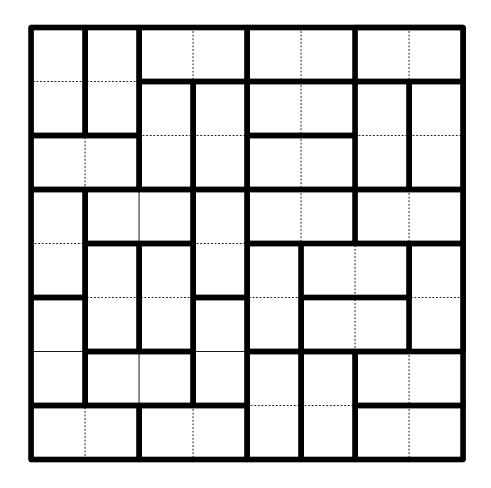
Let's Count! Enumeration through Matrix Methods

Christopher Hanusa

Queens College February 14, 2008

Counting

Example: How many ways are there to place 32 blank dominoes on a chessboard?



Answer:

Outline

- Enumeration of disjoint path systems
 - Introduction to path systems
 - The Gessel-Viennot method
 - Applications of Gessel-Viennot
- Enumeration of domino tilings
 - Perfect matchings of a graph
 - Kasteleyn-Percus matrices
- Open Problems

Path Systems

A graph G = (V, E).

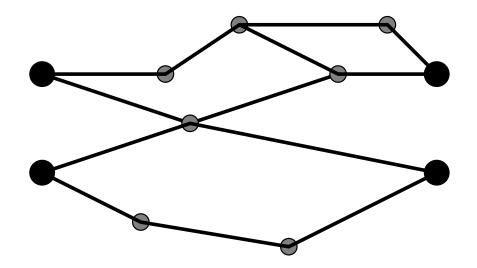
A directed graph: Orient each edge $e \in E$.

A path from vertex a to vertex b:

Two paths are <u>disjoint</u>: They share no vertices.

Path Systems

A path system \mathcal{P} from \mathcal{A} to \mathcal{B} in G:



Recall: $sign(\sigma) = (-1)^{\# \text{ of transp. that compose } \sigma}$

Define: $sign(P) = sign(\sigma)$.

Combinatorial data:

Define $m_{ij} = \#$ of paths from a_i to b_j in G.

$$M = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

The Gessel-Viennot Method

Let G be a directed graph.

Let
$$\mathcal{A} = \{a_1, a_2, \dots, a_k\} \subseteq V(G)$$
.

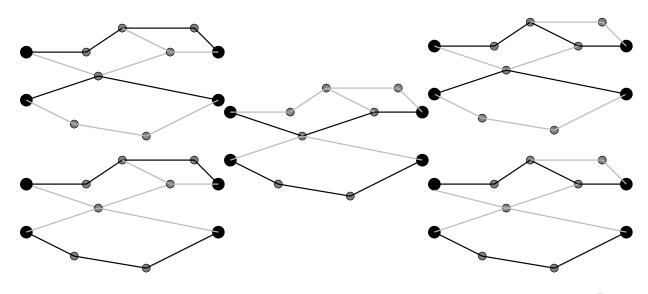
Let
$$\mathcal{B} = \{b_1, b_2, \dots, b_k\} \subseteq V(G)$$
.

Define
$$M = (m_{ij})_{1 \leq i,j \leq k}$$
.

Then

$$\det M = \sum_{\substack{\text{vertex-} \\ \text{disjoint} \\ \mathcal{P}}} \operatorname{sign}(\mathcal{P})$$

In our example, $\det M = 5$.



Consequences

A combinatorial question of counting path systems can be evaluated using a determinant.

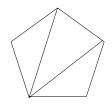
A determinant may be evaluated by counting path systems in an associated lattice.

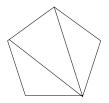
Example: A Catalan Determinant

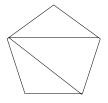
 $c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_7, \dots$

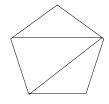
Catalan Numbers: 1, 1, 2, 5, 14, 42, 132, 429, ...

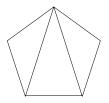
Interpretation: Triangulations of an (n + 2)-gon.



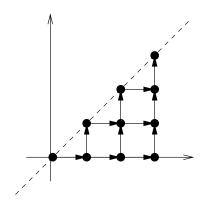








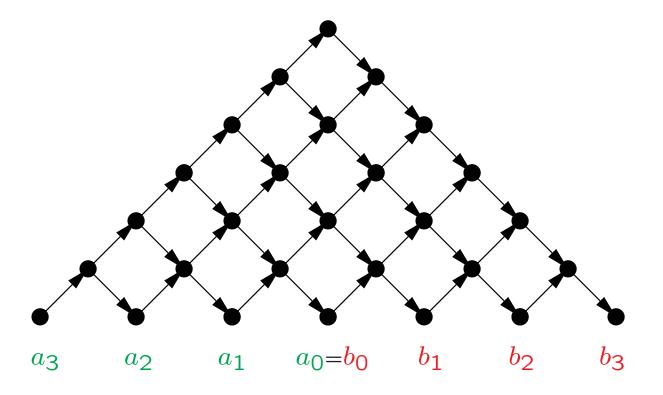
Also: Number of lattice paths from (0,0) to (i,i):



Did you know?

$$\det \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & & & & \\ c_2 & & & & \vdots \\ \vdots & & & & \\ c_n & & \dots & & c_{2n} \end{pmatrix} = 1$$

Example: A Catalan Determinant



of paths from a_i to $b_j = c_{i+j}$.

Path systems disjoint \Rightarrow paths must be $a_0 \rightarrow b_0$, $a_1 \rightarrow b_1$, $a_2 \rightarrow b_2$, ..., $a_n \rightarrow b_n$.

There is only one possibility, so $\det M = +1$

Proof of Gessel-Viennot

$$\begin{split} \sum_{\substack{\text{all path}\\ \text{systems }\mathcal{P}}} \operatorname{sign}(P) &= \sum_{\substack{\text{all}\\ \sigma \in S_k}} \operatorname{sign}(\sigma) \begin{pmatrix} \text{\# path systems}\\ \text{w/ perm. }\sigma \end{pmatrix} \\ &= \sum_{\substack{\text{all}\\ \sigma \in S_k}} \operatorname{sign}(\sigma) \, m_{1\sigma(1)} m_{2\sigma(2)} \cdots m_{k\sigma(k)} \\ &= \det M \end{split}$$

In order to prove

$$\sum_{\substack{\text{disjoint} \\ \mathcal{P}}} \operatorname{sign}(P) = \det M,$$

we need to prove

$$\sum_{\substack{\text{non-disjoint}\\\mathcal{P}}} \operatorname{sign}(P) = 0.$$

Proof of Gessel-Viennot

We want to prove $\sum_{\substack{\text{non-disjoint} \\ \mathcal{P}}} \operatorname{sign}(P) = 0.$

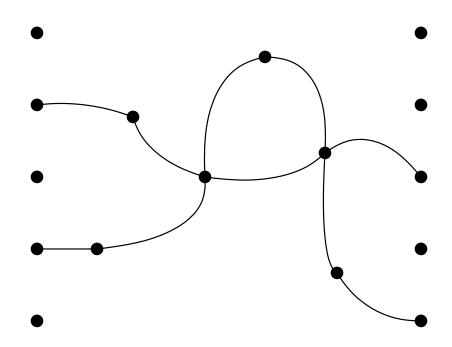
Define $N := \text{set of all non-disjoint } \mathcal{P}$.

We will construct an involution $\pi: N \to N$.

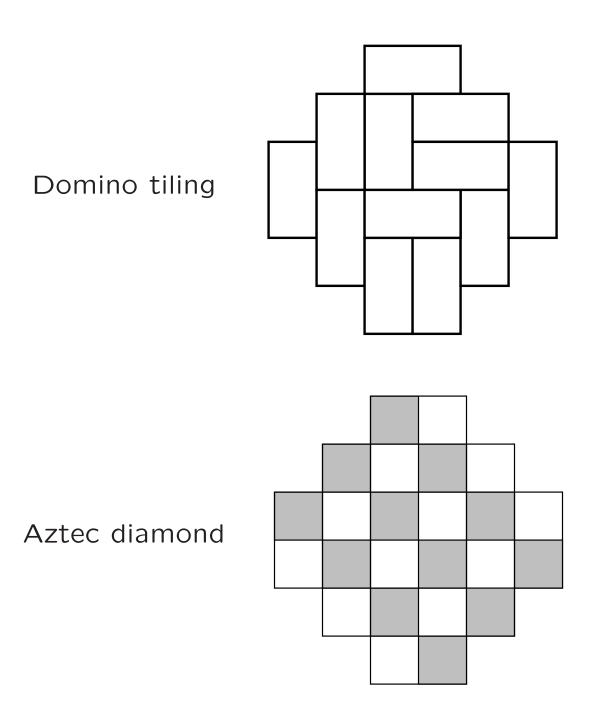
$$\bullet \quad \pi^2 = \mathrm{id}_N.$$

•
$$\pi: \begin{array}{ccc} +_{\mathcal{P}} & \mapsto & -_{\mathcal{P}} \\ -_{\mathcal{P}} & \mapsto & +_{\mathcal{P}} \end{array}$$

 π is simple:

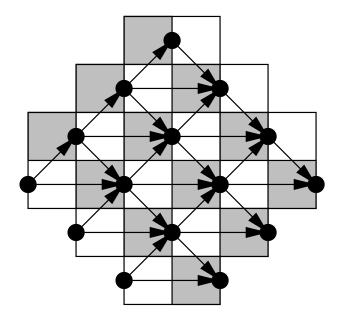


Application of Gessel-Viennot



$$\# AD_n = 2^{n(n+1)/2}$$

Domino Tiling \(\ldots\) Path System

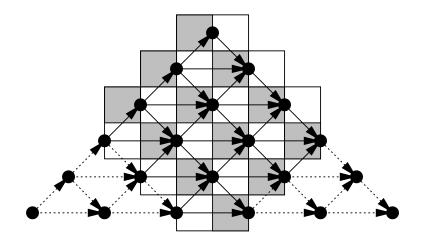


Start on the left. Traverse each domino directly through its center.

Domino Tiling Path System

Place a domino following each path. The remaining dominoes are forced.

Counting Path Systems



$$s_0, s_1, s_2, s_3, s_4, s_5, s_6, \dots$$

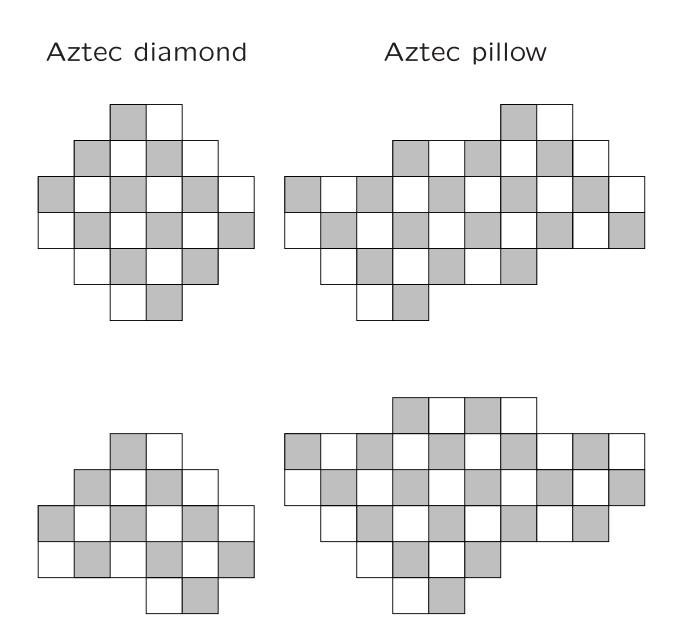
Large Schröder numbers: $1, 2, 6, 22, 90, 394, 1806, \ldots$ count the lattice paths from (0,0) to (i,i):

domino tilings = # path systems
=
$$\det \begin{pmatrix} 2 & 6 & 22 \\ 6 & 22 & 90 \\ 22 & 90 & 394 \end{pmatrix}$$

= $2^6 \quad (2^{n(n+1)/2} \text{ in general})$

Method applies to generalized Aztec pillows.

Aztec Regions

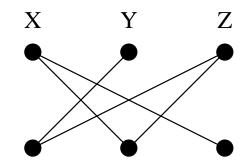


generalized Aztec pillows

Perfect Matchings

A (perfect) matching is a selection of edges that pairs all the vertices.

Example:

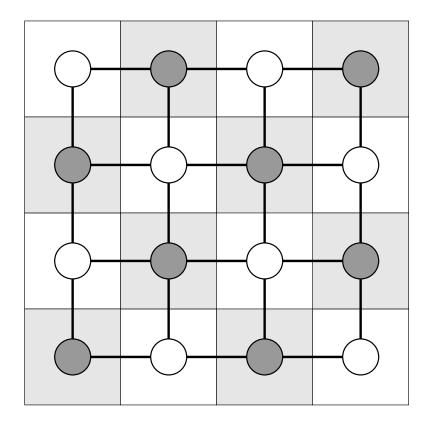


Algebra Analysis Statistics

Solution: (a perfect matching)

The Dual Graph

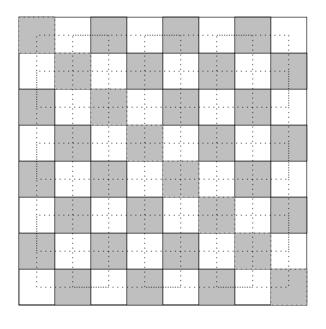
Given any region, we can create its dual graph.

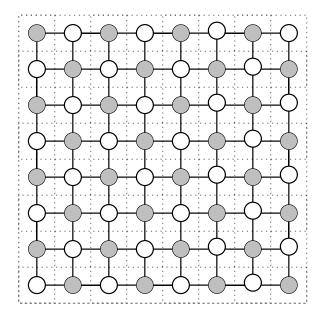


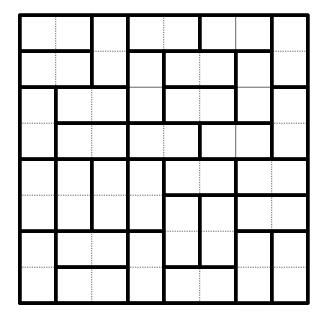
Place a vertex in every square; connect vertices whose squares are adjacent.

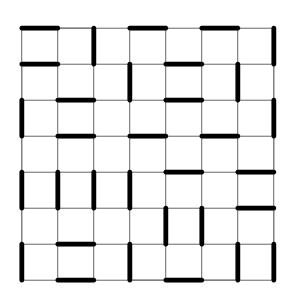
The dual graph of this region is bipartite.

Correspondence









The Determinant's Little Brother

The determinant of a matrix M:

$$\det M = \sum_{\sigma \in S_k} \operatorname{sign}(\sigma) m_{1,\sigma(1)} m_{2,\sigma(2)} \cdots m_{k,\sigma(k)}.$$

The permanent of a matrix M:

$$\operatorname{perm} M = \sum_{\sigma \in S_k} m_{1,\sigma(1)} m_{2,\sigma(2)} \cdots m_{k,\sigma(k)}.$$

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

No permanent calculus exists.

Example:

$$\operatorname{perm}\left(\begin{array}{cc} 7 & 6 \\ 1 & 2 \end{array}\right) = 7 \cdot 2 + 6 \cdot 1 = 20$$

Using Permanents

Entry
$$m_{ij} = \left\{ \begin{array}{ll} 1 & v_i b_j \in E(G) \\ 0 & v_i b_j \notin E(G) \end{array} \right\}$$

perm M = Sum of terms of the form

$$m_{1,\sigma(1)}m_{2,\sigma(2)}\cdots m_{N,\sigma(N)}$$

= # of non-zero terms of the form

$$m_{1,\sigma(1)}m_{2,\sigma(2)}\cdots m_{N,\sigma(N)}$$

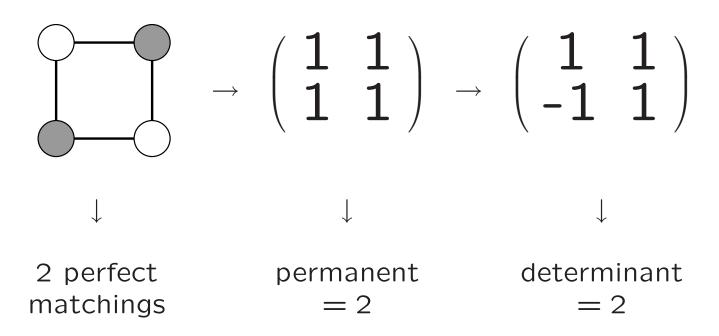
- = # of choices of N non-zero entries in M
- = # of choices of N edges in the dual graph
- = # of perfect matchings in the dual graph

A Kasteleyn-Percus Matrix

Convert the permanent to a determinant.

On a square lattice, the rule is easy to implement.

A toy example:



For a 4 × 4 Chessboard

Comparison of Methods

	G-V	K-P
for AD_n	$n \times n$	$n(n+1) \times n(n+1)$
	entries need	entries are $0,\pm 1$
	calculation	in predictable manner.

Proving a Kasteleyn Result

Theorem (H, 2005). Let G be the dual graph of a *nice region*. The Kasteleyn-Percus matrix A of G is alternating pseudo-centrosymmetric.

Theorem (H, 2005). Let A be alternating pseudocentrosymmetric with entries in \mathbb{Z} . Then det A is a sum of two integral squares.

Open Problems

- Calculating the sequence of determinants explicitly. (Goal: closed form)
- Horizontal versus Vertical applications of Gessel-Viennot (Intriguing similarity)
- Learn more about combinatorial properties from matrix theory

Thanks!

I am: Christopher Hanusa

http://www.math.binghamton.edu/chanusa/

Additional reading:

Gessel-Viennot:

Lattice Paths and Determinants, by Martin Aigner

Kasteleyn-Percus:

Kasteleyn Cokernels, by Greg Kuperberg

Problems in Matching Theory:

Enumeration of Matchings: Problems and Progress, by James Propp

Orientations

