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Counting

Example: How many ways are there to place 32

blank dominoes on a chessboard?

Answer: 12,988,816
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Outline

• Enumeration of disjoint path systems

– Introduction to path systems

– The Gessel–Viennot method

– Applications of Gessel–Viennot

• Enumeration of domino tilings

– Perfect matchings of a graph

– Kasteleyn–Percus matrices

• Open Problems
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Path Systems

A graph G = (V, E).

A directed graph: Orient each edge e ∈ E.

A path from vertex a to vertex b:

Two paths are disjoint: They share no vertices.
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Path Systems

A path system P from A to B in G:

Recall: sign(σ) = (−1)# of transp. that compose σ

Define: sign(P) = sign(σ).

Combinatorial data:

Define mij = # of paths from ai to bj in G.

M =






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The Gessel–Viennot Method

Let G be a directed graph.

Let A = {a1, a2, . . . , ak} ⊆ V (G).

Let B = {b1, b2, . . . , bk} ⊆ V (G).

Define M = (mij)1≤i,j≤k.

Then

detM =
∑

vertex-
disjoint
P

sign(P)

In our example, detM = 5.
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Consequences

①
A combinatorial question of counting

path systems can be evaluated using

a determinant.

②
A determinant may be evaluated

by counting path systems in

an associated lattice.
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Example: A Catalan Determinant

c0, c1, c2, c3, c4, c5, c6, c7, . . .
Catalan Numbers: 1, 1, 2, 5, 14, 42,132,429, . . .

Interpretation: Triangulations of an (n + 2)-gon.

Also: Number of lattice paths from (0,0) to (i, i):

Did you know?

det




c0 c1 c2 . . . cn

c1 c2
c2

...
...

cn . . . c2n




= 1
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Example: A Catalan Determinant

a3 a2 a1 a0=b0 b1 b2 b3

# of paths from ai to bj = ci+j.

detM =
# disjoint path systems

from A to B
in the above lattice

Path systems disjoint ⇒ paths must be

a0 → b0, a1 → b1, a2 → b2, . . . , an → bn.

There is only one possibility, so detM = +1
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Proof of Gessel–Viennot

∑
all path

systems P

sign(P) =
∑
all

σ ∈ Sk

sign(σ)

(
# path systems

w/ perm. σ

)

=
∑
all

σ ∈ Sk

sign(σ)m1σ(1)m2σ(2) · · ·mkσ(k)

= detM

In order to prove∑
disjoint
P

sign(P) = detM,

we need to prove
∑

non-disjoint
P

sign(P) = 0.
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Proof of Gessel–Viennot

We want to prove
∑

non-disjoint
P

sign(P) = 0.

Define N := set of all non-disjoint P.

We will construct an involution π : N → N .

• π2 = idN .

• π :
+P �→ −P
−P �→ +P

π is simple:
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Application of Gessel–Viennot

Domino tiling

Aztec diamond

# ADn = 2n(n+1)/2
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Domino Tiling ←→ Path System

Start on the left. Traverse each

domino directly through its center.

Domino Path
Tiling System

Place a domino following each path.

The remaining dominoes are forced.
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Counting Path Systems

s0, s1, s2, s3, s4, s5, s6, . . .
Large Schröder numbers: 1, 2, 6, 22, 90,394,1806, . . .
count the lattice paths from (0,0) to (i, i):

# domino tilings = # path systems

= det


 2 6 22

6 22 90
22 90 394




= 26 (2n(n+1)/2 in general)

Method applies to generalized Aztec pillows.

13



Aztec Regions

Aztec diamond Aztec pillow

generalized Aztec pillows
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Perfect Matchings

A (perfect) matching is a selection of edges that

pairs all the vertices.

Example:

X Y Z

Algebra Analysis Statistics

Solution: (a perfect matching)

Professor X teaches Statistics,

Professor Y teaches Algebra,

Professor Z teaches Analysis.
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The Dual Graph

Given any region, we can create its dual graph.

Place a vertex in every square; connect vertices

whose squares are adjacent.

The dual graph of this region is bipartite.
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Correspondence
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The Determinant’s Little Brother

The determinant of a matrix M :

detM =
∑

σ∈Sk

sign(σ)m1,σ(1)m2,σ(2) · · ·mk,σ(k).

The permanent of a matrix M :

perm M =
∑

σ∈Sk

m1,σ(1)m2,σ(2) · · ·mk,σ(k).


 m11 m12 m13

m21 m22 m23
m31 m32 m33




No permanent calculus exists.

Example:

perm

(
7 6
1 2

)
= 7 · 2 + 6 · 1 = 20
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Using Permanents

Entry mij =

{
1 vibj ∈ E(G)
0 vibj /∈ E(G)

}

perm M = Sum of terms of the form

m1,σ(1)m2,σ(2) · · ·mN,σ(N)

= # of non-zero terms of the form

m1,σ(1)m2,σ(2) · · ·mN,σ(N)

= # of choices of N non-zero entries in M

= # of choices of N edges in the dual graph

= # of perfect matchings in the dual graph
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A Kasteleyn–Percus Matrix

Convert the permanent to a determinant.

On a square lattice, the rule is easy to implement.

A toy example:

→


 1 1
1 1


 →


 1 1
-1 1




↓ ↓ ↓

2 perfect permanent determinant
matchings = 2 = 2
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For a 4× 4 Chessboard




1 0 0 1 0 0 1 0
0 1 −1 0 0 0 0 0
0 1 1 −1 1 0 0 0
−1 0 1 1 0 0 0 0
0 0 0 0 1 −1 0 1
0 0 0 1 1 1 −1 0
0 0 0 0 0 1 1 0
0 1 0 0 −1 0 0 1



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Comparison of Methods

G–V K–P
for ADn n× n n(n + 1)× n(n + 1)

entries need entries are 0,±1
calculation in predictable manner.

22



Proving a Kasteleyn Result

Theorem (H, 2005). Let G be the dual graph of

a nice region. The Kasteleyn-Percus matrix A of

G is alternating pseudo-centrosymmetric.

Theorem (H, 2005). Let A be alternating pseudo-

centrosymmetric with entries in Z. Then detA is

a sum of two integral squares.
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Open Problems

• Calculating the sequence of determinants

explicitly. (Goal: closed form)

• Horizontal versus Vertical applications of

Gessel–Viennot (Intriguing similarity)

• Learn more about combinatorial properties

from matrix theory
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Thanks!

I am: Christopher Hanusa

http://www.math.binghamton.edu/chanusa/

Additional reading:

Gessel–Viennot:

Lattice Paths and Determinants, by Martin Aigner

Kasteleyn–Percus:

Kasteleyn Cokernels, by Greg Kuperberg

Problems in Matching Theory:

Enumeration of Matchings: Problems and Progress,

by James Propp
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Orientations
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