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ABSTRACT. We present a tiling interpretation for k-th order linear 
recurrences, which yields new combinatorial proofs for recurrence 
identities. Moreover, viewing the tiling process as a Markov chain 
also yields closed form Binet-like expressions for these recurrences. 

The theme of this paper is the use of tilings and a random tiling pro- 
cess as a general method for understanding and proving identities involving 
k-th order linear recurrences. Typically, such identities are proved by al- 
gebraic means (such as induction or generating functions) which generally 
give very little insight into their nature; by contrast, our combinatorial 
approach enables visual interpretations of such identities- facilitating a 
clearer understanding of them, unifying them, and making them (and their 
proofs) easy to remember. 

A simple example of this approach is the well-known interpretation [4] of 
Fibonacci numbers (generated by the recurrence fn = fn-l + fn-2, fo = 1, 
fl = 1) as the number of ways to tile an n x 1 board using squares and 
dominoes. More generally, given non-negative integers Go and G1 and the 
recurrence G, = G,-l + Gn-2 for n 2 2, then G, counts the number of 
ways to tile an n x 1 board with squares and dominoes where the initial 
tile is assigned a phase. Specifically, if the initial tile is a domino, we can 
assign it one of Go phases and if the initial tile is a square, we can assign it 
one of GI phases. This interpretation is developed in [2], where it is used 
as a unifying method for proving a host of identities in [12]. In this paper, 
we develop a tiling interpretation for higher-order recurrences with non- 
negative integer coefficients and arbitrary initial conditions. We show how 
this interpretation can be used to prove associated recurrence identities as 
well as a new closed form expression for the n-th term of such recurrences, 
extending formulae of [5, 8, 9, 111. 
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FIGURE 1. A 9-board tiled with colored squares and domi- 
noes. The first tile is given a phase instead of a color. 

The paper is organized as follows. In Section 2, we analyze 2nd-order 
recurrences for motivation, and demonstrate the usefulness of this combina- 
torial model in deriving several identities. This is followed in Section 3 by 
a general tiling interpretation for k-th order linear recurrences. Section 4 
builds on this interpretation with a Markov chain model to derive a Binet- 
like formula for "bbonacci numbers", and this is generalized in Section 5 
to handle k-th order linear recurrences with special initial conditions, and 
further generalized in Section 6 to handle arbitrary initial conditions. 

2. ~ND-ORDER LINEAR RECURRENCES 

Let s ,  t ,  Ho, and Hl be real numbers, and for n 2 2, define 

( I )  Hn = sHn-i + tHn-2. 

When s ,  t ,  Ho and H1 are non-negative integers, then Hn can be given 
a combinatorial interpretation. We define an n-board to be an array of n 
cells, numbered 1 through n. See Figure 1 for a typical n-board, covered 
with colored square and domino tiles. 

Theorem 1. For n 2 1, Hn counts the number of ways to cover an n-board 
with (length one) squares and (length two) dominoes, where all tiles, except 
for the initial one, are given a color. There are s colors for squares and t 
colors for dominoes. The initial tile is distinguished in a different way by 
assigning dt a phase and there are HI phases for an initial square and tHo 
phases for an initial domino. 

Proof. The number of ways to tile a 1-board is H I .  The number of ways 
to tile a 2-board (with two squares or a single domino) is sHl + tHo = H2. 
For n > 2, by conditioning on whether the last tile is a square or domino, ' 
we have Hn = sH,,-l + tHn-2. 

This interpretation allows us to combinatorially explain many identities - 
for sequences generated by second-order recurrences. We illustrate with 
several examples. In the identities that follow we assume that all quantities 
are non-negative. We shall relax this assumption in the next section. 

Identity 1. t C:==o snakHk = Hn+2 - sn+' H I .  
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Proof. The right side of this identity counts the number ways t o  tile an 
(n + 2)-board, excluding the tilings consisting of all squares. It remains to 
show that the left side counts the same quantity. 

Specifically, we show that the left side counts the number of (n+2)-tilings 
where the last domino occupies cells k + 1 and k + 2 for some 0 < k <_ n. 
For 1 5 k <_ n ,  there are Hk ways to tile cells 1 through k, t  ways t o  color 
the domino on cells k + 1 and k + 2, and sn-k  ways to color the squares on 
cells k + 3 to  n + 2. Consequently, there are tHksn-k  such tilings. When 
k = 0 there are tHo ways to choose the initial domino, and sn ways to color 
the subsequent squares, resulting in tHosn tilings. Altogether, we have 

t  EL=,  tilings of an (n  + 2)-board with at  least one domino. 

When tiling a board of even length 2n, the last square, if it exists, must 
cover an even cell 2k for some 1 5 k < n.  The preceding squares are tiled 
H2k-l ways and the last square and subsequent n - k dominoes can be 
colored s tn-k  ways. Consequently, we have 

Identity 2. H2n = Hotn + s  EL=l  t n P k H z k p l ,  
where the first term on the right side enumerates the all-domino tilings. 

Similarly, when tiling a (2n + 1)-board, a last square must exist a t  some 
cell 2k + 1 for some 0 5 k 5 n. Separating the k = 0 case from the rest 
leads to 

Identity 3. Hzn+l = H l t n  + s  EL=l tnPkH2k .  
The next identity invites a more intricate, but natural interpretation on 

pairs of tilings. 

Identity 4. H k  = t 2 n H 2  + s E ~ = ~  2n t 2 n - k ~ k - 1  H ~ .  

Proof. The quantity on the left side counts the number of ordered pairs 
(A, B ) ,  where A and B are (2n)-tilings. The first term on the right side 
counts those (A, B )  where A and B consist only of dominoes. For any (2n)- 
tiling X,  let kx be the last cell of tiling X covered by a square. If X is all 
dominoes, set kx  to infinity. For (A, B )  to  have at  least one square, the 
minimum of kA and kg must be finite and even. Let k = maX{kA, kB - 1). 
When k is even, A and B have dominoes covering cells k + 1 through 2n 
and A has a square at  cell k. In this way, the number of tilings (A, B )  with 
even k is the number of ways to tile A times the number of ways to  tile B ,  
i.e., ~ ~ - ~ ~ t ( 2 n - k ) ) / 2  . ~ ~ t ( 2 n - k ) / 2  = ~ t ~ " ~ ~ H k - 1  H k .  When k is odd, A has 
dominoes covering cells k through 2n and B has dominoes covering cells 
k + 2 through 2n and a square at  cell k + 1, so the number of tiling pairs 
is H ~ - ~  t (2n-k+ ' ) I 2  . H ~ s ~ ( ~ ~ - ~ - ~ ) / ~  = s ~ ~ ~ - ~ H ~ - ~  H ~ ,  the same expression 
as for even k. Altogether the number of tiling pairs (A, B )  with a t  least 

2n one square is s C k = ,  t2n-kHk-1  Hk. 

A similar approach easily leads to  



2n+l t2n+l-k~,  H Identi ty 5. 1122,+~ = t2nH; + s x k = 2  I - L  k .  

The above formulae are just a few examples of identities for 2nd-order 
linear recurrences that can be easily assimilated, explained, and remem- 
bered by our combinatorial interpretation. 

In this section we present a combinatorial interpretation of sequences 
generated by k-th order linear recurrences with non-negative integer coef- 
ficients. Specifically, by the reasoning and terminology of the last section 
(i-e., by conditioning on the last tile), we obtain the following theorem. 
Theorem 2. Given non-negative integers CI , c2, . . . , ck, ao, a l ,  . . . , ak-1, 
consider for n 2 k, the linear recurrence 

Then for n > 1, an counts the number of ways to tile an n-board using 
colored tiles of various lengths where each tile, except the initial one, has 
a color. Specifically, for 1 5 i 5 k, each tile of length i may be assigned 
any of ci different colors. The initial tile is assigned a phase and if it has 
length 1 5 i 5 k, the number of phases for that tile is 

In particular, an initial square has pl = al phases, and by (2) and 
(3), it follows that pk = c k ~ .  For k-th order recurrences where k > 2, 
this combinatorial interpretation is only valid when the initial conditions 
ao ,a l , .  . . ,ak-1 are sufficiently "spread out" so that for 1 5 i < k, the 
number of phases pi is non-negative. This restriction will be removed later 
in this section. 

To demonstrate the utility of our combinatorial interpretation, we give 
new proofs of the following three identities for "generalized Tribonacci" 
sequences that were originally proved using matrix methods in [13]. 
Identi ty 6. Consider the sequence generated by integers ao, a1 , a2 and for 
n L 3 ,  an=c1an-l+c2a,-2+c3an-3. Then f o r n > O ,  

n 

Proof. In this identity, we tile an (n+ 3) board with squares, dominoes and 
triominoes. Each tile of length i, unless it is the first tile of our tiling, has 
ci color choices. If the first tile has length i, then it can be phased pi ways, 
where pl = al ,  p2 = a2 - clal,  and p3 = ~ 3 a 0 .  For n 2 1, (when n = 0, 
the statement is obvious), the right side of our identity counts the number 



of ways to tile a board of length n + 3 such that the last tile is either a 
colored square (which can be preceded an+2 ways) or a colored triomino 
(which can be preceded a, ways). 

To combinatorially interpret the left side, we first count, for 1 5 i 5 
n,  tilings whose last domino or triomino begins at  cell i + 1. There are 
(c3 + c ~ c ~ ) c ~ - ~ ~ ~  such tilings since cells i + 1,i + 2, i + 3 consists of either 
a triomino or a domino followed by a square (c3 + clc2 choices), the tiles 
from cell i + 3 through n + 3 must all be squares (cy-' choices) and cells 
1 through i may be tiled arbitrarily (ai choices). Note that by our ending 
condition, a last domino may not begin at  cell (n+ 2). The only uncounted 
tilings are those with only squares on cells 4 through n + 3 (c? choices) 
and cells 1 through 3 contain either a phased triomino (p3 = c3ao choices) 
or have a square at  cell 3 (cla2 choices). Altogether, our tilings can be 
constructed in c7(c3ao + cla2) + (c3 + c1c2) Cy=l cy-'ai ways. 

In similar fashion, we can also prove for sequences {a,) generated by 
the same recurrence and initial conditions, that 

Identity 7. For n > 1, 

Proof. Here the right side of the identity counts the (2n+ 2)-tilings that are 
restricted to  end with a domino or triomino. For the left side, we first count, 
for 1 5 i 5 n,  those tilings whose last square or triomino begins at  cell 22. 
Such a tiling has cells 22, 2i + 1, and 2i + 2 consisting of either a triomino or 
a square followed by a domino (c3 + clc2 choices) preceded by an arbitrary 
(2i - 1)-tiling (a2i-1 choices) and followed by all dominoes (c;-hhoices). 
The only uncounted tilings are the all-domino tilings (p2c7 = (a2 - clal)cr 
choices). Altogether our tilings can be constructed in c7(a2 - clal) + (c3 + 
c1c2) Cy=l ~$-~a2i-l ways. 

By a similar argument, this time with boards of odd length, we obtain: 

Identity 8. For n 2 1, 

Finally, we illustrate the power of the combinatorial approach by estab- 
lishing the next identity, proved by more sophisticated methods in [7] and 

PI: 



Identity 9. Let g, be the k-th order Fibonacci sequence defined by go = 1 
and, for 1 5  n < k, g, = g n _ l + g n - 2 + . - - + g 0 .  F o r n  > k, g, = 
9,-1 + $7,-2 + ' ' ' + gn-k. Then for n 2 0, 

where the summation is over all non-negative integers n l ,  712,. . . , nk such 
that nl  + 2n2 + - - + knk = n. 

Proof. Here g, counts the number of ways to tile an n-board with (colorless 
and phaseless) tiles of length at most k. (This may be seen directly by 
conditioning on the last tile or one can derive from equation (3) that for 
1 5 j 5 k, cj = 1 and pj  = 2'-I - (2j-I - 1) = 1.) The right side of this 
identity conditions on how many such tilings use exactly ni tires of length 
i for 1 5 i 5 k. To be non-zero, the sum of the lengths of the tiles must be 
n. The number of ways to arrange these nl + n2 + . . . + nk tiles is given by 
the multinomial coefficient. 

We proved Identities 1 through 5 under the assumption that the initial 
conditions were non-negative, and Identities 6 through 8 used the stronger 
assumption that the initial conditions were sufficiently spread out so that 
pi 2 0 for 1 5 i 5 k - 1. We conclude this section by demonstrating that, 
by exploiting linearity, these identities remain true for arbitrary real (or 
complex) initial conditions. 

For any given numbers a and b, let H denote the set of all sequences 
(Ho, H I , .  . .) that satisfy the recurrence of equation (I), where the initial 
conditions Ho and HI are arbitrary real (or complex) numbers. Then H 
is a two-dimensional real vector space, with basis sequences H( l ,  0) and 
H(0, l )  where H(x, y) is the sequence in H with initial conditions Ho = x 
and H1 = y. The function L : R~ + H is linear, where L(x, y) = H(x, y). 
Many identities can be viewed as a linear function I : H + R. For example, 
Identity 1 can be viewed as I : H + R defined for H E H by I(H) = 
t C:=, s n - k ~ k  - Hn+2 - sn+'H1. Identity 1 asserts that I (H)  = 0 for all 
H E H where H is of the form H(x, y) with x and y non-negative integers. 
Since the composed linear function I o L : R2 + R is equal to 0 for basis 
vectors (1,O) and (0, I), then the identity is true for all initial conditions. . 

The same argument applies to Identities 2 and 3. 
To extend this reasoning to linear k-th order recurrences like Identites 6, 

7, and 8, we simply need to find a basis of non-negative integer vectors that 
are sufficiently "spread out". This can always be done. For instance, if k = 
3 in recurrence (2), a suitable basis would be ((0, 0, I), (0, 1, el), (1, cl , cf + 
c2)). Thus Identities 6, 7, and 8 are valid for any initial conditions. 

Finally, identities such as 4 and 5 can be viewed a .  quadratic functions 
on H x H ,  that is they are of the form &(Hi, HI1) = 0 where Hi, H" E H,  



and are linear in both H' and HI1. Thus if the identity holds for any pair 
of basis vectors in H, (e.g., when HI and H" begin with (0,l) or (1,O)) 
then the identity holds for all initial conditions. A similar argument can be 
made for quadratic identities for linear k-th order recurrences when k > 2. 

4. BINET'S FORMULA FOR 3-BONACCI TILINGS 

So far the tiling interpretation of k-th order recurrences has yielded nat- 
ural combinatorial proofs of several identities for such recurrences. We 
now show how our combinatorial interpretation, together with a stochastic 
element, even allows us to prove recurrence identities involving irrational 
numbers. 

A closed-form expression for the n-th Fibonacci number (where fo = 
fl = 1) is given by Binet's formula: 

where $J is the golden mean (1 + &)/2. A novel proof can be obtained 
through a combinatorial interpretation of fn as the number of ways to tile 
an n-board using squares and dominoes. See [I]. The above formula, which 
can be generalized to handle Fibonacci recurrences with arbitrary initial 
conditions, then arises by interpreting the tiling as a process in which a 
square or domino is laid sequentially on a board that is infinitely long. 

We define Fk,,, to be the number of ways of tiling an n-board with two 
types of tiles: squares and k-ominoes (a tile that covers k cells). Naturally, 
for 0 5 n 5 k - 1, F k , n  = 1 and for n 2 k F k , n  = Fk ,n - l  + Fk,n-k.  NOW 
we show how a random tiling process yields a formula analogous to Equa- 
tion (4) for F3,,,, the "bbonacci" numbers (as opposed to the "tribonacci" 
numbers that satisfy an = an-1 + a,-2 + a n-3 [lo]). This will motivate 
the analysis in the following sections, in which more general recurrences are 
handled. 

Suppose we are given an infinitely long board with cells numbered 1,2,3,.  . ., 
which we shall cover with squares and triominoes in a random manner. 
Specifically, starting at  cell 1, we place a square with probability l/rl and 

. place a triomino with probability l/r?, where 71 is the (unique) real root 
of 

This ensures that the probability that our tiling begins with a specific length 
n tiling is rCn, regardless of how many squares or triominoes are used. We 
see that 71 satisfies the characteristic equation 



FIGURE 2. Examples of the three Markov Chain states at  
cell n. 

Descartes's rule of signs shows that a positive real root TI of this equation 
exists and is unique (the number of positive real roots is bounded by, and 
of the same parity as, the number of sign changes in the coefficients. We 
denote the other two (complex) roots of this equation by 7-2 and 7-3. 

We say that a tiling is breakable at cell n if a new tile begins a t  cell (n+l ) .  
For example, the tiling in Figure 1 is breakable at cells 0 , 2 , 3 , 5 , 7 , 8 .  Let 
q, denote the probability that the tiling is breakable at  cell n. Since there 
are F3,, ways to tile the first n cells, and each such tiling has probability 
117-p of occurring, we have 

We determine q, (and hence F3,,) using a stochastic model. The process 
of randomly placing tiles as we advance one unit along the board can be 
described by a Markov chain that moves between three states: B0 (break- 
able a t  the current cell), B1 (a triomino ends one cell later), and B2 (a 
triomino ends two cells later). (See Figure 2.) 

The matrix of transition probabilities is: 

B2 B1 B0 

p =  B1 

where pij is the probability of going from state i to  state j. The 1s in the 
first two rows occur because once a triomino is placed, the next two states 
in the process are determined. If the current state is B2, then the next 
state must be B1. If the current state is B1, then the next state must be 



BO. If the current state is BO, then the next state is B2 if a triomino is 
placed (as in Figure 2), or B0 if a square is placed after the break. At time 
(cell) 0, the chain begins in the breakable state. So qn, the probability that 
this tiling is breakable at  cell n, is the (3,3) entry of Pn. By diagonalizing 
P, we obtain: 

The (3,3) entry of Pn simplifies to 

It follows directly from (6)  that 

giving a closed form expression for F3,n in terms of the roots of Equation (5). 

5. A BINET-LIKE FORMULA FOR k-TH ORDER LINEAR RECURRENCES 

We next observe how our Markov chain model changes when we con- 
sider the generalized tiling interpretation of k-th order linear recurrences 
described in Section 3. We first describe these for "ideal" initial conditions, 
then extend our results to arbitrary conditions. The ideal initial conditions 
arise from setting pi = ci for 1 < i < k in the tiling interpretation for 
such recurrences. Equivalently, for a given k-th order linear recurrence, we 
defineaj =Ofor j <O,ao = 1 , a n d f o r n L  1 

This recurrence has characteristic polynomial , 

Let p = p1 denote the unique positive real root of Equation (9) (which 
exists by Descartes's rule of signs), and let pa, ,143,. . . , pk denote the other 
roots. We consider only the case where the roots are all distinct. 



As in the last section, we now create a random tiling of an infinitely 
long board. We begin by placing a random colored tile beginning at cell 
1. For 1 5 i 5 k, such a tile will have length i with probability ci/pi, and 
the color will be chosen at  random (uniformly) from the ci available colors. 
(Thus any colored tile of length i has probability l /p i  of being selected.) 
All subsequent tiles will be chosen randomly and independently with these 
probabilities. Notice that these probabilities sum to 1 since 3 = 1 
follows from Equation (9). 

As before, let qn denote the probability that the tiling is breakable at  cell 
n. Since there are a, ways to tile cells 1 through n, each with probability 
l /pn ,  we have 

Mouline and Rachidi [6] study the asymptotic behavior of this expression; 
in contrast, we are concerned with obtaining an exact Binet-like expression 
for qn. 

The Markov chain represented by our tiling consists of k states: BO, B1, 
B2,.  . . , Bk-l, where B0 is the state in which the tiling is breakable at  the 
current cell, and Bi is the state in which the current tile ends after i more 
cells. The matrix P of transition probabilities is: 

where pij is the probability of going from state i to state j. 
A similar matrix appears in Kalman [S], where it is derived by the matrix 

representation of a k-th order linear recurrence. We follow a similar analysis 
to derive an expression for q,. At time (cell) 0, the chain begins in the 
breakable state. Hence q,, the probability that the tiling is breakable at 
cell n, is the (k, k) entry of Pn: 

The eigenvalues X i  of the matrix P are determined by taking the determi- 
nant of X I  - P, which yields: 



This expression for X shows that (Xp) satisfies the characteristic equa- 
tion (9)) so the k eigenvalues of P are related to the k roots of (9) by: 

for 1 5 i 5 k. By equation (12),the vector [I, Xi,X~, ..., X f - l I T  is an eigen- 
- vector corresponding to Xi. Using the Vandermonde array 

and the diagonal matrix D (with dii = Xi), we can diagonalize P = SDS-'. 
Using this diagonalization and (11) we have 

qn = [0, O,O, . . . , l]SDnS-'[0, O,O,. . . , 1IT. 

The product of the first three matrices is [x~+" - ' , x~+~- '  ) . - .  , x:+~-']. 
Letting the remaining two matrices be represented by [yll y2,. . . , yk]T, we 
have 

Ir 

We can find the yi by solving S[yl, y2, y3, . . . , ykIT = [o, 0,O,. . . , 1IT. Cramer's 
Rule gives 

Note that the denominator can be expressed as fl(pi),  where f is the char- 
acteristic polynomial in equation (9). Combining (lo),  (13), and (14), 

Our Markov chain method has thus yielded a closed form Binet-like ex- 
pression for the recurrence an in terms of the roots of the characteristic 
equation. Since we have assumed that the roots are distinct, f l (pi)  # 0. 
This equation was derived in [5,9] using a recurrence matrix rather than a 
Markov chain approach. 

As a specific case of this formula, consider a tiling of a board using (col- 
orless and phaseless) squares and k-ominoes. This yields the characteristic 
equation 

x k  - x k - 1  - 1 = o  



whose roots pi are manifested in the Binet-like formula 

This formula recovers (7) in the case k = 3 and the original Binet formula 
(4) when k = 2. 

Let ci, 1 5 i 5 k, be nonnegative integers, and let Ao, Al, . . . , Ak-1 be 
integers. Consider the sequence ai = Ai for 0 5 i 5 k and, for n > k, let 

We now prove a Binet-like formula for this very general recurrence. Theo- 
rem 3 generalizes Equation (15) and extends the formulae found in [5, 8,9]. 

Theorem 3. Given a recurrence of the form (16), with initial conditions 
A , , O < m < k - 1 ,  

holds whenever the characteristic polynomial f (x) = xk -clxk-' - ~ ~ x ~ - ~  - 
... - ck-1% - ck has distinct roots pi, 1 5 i 5 k. 

The denominator f'(pi) vanishes if and only if p, is a repeated root, so 
the expression (17) is always valid when it is defined. 

Note that for the Fibonacci sequence where k = 2, cl = cs = 1, A. = 
Al = 1, the inner two sums in (17) become 

Noting for i = 1,2 that 2pi - 1 = f 6, and summing over i, then recovers 
Equation (4). 

This theorem will be proved using a set of "basis sequences" e:, e:, . . . , e:-' 
satisfying (16). Then every series satisfying (16) can be represented as a 
linear combination of these basis series. 

Proof. The set of all sequences that satisfy the recurrence (16) forms a k- 
dimensional vector space. Each sequence is completely determined by its 
first k terms. 

Let e i  be the n-th term of the sequence determined by the initial con- 
ditions e: = 1 and e; = 0 for all other j in O,1,. . . , k - 1. (Thus the vector 
of initial conditions has a 1 in the i-th position and zeroes elsewhere.) Any 



k-th-order linear recurrence with initial conditions Ao, A1, . . . , Ak-l can 
then be represented as 

The basis series e i  can be expressed as a linear combination of "shifts" 
of the specific recurrence a, studied in the last section, arising from setting 
pi = ci in the tiling interpretation. We list the first few terms below: 

Term a, 

0 1 

1 C l  

2 clal + c2 
3 c l a z + c ~ a l + c ~  

Note that this series can also be obtained by setting Q = 1 and a-I = 
a-2 = ... = al-k = 0 and using the recurrence (8) to generate the later 
terms. Using these negative-indexed terms and the table above, observe 
that for all n > 1, 

In general, we can express the basis series e i ,  for 0 5 i 5 k - 1, in terms 
of (k - i) "shifts" of the sequence a,: 

where the last equality follows from Equation (8) applied to an-i, 



Hence by equations (16), (19), and (15), 
k-1 

as desired. 

Our combinatorial interpretation of linear recurrences as solutions to 
tiling problems gives a powerful method for understanding recurrence iden- 
tities. This approach allows one to quickly assimilate and visually inter- 
pret recurrence identities as well as their proofs. Moreover, an associated 
Markov chain on tilings even allows one to recover identities that at  first 
glance to not appear to be combinatorial, such as the "Binet-like" formula 
of Theorem 3. Our tiling and random tiling intepretations are a unifying 
approach to understanding k-th order linear recurrences. 
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