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Counting

Example: How many ways are there to place 32
blank dominoes on a chessboard?

Answer:



Outline

e Enumeration of disjoint path systems
— Introduction to path systems
— The Gessel—Viennot method

— Applications of Gessel—Viennot

e Enumeration of domino tilings
— Perfect matchings of a graph

— Kasteleyn—Percus matrices

e Open Problems



Path Systems

A graph G = (V, E).

A directed graph: Orient each edge e € E.

A path from vertex a to vertex b:

Two paths are disjoint: They share no vertices.




Path Systems

A path system P from A to B in G-

Recall: sign(c) = (_1)# of transp. that compose o

Define: sign(P) = sign(o).

Combinatorial data:
Define m;; = # of paths from a; to b; in G.



The Gessel-Viennot Method
Let G be a directed graph.
Let A={ai,as,...,ar} CV(G).
Let B={by1,bs,...,b.} CV(Q).
Define M = (m;;)1<i j<k-

Then
detM = >  sign(P)

vertex-
disjoint
P

In our example, det M = 5.



Consequences

@

A combinatorial question of counting
path systems can be evaluated using
a determinant.

€)

A determinant may be evaluated
by counting path systems in
an associated lattice.



Example: A Catalan Determinant

€0, C1,C2, €3, C4, C5, Cg, C7, ...
Catalan Numbers: 1, 1, 2, 5,14, 42,132,429, ...

Interpretation: Triangulations of an (n 4+ 2)-gon.

ANANAv R

Also: Number of lattice paths from (0,0) to (z,1):

Did you know?
(co cl1 Cp ... Cn\
C

1 €2
det &) : =1

e o )




Example: A Catalan Determinant

a3 an aq ap=bg b1 bo b3

# of paths from a; to b; = ¢;4 ;.

# disjoint path systems
det M = from A to B
in the above lattice

Path systems disjoint = paths must be

ag — bg, a1 — b1, ap — by, ..., ap — bp.

There is only one possibility, so det M = 41
38



Proof of Gessel—Viennot

. . # path systems
Z sign(P) = Z sign(o) ( W/ perm. o >

all path all '
systems P o € Sk

= ) sign(o) M15(1)M20(2) " Mko(k)

1
O'ZSk;
= detM

In order to prove

Y sign(P) = detM,
disjoint
P

we need to prove

> sign(P) = O.

non-disjoint
P



Proof of Gessel—Viennot

We want to prove ) sign(P) = 0.

non-disjoint
P

Define N := set of all non-disjoint P.

We will construct an involution = : N — N.

o 72 = idy.

TP — P
P o TP

® T .

7 IS simple:
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Application of Gessel—Viennot

Domino tiling

Aztec diamond

4 AD,, = 2n(n—|—1)/2
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Domino Tiling «—— Path System

-
ya

et
Siys

s

Start on the left. Traverse each
domino directly through its center.

Domino Path
Tiling System

Place a domino following each path.
The remaining dominoes are forced.
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Counting Path Systems

$0,91,52, 83, S4, S5, 56y ---

Large Schroder numbers: 1, 2, 6, 22, 90,394, 1806, ...

count the lattice paths from (0,0) to (i,1%):

# domino tilings # path systems

2 6 22
= det| 6 22 90
22 90 394

= 26 (Qn(f”""l)/2 in general)
Method applies to generalized Aztec pillows.
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Aztec Regions

Aztec diamond Aztec pillow

generalized Aztec pillows

14




Perfect Matchings

A (perfect) matching is a selection of edges that
pairs all the vertices.

Example:

Algebra Analysis Statistics

Solution: (a perfect matching)
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The Dual Graph

Given any region, we can create its dual graph.

7 ?

—0

O O

Place a vertex in every square; connect vertices
whose squares are adjacent.

The dual graph of this region is bipartite.
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Correspondence

.......

.......

.......
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The Determinant’s Little Brother

The determinant of a matrix M:
det M = Z Sigﬂ(0)m1,0<1)m2,0(2) Mg 5 (k)
oS}
The permanent of a matrix M:
perm M = 3 M1,5(1)M2,0(2) " k()

O‘ESk

mi1 Mmip2 Mi13
mp1 M2 M3
m31 ™M32 mM33
No permanent calculus exists.

Example:

perm (I g>:7-2+6-1:20

18



Using Permanents

o 1 vibj c F(G)
Entry mij = { 0 wib; ¢ E(G)

perm M = Sum of terms of the form

My o(1)M2,6(2) " "™N,o(N)
= #£ of non-zero terms of the form

M1,0(1)M2,6(2) """ "N,0(N)
= #£ of choices of N non-zero entries in M
— # of choices of N edges in the dual graph

= # of perfect matchings in the dual graph
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A Kasteleyn—Percus Matrix
Convert the permanent to a determinant.

On a square lattice, the rule is easy to implement.

A toy example:

11 11
i)l
! ! !

2 perfect permanent determinant
matchings =2 = 2
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For a 4 x 4 Chessboard
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Comparison of Methods

G-V K—P
for ADy, nxn nn+1)xn(n+1)
entries need entries are 0, %1
calculation | in predictable manner.
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Proving a Kasteleyn Result

Theorem (H, 2005). Let G be the dual graph of
a nice region. The Kasteleyn-Percus matrix A of
(G is alternating pseudo-centrosymmetric.

Theorem (H, 2005). Let A be alternating pseudo-

centrosymmetric with entries in Z. Then det A is
a sum of two integral squares.
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Open Problems

e Calculating the sequence of determinants
explicitly. (Goal: closed form)

e Horizontal versus Vertical applications of
Gessel—Viennot (Intriguing similarity)

e L.earn more about combinatorial properties
from matrix theory
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T hanks!

I am: Christopher Hanusa

http://www.math.binghamton.edu/chanusa/

Additional reading:

Gessel—Viennot:
Lattice Paths and Determinants, by Martin Aigner

Kasteleyn—Percus:
Kasteleyn Cokernels, by Greg Kuperberg

Problems in Matching Theory:
Enumeration of Matchings: Problems and Progress,
by James Propp
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Orientations
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