4 2

3 1

1

15 11 7 6 5 3 2 1

11 7 3 2 1

7 3

6 2

5 1

3

2

1
11 9 7 6 3 1

9 7 5 4 1

7 5 3 2

6 4 2 1

3 1

1
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Research Questions

⋆ Can we extend combinatorial interps to other reflection groups?

◮ Yes! Involves self-conjugate partitions. arχiv:1105.5333

◮ Joint with Brant Jones, James Madison University.

⋆ What numerical properties do self-conjugate core partitions have?

◮ Joint with Rishi Nath, York College. arχiv:1201.6629

◮ We found & proved some impressive numerical conjectures.

◮ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).

⋆ What is the average size of an s/t-core partition?

◮ In progress. We “know” the answer, but we have to prove it!

◮ Working with Drew Armstrong, University of Miami.
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Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks

Interact: people.qc.cuny.edu/chanusa > Animations

M. A. Armstrong.
Groups and symmetry. Springer, 1988.
Easy-to-read introduction to groups, (esp. reflection)

James E. Humphreys
Reflection groups and Coxeter groups. Cambridge, 1990.
More advanced and the reference for reflection groups.

http://www.mcescher.com/

http://www.math.ubc.ca/∼cass/coxeter/crm1.html

http://sourceforge.net/apps/trac/groupexplorer/wiki/

The First Five Symmetric Groups/
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