1. CALCULUS

(1) Question 1.

(a) Calculate $\frac{d}{dx}(cx^c + c^2x^{-c})$, where c is a non-zero constant.

(b) Determine y' where $y = \frac{1}{\sqrt{2-3x}}$.

(c) Let $f(r) = (r^3 + 1)(-5 - r^4)$. Calculate f'(r).

(2) This problem deals with the following function:

$$f(x) = \frac{4(x+1)(x-2)}{(x-2)(x-3)^2}$$

• Calculate all right-hand and left-hand limits of f(x) at its vertical asymptotes.

• Does this function have a horizontal asymptote? Verify and explain.

(3) Given $\epsilon = 0.1$, determine $\delta > 0$ such that

$$|G(x) - 7| < \epsilon$$
 whenever $0 < |x - 3| < \delta$.

2. Combinatorics

Let n be a positive integer. A **lecture hall partition** of length n is a partition $\lambda = (\lambda_n, \dots, \lambda_2, \lambda_1)$ (where one or more λ_i may be zero) such that

$$0 \le \frac{\lambda_1}{1} \le \frac{\lambda_2}{2} \le \dots \le \frac{\lambda_n}{n}.$$

Given $w = (w_1, w_2, \dots, w_n) \in \tilde{C}_n/C_n$, create the partition $\lambda = (\lambda_n, \dots, \lambda_2, \lambda_1)$ with

$$\lambda_j = \sum_{i=1}^j I_{i,j}.$$

This construction is a bijection between minimal length coset representatives of \tilde{C}_n/C_n and lecture hall partitions of length n.

The runners corresponding to i=1, 2, and 3 are runners 6, 5, and 3; $\lambda_{R(1)} = \lambda_1 = 12, \ \lambda_{R(2)} = \lambda_2 = 12, \ \lambda_{R(3)} = \lambda_5 = 7, \ \lambda_{r(1)} = \lambda_6 = 5, \ \lambda_{r(2)} = \lambda_7 = 5, \ \lambda_{r(3)} = \lambda_5 = 7, \ \text{and} \ \sigma_{\lambda} = (3, 1, 1).$ Therefore, $l(W(\sigma_{\lambda})) = 3 + (12 - 5) + (12 - 5) + (7 - 7) + 0 \cdot 4 = 17.$

1