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THE NUMBER OF SELF-CONJUGATE CORE PARTITIONS

CHRISTOPHER R. H. HANUSA AND RISHI NATH

Abstract. A conjecture on the monotonicity of t-core partitions in an article of Stan-
ton [Open positivity conjectures for integer partitions, Trends Math., 2:19-25, 1999] has
been the catalyst for much recent research on t-core partitions. We conjecture Stanton-like
monotonicity results comparing self-conjugate (t+ 2)- and t-core partitions of n.

We obtain partial results toward these conjectures for values of t that are large with
respect to n, and an application to the block theory of the symmetric and alternating
groups. To this end we prove formulas for the number of self-conjugate t-core partitions
of n as a function of the number of self-conjugate partitions of smaller n. Additionally,
we discuss the positivity of self-conjugate 6-core partitions and introduce areas for future
research in representation theory, asymptotic analysis, unimodality, and numerical identities
and inequalities.

1. Introduction

1.1. Background.

In this paper we address the structure of self-conjugate core partitions. A t-core partition
(more briefly t-core) is a partition where no hook of size t appears. We let ct(n) be the number
of t-core partitions of n and let sct(n) be the number of self-conjugate t-core partitions of n.

The study of self-conjugate partitions arises from the representation theory of the sym-
metric group Sn and the alternating group An. At the turn of the century, Young discovered
that the irreducible characters of Sn are labeled by partitions of n, and in particular, the
self-conjugate partitions label those that split into two conjugate irreducible representations
of An upon restriction. About the same time, Frobenius discovered that the hook lengths
on the diagonal of a self-conjugate partition determine the irrationalities that occur in the
character table of An.

The study of core partitions also arises in representation theory; Nakayama conjectured
in the forties (later proved by Brauer and Robinson) that two irreducible characters of Sn

are in the same t-block if their labeling partitions have the same t-core. For this result and
more on the development of the theory, see James and Kerber [JK81]. More recently, core
partitions have found to be related to mock theta functions, actions of the affine symmetric
group, and Ramanujan-type congruences.

Self-conjugate partitions and core partitions intersect in several important ways. Hanusa
and Jones [HJ12] prove that for a fixed t, self-conjugate t-core partitions are in bijection with

minimal length coset representatives in the Coxeter group quotient C̃t/Ct and they determine
the action of the group generators on the set of self-conjugate t-cores. Self-conjugate core
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2 CHRISTOPHER R. H. HANUSA AND RISHI NATH

partitions are central to an ongoing investigation into the representation-theoretic Navarro
conjecture in the case of the alternating groups [Nat09a].

1.2. Positivity and monotonicity.

The last several decades have seen a growing interest in counting core partitions; restricting
to the case of self-conjugate partitions has opened new directions in research. Here we survey
results on core partitions and their self-conjugate analogues and we propose a new conjecture
that parallels one of Stanton.

The t-core positivity conjecture asserts that every natural number has a t-core partition
for every integer t ≥ 4. It was finally proved by Granville and Ono [GO96] after initial
results by Ono and by Erdmann and Michler.

Baldwin et al [BDFKS06] proved that every integer n > 2 has a self-conjugate t-core
partition for t > 7, with the exception of t = 9, for which infinitely many integers do not
have such a partition. Olsson [Ols90] and Garvan, Kim, and Stanton [GKS90] proved a
generating function for sct(n), succeeding Olsson’s [Ols76] proof of the generating function
for ct(n). As an aside, Conjecture 3.12 further highlights the peculiarity of self-conjugate
9-core partitions.

Recently, simultaneous core partitions have been investigated—partitions that are both
s- and t-cores, where s and t are relatively prime. Anderson [And02] proved that there are(
s+t
t

)/
(s+ t) many of such partitions, and Olsson and Stanton [OS07] proved that the largest

such partition is of of size n = (s2−1)(t2−1)
24

. Ford, Mai and Sze [FMS09] have proved an analog
of Anderson’s result in the case of self-conjugate simultaneous core partitions, showing that

that there are
(⌊ s

2
⌋+⌊ t

2
⌋

⌊ t

2
⌋

)
such partitions when s and t are relatively prime.

In 1999, Stanton [Sta99] posed the following monotonicity conjecture.

Conjecture (Stanton). Suppose that n and t are natural numbers and that 4 ≤ t ≤ n− 1.
Then

ct+1(n) ≥ ct(n).

This was proved for values of t that are large as a function of n by Craven [Cra06] and for
large n by Anderson [And08]:

Theorem (Craven). Suppose that n is an integer, and let t be an integer such that t > 4,
and n/2 < t < n− 1. Then ct(n) < ct+1(n).

Theorem (Anderson). If t1 and t2 are fixed integers satisfying 4 ≤ t1 < t2, then ct1(n) <
ct2(n) for sufficiently large n.

More recently, Stanton’s conjecture was proved for many more values of t and n by Kim
and Rouse [KR12], including when 4 ≤ t ≤ 198 and n > t+ 1.

While the monotonicity criterion is conjectured for partitions in general, the set of self-
conjugate partitions do not satisfy a monotonicity criterion for any n ≥ 5. (This is Corol-
lary 3.8; see Appendix A for a table of values.) However, we have found experimentally
that sct+2(n) ≥ sct(n) for almost all values of t ≥ 4 and n ≥ 4. Parallel to Stanton’s mono-
tonicity conjecture, we propose the following monotonicity conjectures for self-conjugate core
partitions.

Conjecture 1.1 (Even Monotonicity Conjecture).

sc2t+2(n) > sc2t(n) for all n ≥ 20 and 6 ≤ 2t ≤ 2
⌊
n/4

⌋
− 4.
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Conjecture 1.2 (Odd Monotonicity Conjecture).

sc2t+3(n) > sc2t+1(n) for all n ≥ 56 and 9 ≤ 2t+ 1 ≤ n− 17.

In this article, we discuss the given upper and lower bounds for these conjectures and
prove the following partial results towards these conjectures.

Theorem 1.3.

sc2t+2(n) > sc2t(n) when n/4 < 2t ≤ 2
⌊
n/4

⌋
− 4.

Theorem 1.4.

sc2t+3(n) > sc2t+1(n) for all n ≥ 48 and n/3 < 2t+ 1 ≤ n− 17.

Along the way, we prove formulas for sct(n) as a function of the number of self-conjugate
partitions of m for m ≤ n in Theorems 3.4 and 3.11. As a supplement to the positivity
literature, we discuss the positivity of 6-core partitions of n in Conjecture 3.5.

1.3. Defect zero blocks of Sn and An.

For those readers familiar with the representation theory of the symmetric group Sn and
the alternating group An, we provide a consequence of Theorem 1.4. (For more information
on the representation theory, see [JK81, Chapter 4] or [Ols93, Chapter 6]).

Let t be an odd prime. From [Ols93, Proposition 12.2], we know that the defect zero t-
blocks of Sn restrict to defect zero t-blocks of An in the following way. When blocks B1 and
B2 are labeled by distinct t-core partitions λ1 and λ2 of n which satisfy λ2 = λ∗

1, then they
restrict to the same defect zero t-block of An. When a block B is labeled by a self-conjugate
partition of n, it splits into two distinct defect zero t-blocks of An upon restriction. These
are the splitting blocks of Sn.

So, in particular, Theorem 1.4 implies the following.

Theorem 1.5. Let p, q be primes such that p < q and n/3 < p, q < n − 17. For any prime
t, let B∗

t be the set of defect zero t-blocks of An that arise from splitting t-blocks of Sn. Then
|B∗

p| < |B∗
q|.

Given a partition λ, let χλ be the irreducible character of Sn associated to λ and con-
sider

∏
i,j hij the product of all the hook lengths that appear in the Young diagram of λ.

The Frame–Thrall–Robinson hook length formula says that the character degree χλ(1) is
n!/

∏
i,j hij [FRT54]. For m ∈ Z

+, define νt(m) to be the highest power of t dividing m. We
have the following additional corollary.

Corollary 1.6. Let p and q be primes such that p < q and n/3 < p, q < n − 17. For any
prime t, let Irr∗t (Sn) be the set of irreducible characters χ of Sn which split upon restriction
to An such that νt(|Sn|/χ(1)) = 0. Then |Irr∗p(Sn)| < |Irr∗q(Sn)|.

1.4. Organization.

This paper is organized as follows. In Section 2, we recall basic facts about partitions,
t-cores, and t-quotients, and prove new results on self-conjugate partitions. In Section 3,
we discuss monotonicity and positivity results and conjectures depending on the parity of t.
Our research in self-conjugate partitions branches out in many directions—the last section of



4 CHRISTOPHER R. H. HANUSA AND RISHI NATH

this paper brings attention to future research directions in representation theory, asymptotic
analysis, unimodality, and numerical identities and inequalities.

We note that the results and perspective of Craven in [Cra06] motivate much of our
approach, and we obtain some similar results.

2. Self-conjugate partitions, t-cores and t-quotients

2.1. Definitions.

In order to state our results, we recall some basic definitions. More details can be found
in [Ols93, Sections 1–2] or [JK81, Chapter 2]. A partition λ of n is a non-increasing sequence
(λ1, . . . , λm) of positive integers such that

∑
k λk = n. Each λk will be called a component

of λ. The Young diagram associated to a partition λ is an up- and left-aligned series of
rows of boxes, where the k-th row has λk boxes. We label the positions of boxes in the
Young diagram using matrix notation; the (i, j)-th position is the box in the i-th row and
j-th column, so that the box in position (1, 1) is the upper-leftmost box. Given a partition
λ, its conjugate λ∗ is a partition where the number of boxes in the k-th column of λ∗ is the
number of boxes in the k-th row of λ. A partition is self-conjugate if λ∗ = λ.

For a box B in position (i, j), its hook Hij is a set of boxes in the Young diagram consisting
of B and the set of boxes in the i-th row to the right of B and the boxes in the j-th column
below B; its hook length hij is the number of boxes in Hij . A diagonal hook or diagonal
hook length corresponds to a box on the (main) diagonal of the Young diagram. Because a
self-conjugate partition λ is uniquely determined by its diagonal hook lengths, we will use
the notation δ(λ)=(δ1, . . . , δd) to refer to the decreasing sequence of diagonal hook lengths
hii. If λ contains a hook H of length k, we say that H is an k-hook, and we can obtain an
integer partition λ′ of n − k from λ by removing H in the following way: delete the boxes
that constitute H from the Young diagram and migrate the detached partition (if there is
one) up-and-to-the-left.

The following lemmas are related to hook lengths in self-conjugate partitions and are
provided without proof.

Lemma 2.1. Let λ be a self-conjugate partition of n defined by its diagonal hook lengths
δ1 > · · · > δd > 0. Then for 1 ≤ i ≤ j ≤ d, the hook length hij equals (δi + δj)/2. When
1 ≤ i ≤ d < j, the hook length hij is strictly less than δi/2.

Lemma 2.2. Let λ be a self-conjugate partition of n defined by its diagonal hook lengths
δ1 > · · · > δd > 0. Then hij ≤ n/2 for all positions (i, j) in the Young diagram of λ, with
the possible exception of h11 = δ1.

We define SC(n) to be the set of self-conjugate partitions of n, SCt(n) to be the set of
self-conjugate t-core partitions of n and sc(n) = |SC(n)| and sct(n) = |SCt(n)|. Clearly
SCt(n) ⊆ SC(n).

The generating function for the number of t-core partitions is due to Olsson [Ols76, Propo-
sition 3.3], while the generating function for the number of self-conjugate t-core partitions
is due to Olsson [Ols90, Equation (2.40)] and Garvan, Kim, and Stanton [GKS90, Equa-
tion (7.1)]:

(2.1)
∞∑

n=0

ct(n)q
n =

∞∏

n=1

(1− qnt)t

1− qn
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(2.2)

∞∑

n=0

sct(n)q
n =

{∏∞
n=1(1− q2tn)(t−1)/2 · 1+q2n−1

1+qt(2n−1) if t is odd∏∞
n=1(1− q2tn)t/2 ·

(
1 + q2n−1

)
if t is even

}
.

The t-core λ0 of λ is the partition obtained from λ by repeatedly removing t-hooks until
none remain; by Theorem 2.7.16 in [JK81], λ0 is unique. We introduce without definition
the t-quotient of λ, a sequence (λ(0), · · · , λ(t−1)) of partitions which record the hooks of λ
which are divisible by t. We say that a t-quotient is self-conjugate when λ(k) is the conjugate
partition of λ(t−1−k) for all 0 ≤ k ≤ t − 1. The following results can be found in [Ols93] as
Propositions 3.6 and 3.5.

Proposition 2.3. Given a partition λ of n, its t-core λ0 ⊢ n0 and t-quotient
(λ(0), · · · , λ(t−1)) satisfy n = n0 + t

∑t−1
k=0 |λ(k)|. Further, there are exactly

∑t−1
k=0 |λ(k)| hooks

in λ that are divisible by t.

Proposition 2.4. A partition λ of n is self-conjugate if and only if its t-core λ0 and t-
quotient (λ(0), · · · , λ(t−1)) (with the appropriate normalization) are both self-conjugate.

For the interested reader, the series of examples starting with 2.7.14 and ending with
2.7.28 in [JK81] provide details on how calculate the t-core and t-quotient of a partition (by
way of its abacus diagram). To show the symmetry inherent in the t-core and t-quotient of
a self-conjugate partition, Figure 1 shows the 5-core and 5-quotient of the partition defined
by diagonal hooks δ = (29, 15).

7→ and
(

,∅, ,∅,
)

Figure 1. The 5-core (5, 1, 1, 1, 1) and 5-quotient
(
(1, 1),∅, (2, 1),∅, (2)

)
of

the partition with diagonal hooks δ = (29, 15).

2.2. Counting self-conjugate t-cores.
The following result describes the possible ways to remove a minimal amount of t-hooks

from a self-conjugate partition to obtain a self-conjugate partition. This is discussed further
in Section 4 of [Nat09b].

Lemma 2.5. Let λ be a self-conjugate partition of n that is not a t-core.

(1) When t is even, there there exists a pair of off-diagonal t-hooks such that upon their
removal, the resultant partition is a self-conjugate partition of n− 2t.

(2) When t is odd, then one of the following must exist: a pair of off-diagonal t-hooks
as in (1) or a diagonal t-hook such that upon its removal, the resultant partition is a
self-conjugate partition of n− t.

The following result is key in proving our main results.

Theorem 2.6. Let n and t be positive integers. Then

(2.3) sc2t(n) = sc(n)−
∑

1≤i≤⌊ n

4t
⌋

sc2t(n− 4it) p̂t(i)
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and

(2.4) sc2t+1(n) = sc(n)−
∑

i,j≥0
1≤2i+j≤⌊ n

2t+1
⌋

sc2t+1

(
n− (2i+ j)(2t+ 1)

)
p̂t(i) sc(j),

where p̂t(n) is the number of sequences of length t of (possibly empty) partitions λ(k) such
that

∑
k |λ(k)| = n.

Proof. Consider the set SC2t(n) of self-conjugate partitions of n that are not 2t-cores and
let sc2t = |SC2t(n)|, whereby sc(n) = sc2t(n) + sc2t(n). By Lemma 2.5, the 2t-core of any
non-2t-core must be obtained by the removing an even number of 2t-hooks. Furthermore,
by Proposition 2.4, its 2t-core and (non-empty) 2t-quotient are both self-conjugate. When
one removes 2i 2t-hooks, the 2t-core is a partition of n− (2i)(2t) and there are p̂t(i) possible
2t-quotients. Summing over valid values of i gives Equation (2.3).

Consider the set SC2t+1(n) of self-conjugate partitions of n that are not (2t+1)-cores and
let sc2t+1(n) = |SC2t+1(n)|. The argument proceeds similarly as above, with the additional
condition that the core of a non-(2t + 1)-core can be obtained by removing 2i off-diagonal
(2t + 1)-hooks and/or j diagonal (2t + 1)-hooks, in which case the (2t + 1)-quotient has a
non-empty partition λ(t+1) of j that is itself self-conjugate. (Note that this means j will
never be 2.) There are a total of p̂t(i) sc(j) possible (2t+ 1)-quotients which remove a total
of (2i + j) (2t + 1)-hooks, and their (2t + 1)-cores are partitions of n − (2i + j)(2t + 1).
Summing over valid values of i and j gives Equation (2.4). �

2.3. Bounding the growth of sc(n).

We establish bounds on sc(n−2)
sc(n)

and sc(n−4)
sc(n)

, which will be used in the next section to prove

Theorems 1.3 and 1.4. The technique used here is an adaptation of Section 3 in [Cra06].

Lemma 2.7. Let n be an integer greater than or equal to 19. Then sc(n−2)
sc(n)

< n
n+2

.

Proof. For a given n ≥ 27, define two sets of self-conjugate partitions:

An: The set of self-conjugate partitions of n whose diagonal hooks satisfy δ1 − δ2 ≥ 4. If
n is odd, also include δ = (n).

Bn: The set of self-conjugate partitions of n whose diagonal hooks satisfy δ1 = δ2+2 and
whose parts are not all the same (when n is a square number).

Cn: The set of self-conjugate partitions of n in neither An nor Bn.

There is a bijection f : SC(n−2) → An which takes a self-conjugate partition of n−2 and
adds one box to the first row and to the first column. We conclude that |An| = sc(n− 2).

When Bn is nonempty, there is also an surjection g : SC(n− 2) ։ Bn. (Bn is nonempty
for all values of n ≥ 19.) For λ ∈ SC(n − 2), define g(λ) ∈ Bn by the following steps.
First, if λ has one diagonal hook, define g(λ) to have diagonal hooks (n+1

2
, n−3

2
, 1) if n ≡ 1

mod 4 or (n−1
2
, n−5

2
, 3) if n ≡ 3 mod 4. Otherwise, suppose that the diagonal hooks of λ are

δ = (δ1, . . . , δd); create a self-conjugate partition λ′ with diagonal hooks δ
′ = (δ′1, . . . , δ

′
d),

where {
δ′1 =

δ1+δ2
2

+ 2 and δ′2 =
δ1+δ2

2
− 2 if δ1+δ2

2
is odd

δ′1 =
δ1+δ2

2
+ 1 and δ′2 =

δ1+δ2
2

− 1 if δ1+δ2
2

is even

}
,

and which keeps all other diagonal hooks the same (δ′i = δi for all 3 ≤ i ≤ d). Next, determine
(if it exists) the first i such that δ′i ≥ δ′i+1 + 4. Define g(λ) to be the partition which adds



THE NUMBER OF SELF-CONJUGATE CORE PARTITIONS 7

one box to the (i+1)-st row and to the (i+1)-st column of λ′. If no such i exists, then δ
′ is

of the form (2m+1, 2m− 1, . . . , 2k+3, 2k+1) for m > k > 0. If λ has two diagonal hooks,
then define g(λ) to have diagonal hooks (n−4

2
, n−8

2
, 5, 1). Otherwise, λ′ has three or more

diagonal hooks and δ′d > 1; define g(λ) to have diagonal hooks (δ′1 + 2, δ′2 +2, δ′3, . . . , δ
′
d − 2).

The function g is well defined because the image of every self-conjugate partition satisfies
δ1 = δ2 + 2 and is a surjection because for the function h : Bn → sc(n− 2) that removes the
last box in the last row and the last box in the last column, then for any β ∈ Bn, it is true
that g(h(β)) = β.

For β ∈ Bn, define the set Λβ ⊂ SC(n− 2) to be the preimages of β ∈ Bn under g. The
largest that this set can be is for the following β∗ ∈ Bn, with diagonal hooks

δ(β∗) =





(
(n+ 2)/2, (n− 2)/2

)
n ≡ 0 mod 4(

(n+ 1)/2, (n− 3)/2, 1
)

n ≡ 1 mod 4(
(n− 4)/2, (n− 8)/2, 5, 1

)
n ≡ 2 mod 4(

(n− 1)/2, (n− 5)/2, 3
)

n ≡ 3 mod 4





.

In each of these cases, |Λβ∗| < n/2.
From the definitions of f and g, we can now bound sc(n) as a function of sc(n− 2) when

n ≥ 27:

sc(n) = |An|+ |B(n)|+ |C(n)| > sc(n− 2) + sc(n− 2)/(n/2) + 0 =
n+ 2

n
sc(n− 2).

The equation sc(n−2)
sc(n)

< n
n+2

also holds for 19 ≤ n ≤ 26. �

Lemma 2.8. Let n be an integer greater than or equal to 8. Then sc(n−4)
sc(n)

< n
n+4

.

Proof. Lemma 2.7 implies

sc(n− 4)

sc(n)
=

sc(n− 4)

sc(n− 2)
·
sc(n− 2)

sc(n)
<

n− 2

n
·

n

n+ 2
=

n− 2

n+ 2
<

n

n+ 4

for n ≥ 21. The equation sc(n−4)
sc(n)

< n
n+4

also holds for 8 ≤ n ≤ 20. �

Remark. The sequence {sc(n)}n≥0 (A000700 in the On-Line Encyclopedia of Integer Se-
quences [OEIS]) starts

{1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 11, 12, 12, 14}.

This, and Lemma 2.7 implies that sc(n+2) > sc(n) for integers n ≥ 17. It also follows that
sc(n+ 2)− sc(n) > 1 for n ≥ 24.

3. Main Results

In this section, we prove formulas for sct(n) for certain values of t and n, discussing their
consequences for our monotonicity conjectures and the positivity of self-conjugate t-cores.

3.1. Monotonicity in large 2t-cores.
We first discuss formulas for sc2t(n) for large values of 2t.

Because the largest diagonal hook δ1 is odd in every self-conjugate core partition, we have
the following corollary of Lemma 2.2.
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Corollary 3.1. Every self-conjugate partition of n is a 2t-core for all integers t satisfying
2t > n/2. In particular, sc2t(n) = sc(n) for integers t satisfying 2t > n/2.

Proposition 3.2 establishes a simple formula for sc2t(n) for values of 2t between n/4 and
n/2, which will be useful for proving Theorem 1.3.

Proposition 3.2. Let n be a positive integer and suppose t is an integer satisfying n/4 <
2t ≤ n/2. Then

(3.1) sc2t(n) = sc(n)− t sc(n− 4t).

Proof. When n/4 < 2t ≤ n/2, the sum in Equation (2.3) consists only of its first term,
sc2t(n − 4t)p̂t(1). Equation (3.1) follows because p̂t(1) = t and from Corollary 3.1 because
2t > (n− 4t)/2. �

We must be careful for values of 2t near n/2. Substituting 2t = 2⌊n/4⌋ and 2t =
2⌊n/4⌋−2 into Equation (3.1) establishes that when n ≥ 12 and n 6≡ 2 mod 4, sc2⌊n/4⌋(n) =
sc2⌊n/4⌋−2(n)− 1, which explains the upper bound we give for the even monotonicity conjec-
ture. Explicit formulas are given as Corollary 3.3.

Corollary 3.3. Let n be an integer greater than or equal to 4. Then

sc2⌊n/4⌋(n) =

{
sc(n)− ⌊n/4⌋ when n ≡ 0, 1, 3 mod 4

sc(n) when n ≡ 2 mod 4

}
.

Furthermore, let n be an integer greater than or equal to 12. Then

sc2⌊n/4⌋−2(n) = sc(n)− (⌊n/4⌋ − 1).

Proof. In the formula for sc2t(n), the coefficients of t are simply sc(n − 4t), which depends
on n modulo 4. The range for which the formulas are valid comes from solving n/4 ≤ 2⌊n/4⌋
or n/4 ≤ 2⌊n/4⌋ − 2. �

Remark. For successively smaller values of 2t, formulas similar to those in Corollary 3.3
can be found. For example, when n is an integer greater than or equal to 52, then

sc2⌊n/4⌋−12(n) =





sc(n)− 11(⌊n/4⌋ − 6) when n ≡ 0 mod 4

sc(n)− 12(⌊n/4⌋ − 6) when n ≡ 1, 2 mod 4

sc(n)− 14(⌊n/4⌋ − 6) when n ≡ 3 mod 4





.

In general for self-conjugate (2⌊n/4⌋ − 2i)-cores, the range of validity of the formula for
sc2⌊n/4⌋−2i is for n ≥ 4(2i + 1). While Equation (3.1) does encompass all formulas of this
type, these formulas are interesting in their own right.

In general, we can apply Equation (2.3) repeatedly to find a formula for sc2t(n) for all
values of 2t; the formula only involves polynomials of t and values of sc(m) for m ≤ n.

Theorem 3.4. We have the following formula for sc2t(n).

sc2t(n) =
∑

I=(i1,...,ik)
|I|≤⌊ n

4t
⌋

(−1)kp̂t(i1) · · · p̂t(ik) sc(n− 4|I|t),

where the sum is over all sequences of positive integers I = (i1, . . . , ik) such that its sum
|I| = i1 + · · ·+ ik ≤ ⌊ n

4t
⌋
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We now prove Theorem 1.3.

Proof of Theorem 1.3. By Equation (3.1), it suffices to prove (t+1) sc(n−4t−4) < t sc(n−

4t), which is equivalent to sc(n−4t−4)
sc(n−4t)

< t
t+1

. Lemma 2.8 implies that sc(n−4t−4)
sc(n−4t)

< n−4t
n−4t+4

when

n − 4t ≥ 8; this condition is satisfied because the upper bound for 2t under consideration
implies n− 4t ≥ n− 4(⌊n/4⌋ − 2) ≥ 8.

Last, because n/4 < 2t then (n−4t)(t+1) < t(n−4t+4), from which we have sc(n−4t−4)
sc(n−4t)

≤
n−4t

n−4t+4
< t

t+1
. This completes the proof. �

3.2. Positivity and monotonicity in small 2t-cores.
Before discussing monotonicity for small values of 2t, we first discuss what is known about

positivity in self-conjugate 2t-core partitions.
The only partitions which are 2-cores are the staircase partitions λ = (k, k − 1, . . . , 2, 1),

which are all self-conjugate. As a consequence, sc2(n) is non-zero exactly when n is a
triangular number. Ono and Sze [OS97, Theorem 3] characterize the integers having no
self-conjugate 4-core: sc4(n) = 0 if and only if the prime factorization of 8n + 5 contains a
prime of the form 4k + 3 to an odd power.

Baldwin et al. [BDFKS06] prove that sct(n) is positive for t ≥ 8 and n 6= 2, and give the
example of sc6(13) = 0 to show that sc6(n) is not always positive. However, they do not
characterize when sc6(n) is zero. By using its generating function, we generated the values
of sc6(n) for 0 ≤ n ≤ 10000, from which we conjecture the following.

Conjecture 3.5. Let n be a positive integer. Then sc6(n) > 0 except when n ∈ {2, 12, 13, 73}.

In the even monotonicity conjecture, we give the lower bound 2t equals 6. Indeed, there
are integers n such that sc6(n) ≤ sc4(n), even for values of n larger than 15. (Corollary 3.3
establishes that sc6(15) < sc4(15).) We conjecture that the set of such integers is finite,
again aided by a computer search of non-negative integers n up to 10000.

Conjecture 3.6. Let n be an integer larger than 15. Then sc6(n) < sc4(n) when n ∈
{112, 180, 265} and sc6(n) = sc4(n) when n ∈ {27, 28, 33, 40, 73, 75, 118, 190, 248}.

There are no values of 20 ≤ n ≤ 10000 such that sc8(n) ≤ sc6(n).

3.3. Monotonicity in large (2t+ 1)-cores.
For 2t + 1 > n, there are no partitions of n containing a hook length of 2t + 1. By

Lemma 2.2, we know that the values of sc2t+1(n) for 2t + 1 > n/2 are determined by the
number of self-conjugate core partitions that have 2t+ 1 as its first diagonal hook. In other
words,

Corollary 3.7. Let n be a positive integer and suppose that t satisfies n/2 < 2t + 1 ≤ n.
Then

sc2t+1(n) = sc(n)− sc(n− 2t− 1).

Corollaries 3.1 and 3.7 imply:

Corollary 3.8. For fixed n ≥ 5, the sequence {sct(n)}t≥2 is not monotonic.
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Corollary 3.7 also implies that for t satisfying n/2 < 2t+1 ≤ n−2, sc2t+3(n)−sc2t+1(n) =
sc(n− 2t− 3)− sc(n− 2t− 1). Because sc(n + 2) > sc(n) for integers n ≥ 17, we have the
following corollary.

Corollary 3.9. Let n be a positive integer and suppose that t satisfies n/2 < 2t+1 ≤ n−17.
Then

sc2t+3(n) > sc2t+1(n).

We now establish a formula for sc2t+1(n) for values of 2t+ 1 between n/3 and n/2.

Proposition 3.10. Let n be a positive integer and suppose t is an integer satisfying n/3 <
2t+ 1 ≤ n/2. Then

(3.2) sc2t+1(n) = sc(n)− sc(n− 2t− 1)− (t− 1) sc(n− 4t− 2).

Proof. When n/3 < 2t+1 ≤ n/2, the sum in Equation (2.4) is the sum of only two non-zero
terms,

sc2t+1(n− 2t− 1) p̂t(0) sc(1) + t sc2t+1(n− 4t− 2) p̂t(1) sc(0),

which simplifies to sc2t+1(n−2t−1)+t sc2t+1(n−4t−2). We remark that 2t+1 > (n−4t−2)/2
and (n− 2t− 1)/2 < 2t+ 1 ≤ (n− 2t− 1), so Corollary 3.7 implies that

|SC2t+1(n)| =
[
sc(n− 2t− 1)− sc(n− 4t− 2)

]
+ t sc(n− 4t− 2),

from which Equation (3.2) follows. �

Remark. Formulas like those in Corollary 3.3 can be found now for odd cores. For example,
when n be an integer greater than or equal to 76, then

sc2⌊n/4⌋−11(n) =





sc(n)− sc(n− 2⌊n/4⌋ + 11)− 8(⌊n/4⌋ − 7) when n ≡ 0 mod 4

sc(n)− sc(n− 2⌊n/4⌋ + 11)− 9(⌊n/4⌋ − 7) when n ≡ 1 mod 4

sc(n)− sc(n− 2⌊n/4⌋ + 11)− 11(⌊n/4⌋ − 7) when n ≡ 2 mod 4

sc(n)− sc(n− 2⌊n/4⌋ + 11)− 12(⌊n/4⌋ − 7) when n ≡ 3 mod 4





.

As in the even core case, we can use Equation (2.4) to find a formula for sc2t+1(n) involving
polynomials of t and values of sc(m) for m ≤ n.

Theorem 3.11. We have the following formula for sc2t+1(n).

sc2t+1(n) =
∑

I=(i1,...,ik)
J=(j1,...,jk)
2|I|+|J |≤⌊ n

2t
⌋

(−1)kp̂t(i1) · · · p̂t(ik) sc(j1) · · · sc(jk) sc
(
n− (2|I|+ |J |)(2t+ 1)

)
,

where the sum is over all pairs of sequences of non-negative integers I = (i1, . . . , ik) and
J = (j1, . . . , jk) such that il+jl ≥ 1 for all 1 ≤ l ≤ k and their sums satisfy 2|I|+|J | ≤ ⌊ n

2t+1
⌋.

We now prove Theorem 1.4.

Proof of Theorem 1.4. Alongside Corollary 3.9 it remains to establish that sc2t+3(n) > sc2t+1(n)
for n/3 < 2t+ 1 ≤ n/2.

When n/2−2 < 2t+1 ≤ n/2 and n ≥ 34, then n−2t−3 > n/2 ≥ 17, so sc(n−2t−1) >
sc(n− 2t− 3) and we have

sc2t+3(n) = sc(n)−sc(n−2t−3) > sc(n)−sc(n−2t−1)− (t−1) sc(n−4t−2) = sc2t+1(n).
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When 2t+ 1 ≤ n/2− 2, Proposition 3.10 implies we need to prove

(3.3) t sc(n− 4t− 6) + sc(n− 2t− 3) < (t− 1) sc(n− 4t− 2) + sc(n− 2t− 1).

When n/2 − 4 < 2t + 1 ≤ n/2 − 2, then 4 ≤ n − 4t − 2 ≤ 7 and 0 ≤ n − 4t − 6 ≤ 3. If
n−4t−2 = 6, then Equation (3.3) is sc(n−2t−3) < (t−1)+sc(n−2t−1), which is certainly
true when sc(n− 2t− 1) > sc(n− 2t− 3). Otherwise, sc(n− 4t− 2) = sc(n− 4t− 6) = 1, so
Equation (3.3) becomes 1+sc(n−2t−3) < sc(n−2t−1), which is true when n−2t−1 > 26;
for the given range of 2t + 1, this requires n > 48. (This result also holds for n = 48 and
t = 21.)

When n/3 < 2t+1 ≤ n/2−4, we will prove Equation (3.3) by proving that t sc(n−4t−6) <
(t− 1) sc(n− 4t− 2) and relying on the fact that sc(n− 2t− 1) ≥ sc(n− 2t− 3) for n and
t in our range. Since n/2 − 4 ≥ 2t + 1, then n − 4t − 2 ≥ 8, so Lemma 2.8 applies to give
sc(n−4t−6)
sc(n−4t−2)

< n−4t−2
n−4t+2

. When n > 18, then (n + 6)/4 < n/3, which in turn is less than 2t + 1.

Therefore n+2 < 8t, so (n−4t−2)t < (n−4t+2)(t+1), implying sc(n−4t−6)
sc(n−4t−2)

≤ n−4t−2
n−4t+2

< t−1
t
,

from which t sc(n− 4t− 6) < (t− 1) sc(n− 4t− 2), as desired. �

Remark. The lower bound of n = 48 in Theorem 1.4 is necessary—from Proposition 3.10,
we have sc23(47) = sc21(47), sc21(45) = sc19(45), sc21(42) = sc19(42), sc19(39) = sc17(39),
and sc17(37) = sc15(37). There are other anomalies in for other values of n ≤ 41 and t ≥ 11:
we have sc13(34) = sc11(34), sc15(39) = sc13(39), sc13(41) = sc11(41). Also of note are the
two cases sc13(29) < sc11(29) and sc15(31) < sc13(31).

3.4. Positivity and monotonicity in small (2t+ 1)-cores.
Robbins [Rob00, Theorem 7] and Baruah and Berndt [BB07, Theorem 5.2] prove that the

only integers having at least one self-conjugate 3-core (in fact, there is exactly one) are of
the form 3d2 + 2d or 3d2 − 2d for some non-negative integer d.

Garvan, Kim, and Stanton [GKS90] characterize the integers having no self-conjugate 5-
core: sc5(n) = 0 if and only if the prime factorization of n contains a prime of the form
4k + 3 to an odd power. In addition, they cite an observation of Doug McDoniel involving
representations of integers as sums of three squares that proves that sc7(n) = 0 if and only
if n = (8m+ 1)4k − 2 for integers m and k.

Baldwin et al. [BDFKS06] prove that sc9(n) = 0 for all n of the form n = (4k − 10)/3
and cite a communication with Peter Montgomery which proves that this is a complete
characterization of integers having no self-conjugate 9-core partitions.

In the odd monotonicity conjecture, we give the lower bound 2t+1 equals 9. Unlike in the
even case, it appears that sc9(n) < sc7(n) for infinitely many values of n; the non-negative
values of n up to 10000 for which sc9(n) < sc7(n) are

{9, 18, 21, 82, 114, 146, 178, 210, 338, 402, 466, 594, 658, 722, 786, 850, 978,

1106, 1362, 1426, 1618, 1746, 1874, 2130, 2386, 2514, 2642, 2770, 2898, 3154, 3282,

3410, 3666, 3922, 4050, 4178, 4306, 4434, 4690, 4818, 4946, 5202, 5458, 5586, 5970,

6226, 6482, 6738, 6994, 7250, 7506, 8018, 8274, 8530, 8786, 9042, 9298, 9554, 9810}.

Note that these include many (but not all) values of n ≡ 82 mod 128; this condition is
neither necessary nor sufficient.

Conjecture 3.12. There are infinitely many positive integers n such that sc9(n) < sc7(n).
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Figure 2. Graphs of πt(n), σ2t(n), and σ2t+1(n) for values of n between 100
and 400 (colored from light to dark).

The choice of the lower bound n ≥ 56 in the odd monotonicity conjecture was chosen be-
cause sc11(n) = sc9(n) when n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 15, 16, 20, 22, 27, 31, 32, 35, 55}
and sc11(n) < sc9(n) when n equals 11 or 23. That these are the only values satisfying
sc11(n) ≤ sc9(n) has been verified for all non-negative n ≤ 10000.

4. Future directions

In addition to the conjectures stated above, we have assembled multiple avenues for future
exploration.

4.1. Non-self-conjugate t-core partitions.

To find a stronger monotonicity result for defect zero blocks of the alternating group,
one would need to understand non-self-conjugate t-core partitions nsct(n) as well. Defect
zero t-blocks arise in two ways. The ones from Sn that split upon restriction are counted
by 2sct(n) and those from Sn that do not split upon restriction are counted by 1

2
nsct(n).

Experimentally, nsc2t+3(n) > nsc2t+1(n) for 5 ≤ 2t + 3 ≤ n ≤ 500, so we conjecture the
following.

Conjecture 4.1. Suppose p, q are odd primes such that 9 < p, q < n − 17. The number of
defect zero p-blocks of An is strictly less than the number of defect zero q-blocks of An.

4.2. Asymptotics and unimodality in self-conjugate core partitions.

A deeper question than the monotonicity of sct+2(n) > sct(n) has to do with the distri-
bution of sct+2(n)− sct(n) for a fixed n, and as n goes to infinity.

Define the functions πt(n) = (ct+1(n)− ct(n))/p(n) and σt(n) = (sct+2(n)− sct(n))/sc(n)
which are the normalized net increase in the number of partitions of n that are (t + 1)-
cores and not t-cores and the normalized net increase in the number of self-conjugate core
partitions of n that are (t+ 2)-cores and not t-cores. For fixed n, we can see that

∞∑

t=1

πt(n) =

∞∑

t′=0

σ2t′(n) =

∞∑

t′=0

σ2t′+1(n) = 1.

Plotting the functions (of t), πt(n), σ2t(n), and σ2t+1(n), for fixed values of n between 100
and 400 gives the graphs in Figure 2.

In [Cra06], Craven proves the following theorem.

Theorem (Craven). Suppose that 0 < q < 1 is a real number. Then as n tends to infinity,
c⌊qn⌋(n)

p(n)
→ 1.
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As a consequence, as n goes to infinity, πt(n) approaches the function that is identically
zero. This is seen in Figure 2(a) by noticing that the function values in the sequence of
curves at a fixed value on the x-axis eventually decreases to zero. This appears to be true
for self-conjugate partitions as well.

Conjecture 4.2. Suppose that 0 < q < 1 is a real number. Then as n tends to infinity,
sc⌊qn⌋(n)

sc(n)
→ 1.

It appears that much more is true. Recall that a sequence {xt}0≤t≤r is unimodal if there
exists a number T such that

x0 ≤ x1 ≤ · · ·xT−1 ≤ xT ≥ xT+1 ≥ xT+2 ≥ · · · ≥ xr.

Unimodality is a property that arises naturally in many areas, including combinatorics,
geometry, and algebra; Brenti’s survey article [Bre94] gives examples and references. In
[Sta99], Stanton discusses the unimodality of the coefficients of the generating function for
partitions and self-conjugate partitions whose Young diagrams fit inside a given shape.

It appears that for n fixed and large enough, the sequences πt(n), σ2t(n), and σ2t+1(n) are
unimodal. We state these as conjectures.

Conjecture 4.3. For fixed n ≥ 63, the sequence {πt(n)}4≤t≤n−7 is unimodal.

Conjecture 4.4. For fixed n ≥ 139, the sequence {σ2t(n)}8≤2t≤2⌊n

4
⌋−8 is unimodal. Further,

for fixed n ≥ 213, the sequence {σ2t+1(n)}9≤2t+1≤⌊n

2
⌋ is unimodal.

The formulas given in Propositions 3.2 and 3.10 allow for partial results toward Conjec-
ture 4.4, but the hard work is yet to be done.

More pointedly, we can ask for the shape of the distribution—perhaps it is approaching a
normal distribution, but after its peak it appears to decrease with a tail that is fatter than
normal. Because the pointwise limit of the distribution is the zero distribution (by Craven’s
theorem), the “right question” is more along the lines of finding the shape of the distribution
as n goes to infinity. We state this as an open question.

Open Question. For n sufficiently large, is there a limiting shape of the distributions of
πt(n), σ2t(n), and σ2t+1(n)?

Ideally, one would be able to find a combinatorial interpretation for sct+2(n) − sct(n) to
prove its positivity and understand its asymptotics.

Open Question. Is there a simple combinatorial description of ct+1(n)−ct(n)? Of sct+2(n)−
sct(n)?

4.3. Numerical identities and inequalities.

Another direction is related to numerical identities involving core partitions. Garvan, Kim,
and Stanton prove that sc5(2n+1) = sc5(n), sc5(5n+4) = sc5(n), and sc7(4n+6) = sc7(n)
using [GKS90, Equation (7.4)]. Using Ramanujan’s theta functions, Baruah and Berndt
[BB07] prove sc3(4n + 1) = sc3(n) and Sarmah [Sar12] proves sc9(8n + 10) = sc9(2n).
Further, Berkovich and Yesilyurt [BY08] prove inequalities such as c7(2n+ 2) ≥ 2 c7(n) and
c7(4n+ 6) ≥ 10 c7(n).

We aimed to find similar identities and inequalities. Experimental data suggests the
following conjectures.
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Conjecture 4.5. Let n be a non-negative integer.

(1) Suppose n ≥ 49. Then sc9(4n) > 3 sc9(n).
(2) Suppose n ≥ 1. Then sc9(4n+ 1) > 1.9 sc9(n).
(3) Suppose n ≥ 17. Then sc9(4n + 3) > 1.9 sc9(n).
(4) Suppose n ≥ 1. Then sc9(4n+ 4) > 2.6 sc9(n).

Conjecture 4.5 gives some conjectures in a family of inequalities of the form sct(an+ b) >
αsct(n). It appears that for t = 9 and a = 4, then there exists a constant α > 1 where this
is true for all b not equal to 2 modulo 4. It would be of interest to determine the value and
interpretation of these constants.

We do not expect identities of the form sct(an + b) = sct(n) for integers a and b for odd
t ≥ 11 and even t ≥ 8, nor do we expect inequalities of the form sct(an + b) > αsct(n) for
odd t ≤ 7 and even t ≤ 6.

Appendix A. Tables of values

Here we present tables of values of sct(n) and sct+2(n) − sct(n), generated by extracting
coefficients from the generating function in Equation (2.2).
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2 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
3 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
4 0 1 1 1 1 1 0 0 2 0 1 1 1 2 0 0 1 1 0 1 1 0 1 2 0 2 1 0 1 0 1 1 1 0 1 0 0 1 3 1 0 1 0 2 1 0 1 1 1 0 1 0 0 2 0 1 0 1 2
5 1 1 0 0 1 1 1 0 0 2 0 0 1 2 1 0 1 0 0 0 0 1 2 0 0 2 0 0 1 0 2 0 1 2 0 0 1 2 0 0 0 1 0 0 0 1 1 0 2 2 0 0 0 0 2 0 0 2

6 1 1 1 1 2 2 2 2 0 0 3 1 2 2 2 3 1 2 2 3 2 3 3 2 1 2 3 2 2 1 2 2 5 4 1 4 3 3 3 2 4 3 4 1 3 3 2 4 4 3 2 3 3 4 2 3 3
7 1 1 0 1 2 1 1 2 2 0 0 3 1 1 1 2 4 1 0 3 4 1 2 2 2 1 0 2 3 0 2 5 2 1 0 3 2 2 3 2 6 1 0 5 2 1 4 4 2 2 0 4 5 2 1 6
8 1 1 2 2 2 2 3 3 3 4 1 1 5 2 3 4 4 5 3 4 4 6 4 5 6 4 5 7 6 7 7 5 7 7 6 5 8 5 5 6 6 6 13 11 4 11 7 9 9 6 11 12 10 8 13
9 1 2 1 1 2 2 2 2 3 4 3 0 1 5 2 2 3 4 4 1 5 6 4 3 5 7 4 1 6 8 5 3 5 8 5 2 5 8 6 4 4 11 6 1 5 9 5 6 11 8 9 2 8 14
10 2 2 2 2 3 3 3 4 5 5 5 6 2 3 8 4 6 7 7 9 6 7 8 10 8 10 11 9 8 10 12 11 16 14 12 17 13 13 17 13 17 18 18 17 17 15 18 19 17 18 18 17 24

11 2 2 1 2 3 2 3 4 4 4 4 5 6 2 2 8 5 4 5 7 8 4 5 7 12 8 6 12 10 6 8 12 13 10 8 14 17 8 8 18 17 10 10 18 18 12 11 20 19 12 11 22
12 2 2 3 3 3 4 5 5 5 6 7 8 8 9 5 6 12 8 10 11 12 14 11 13 14 17 15 17 19 17 16 19 22 21 21 20 24 24 30 30 26 32 30 32 34 33 37 36 40 36 38
13 2 3 2 2 4 4 4 4 5 6 6 6 7 9 9 4 6 12 7 8 10 12 13 8 11 14 14 10 18 21 13 14 18 22 19 16 20 26 23 16 22 33 26 20 32 35 30 24 28 43
14 3 3 3 4 5 5 5 6 7 8 8 9 11 12 12 14 9 10 18 13 16 18 19 22 19 21 23 27 25 28 31 29 28 33 37 36 38 37 42 44 40 41 49 46 59 63 52 66 62
15 3 3 3 4 5 4 5 6 7 7 7 9 10 10 11 13 14 8 9 18 14 14 16 19 21 16 18 22 25 20 23 28 31 27 25 37 36 32 31 39 44 36 36 46 47 40 42 62

16 3 4 5 5 5 6 7 8 8 9 11 12 12 14 16 17 18 20 15 17 26 21 25 27 29 33 30 33 36 41 39 44 48 46 47 53 58 59 61 61 69 72 69 72 82 80 81
17 4 5 4 4 6 6 7 7 8 10 10 10 12 14 14 15 17 19 20 14 17 27 21 22 26 30 31 26 31 35 38 34 39 46 42 38 52 59 50 55 57 66 65 58 68 80
18 5 5 5 6 7 8 8 9 11 12 12 14 16 17 18 20 23 25 26 29 24 26 37 32 37 40 43 48 45 50 54 60 60 66 71 71 72 80 88 90 94 96 106 111 110
19 5 5 5 6 8 7 8 10 11 11 12 14 15 16 17 20 22 22 24 28 30 23 26 38 33 35 38 43 48 42 46 54 59 54 60 68 67 64 71 82 90 88 82 103
20 5 6 7 8 8 9 11 12 12 14 16 17 18 20 23 25 26 29 33 35 37 41 36 39 52 47 53 58 62 68 67 73 78 87 87 95 103 104 107 118 128 132 139

21 6 7 7 7 9 10 11 11 13 15 15 16 18 21 22 23 26 29 30 32 36 40 42 35 40 54 48 51 57 64 68 63 71 79 84 81 91 101 99 98 110 123
22 7 8 8 9 11 12 12 14 16 17 18 20 23 25 26 29 33 35 37 41 46 49 52 57 52 57 72 67 76 82 87 96 95 103 111 122 124 135 145 148 154
23 8 8 8 10 12 11 13 15 16 17 18 21 23 24 26 30 32 33 36 41 44 46 50 55 60 53 57 75 71 74 81 90 97 93 101 112 122 119 129 144
24 8 9 11 12 12 14 16 17 18 20 23 25 26 29 33 35 37 41 46 49 52 57 63 68 72 78 75 81 98 95 105 113 121 132 133 144 154 168 173
25 9 11 11 11 14 15 16 17 19 22 23 24 27 31 32 34 38 42 44 47 52 57 61 64 70 78 82 75 84 103 98 105 115 126 134 131 144 158

26 11 12 12 14 16 17 18 20 23 25 26 29 33 35 37 41 46 49 52 57 63 68 72 78 87 93 98 107 104 112 133 131 144 155 165 179 183
27 12 12 13 15 17 17 19 22 24 25 27 31 33 35 38 43 46 48 52 58 63 66 71 79 85 89 96 105 113 107 116 140 138 146 157 172
28 12 14 16 17 18 20 23 25 26 29 33 35 37 41 46 49 52 57 63 68 72 78 87 93 98 107 117 125 133 144 143 154 178 178 195
29 14 16 16 17 20 22 24 25 28 32 33 35 39 44 46 49 54 59 63 67 73 81 86 90 99 108 114 121 132 143 152 148 161 189

30 16 17 18 20 23 25 26 29 33 35 37 41 46 49 52 57 63 68 72 78 87 93 98 107 117 125 133 144 157 168 178 192 194
31 17 18 19 22 25 25 28 32 34 36 39 44 47 50 54 60 65 68 73 82 88 92 100 109 117 124 133 145 156 164 176 192
32 18 20 23 25 26 29 33 35 37 41 46 49 52 57 63 68 72 78 87 93 98 107 117 125 133 144 157 168 178 192 209
33 20 23 24 25 29 32 34 36 40 45 47 50 55 61 65 69 75 83 88 93 102 111 118 125 136 148 157 166 180 195
34 23 25 26 29 33 35 37 41 46 49 52 57 63 68 72 78 87 93 98 107 117 125 133 144 157 168 178 192 209
35 25 26 28 32 35 36 40 45 48 51 55 61 66 70 75 84 90 94 102 112 120 127 137 149 160 169 181 197

36 26 29 33 35 37 41 46 49 52 57 63 68 72 78 87 93 98 107 117 125 133 144 157 168 178 192 209
37 29 33 34 36 41 45 48 51 56 62 66 70 76 85 90 95 104 113 120 128 139 151 161 170 184 200
38 33 35 37 41 46 49 52 57 63 68 72 78 87 93 98 107 117 125 133 144 157 168 178 192 209
39 35 37 40 45 49 51 56 62 67 71 76 85 91 96 104 114 122 129 139 152 163 172 185 201

40 37 41 46 49 52 57 63 68 72 78 87 93 98 107 117 125 133 144 157 168 178 192 209

41 41 46 48 51 57 62 67 71 77 86 91 96 105 115 122 130 141 153 163 173 187 203
42 46 49 52 57 63 68 72 78 87 93 98 107 117 125 133 144 157 168 178 192 209
43 49 52 56 62 68 71 77 86 92 97 105 115 123 131 141 154 165 174 187 204
44 52 57 63 68 72 78 87 93 98 107 117 125 133 144 157 168 178 192 209
45 57 63 67 71 78 86 92 97 106 116 123 131 142 155 165 175 189 205

46 63 68 72 78 87 93 98 107 117 125 133 144 157 168 178 192 209
47 68 72 77 86 93 97 106 116 124 132 142 155 166 176 189 206
48 72 78 87 93 98 107 117 125 133 144 157 168 178 192 209
49 78 87 92 97 107 116 124 132 143 156 166 176 190 207
50 87 93 98 107 117 125 133 144 157 168 178 192 209

Table 1. A table of values of sct(n) for 0 ≤ n ≤ 60 and 2 ≤ t ≤ n+ 2.
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t\n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

4−2 0 0 0 0 2 2 0 2 −1 −1 2 −1 2 2 1 2 1 1 1 3 1 1 3 0 0 2 2 2 1 0 1 2 4 4 1 3 0 2 3 1 4 1 3 1 2 2 1 4 3 3 2 1 3 3 2 2 1
6−4 0 0 0 0 3 3 0 3 −1 −1 3 −1 2 2 2 2 1 1 1 4 3 3 3 2 3 6 4 5 2 1 6 3 3 2 5 3 1 3 2 5 10 8 2 7 3 6 7 3 8 8 8 5 10
8−6 0 0 0 0 4 4 0 4 −1 −1 4 −1 3 3 3 3 2 2 2 6 3 3 5 2 1 5 5 4 10 9 4 12 8 7 11 7 4 7 14 6 10 6 9 13 6 6 8 9 11
10−8 0 0 0 0 5 5 0 5 −1 −1 5 −1 4 4 4 4 3 3 3 8 7 7 7 6 0 5 10 4 8 7 7 11 13 12 8 15 13 17 16 14 20 18 22 19 14
12−10 0 0 0 0 6 6 0 6 −1 −1 6 −1 5 5 5 5 4 4 4 10 9 9 9 8 7 13 13 12 8 7 16 12 10 9 15 13 22 27 12 30 24

14−12 0 0 0 0 7 7 0 7 −1 −1 7 −1 6 6 6 6 5 5 5 12 11 11 11 10 9 16 16 15 21 20 20 26 10 9 30 14 19
16−14 0 0 0 0 8 8 0 8 −1 −1 8 −1 7 7 7 7 6 6 6 14 13 13 13 12 11 19 19 18 25 24 24 31 29
18−16 0 0 0 0 9 9 0 9 −1 −1 9 −1 8 8 8 8 7 7 7 16 15 15 15 14 13 22 22 21 29
20−18 0 0 0 0 10 10 0 10 −1 −1 10 −1 9 9 9 9 8 8 8 18 17 17 17 16 15
22−20 0 0 0 0 11 11 0 11 −1 −1 11 −1 10 10 10 10 9 9 9 20 19

24−22 0 0 0 0 12 12 0 12 −1 −1 12 −1 11 11 11 11 10
26−24 0 0 0 0 13 13 0 13 −1 −1 13 −1 12
28−26 0 0 0 0 14 14 0 14 −1
30−28 0 0 0 0 15
32−30 0

t\n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

5−3 1 1 −1 0 1 0 1 0 0 2 0 0 1 1 1 0 1 0 −1 0 0 1 2 0 0 2 0 0 1 0 1 0 1 2 0 0 1 1 0 0 0 1 0 0 0 1 1 0 2 2 0 0 0 −1 2 0 0 2
7−5 0 0 1 1 −1 0 1 1 1 0 2 0 −1 1 0 1 0 2 4 1 0 2 2 1 2 0 2 1 −1 2 1 0 1 3 2 1 −1 1 2 2 3 1 6 1 0 4 1 1 2 2 2 2 0 4 3 2 1 4
9−7 0 0 1 1 −1 0 1 0 0 2 3 1 2 −1 0 3 −2 1 3 1 0 0 3 4 2 2 5 5 1 1 4 3 3 2 5 5 3 0 2 6 0 3 4 6 4 0 1 5 3 4 11 4 4 0 7 8
11−9 0 0 1 1 −1 0 1 0 0 0 1 4 3 0 4 0 −1 4 1 3 0 1 4 1 0 0 8 7 0 4 5 3 3 4 8 8 3 6 11 4 4 7 11 9 5 9 13 6 0 12 10 10 3 8

13−11 0 0 1 1 −1 0 1 0 0 0 1 1 0 4 5 1 4 0 1 5 −1 4 5 5 1 0 5 2 4 4 10 9 0 4 10 8 2 8 12 8 6 6 12 15 8 8 21 15 11 12 17 21
15−13 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 6 5 1 7 0 −1 6 1 6 5 5 7 6 0 1 12 6 5 6 12 11 5 11 13 16 9 6 18 16 4 11 17 16 14 19
17−15 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 7 8 1 6 0 1 8 0 6 8 8 6 6 8 7 7 7 14 9 6 6 21 20 6 19 21 20 18 18 26 18
19−17 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 8 7 1 9 1 0 8 2 9 7 8 10 8 7 8 17 16 8 9 17 9 14 16 25 30 14 23
21−19 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 9 10 2 9 0 2 11 0 9 11 10 9 9 11 11 17 17 20 19 9 10 28 20

23−21 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 11 10 1 12 2 0 11 3 11 10 11 13 12 10 11 23 21 19 21
25−23 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 2 1 11 13 3 11 1 3 13 1 12 14 14 12 12 15 14
27−25 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 2 1 1 3 14 12 2 15 2 1 14 4 15 13 14
29−27 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 2 1 1 3 3 1 14 16 3 14 2 4 17
31−29 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 2 1 1 3 3 1 2 4 16 15 3

33−31 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 2 1 1 3 3 1 2 4 3
35−33 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 2 1 1 3 3 1 2
37−35 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 2 1 1 3 3
39−37 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 2 1 1
41−39 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1 2 2

43−41 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1 0 1
45−43 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1 2 1
47−45 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1 0 1
49−47 0 0 1 1 −1 0 1 0 0 0 1 1 0 0 1 1
51−49 0 0 1 1 −1 0 1 0 0 0 1 1 0 0

53−51 0 0 1 1 −1 0 1 0 0 0 1 1
55−53 0 0 1 1 −1 0 1 0 0 0
57−55 0 0 1 1 −1 0 1 0
59−57 0 0 1 1 −1 0
61−59 0 0 1 1

Table 2. Table of values of sc2t+2(n)− sc2t(n) and sc2t+3(n)− sc2t+1(n).
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