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Abstract

One method for counting weighted cycle systems in a graph entails taking the determinant of the

identity matrix minus the adjacency matrix of the graph. The result of this operation is the sum

over cycle systems of −1 to the power of the number of disjoint cycles times the weight of the cycle

system. We use this fact to reprove that the determinant of a matrix of much smaller order can be

computed to calculate the number of cycle systems in a hamburger graph.

This article deals with counting cycle systems (also called partial cycle covers), which are collections
of vertex-disjoint directed cycles in a directed graph. The following combinatorial fact is useful in the
study of cycle systems.

Theorem 1. Let G = (V, E) be a weighted, directed graph and let M be its adjacency matrix. Let S be

the set of cycle systems of G. If C is a cycle system, let |C| denote the number of cycles in C an let wt(C)
be the product of the weights of the edges in C. Then

det(I − M) =
∑

C∈S

(−1)|C|wt(C). (1)

This fact is in the folklore; a brief history of its appearances can be found in [1], Section 1.4. When
the graph has the structure of a hamburger graph—described below and presented visually in Figure
1—another simpler determinant can be used to count cycle systems efficiently, also explained below.

A hamburger graph H, introduced in [2], is made up of two acyclic graphs G1 and G2 and a connecting
edge set E3 with the following properties. The graph G1 has k distinguished vertices {v1, . . . , vk} with
directed paths from vi to vj only if i < j. The graph G2 has k distinguished vertices {wk+1, . . . , w2k}
with directed paths from wi to wj only if i > j. The edge set E3 connects the vertices vi and wk+i by
way of edges ei : vi → wk+i and e′i : wk+i → vi. If desired, the graph’s edges may be weighted, in which
case the weight of a cycle system wt(C) is the product of the weights of the edges of C.

The structure of a hamburger graph implies that every closed path must visit both halves of the graph.
If H is a planar hamburger graph, every closed path must visit both halves of the graph exactly once,
and therefore uses exactly one edge from G2 to G1. Following this idea further, we negate the weight of
every edge from G2 to G1 in a hamburger graph. When H is planar and positively weighted initially,
every cycle system contributes its weight positively in the sum in Equation (1). This is particularly useful
if our goal is to count cycle systems in a graph.

For a cycle system C in a general hamburger graph H, let l be the number of edges in C from G2 to
G1 and let m be the number of cycles in C. Call a cycle system positive if (−1)l+m = +1 and negative

if (−1)l+m = −1. Let c+ be the sum of the weights of positive cycle systems and c− be the sum of the
weights of negative cycle systems.
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Figure 1: A hamburger graph

If M̂ is the adjacency matrix of H with negated weights on edges from G2 to G1, then Theorem 1
implies det(I − M̂) = c+ − c−. This is a |V | × |V | determinant. In [2], the author introduced a method
to calculate the same quantity by taking the determinant of a “hamburger matrix” MH of smaller order.
The hamburger matrix is a 2k×2k matrix that encodes the combinatorial information from H as follows.
Define

MH =

[
A D1

−D2 B

]
, (2)

where in the k × k upper triangular matrix A = (aij), aij is the (weighted) number of paths from vi to
vj in G1 and in the k × k lower triangular matrix B = (bij), bij is the (weighted) number of paths from
wk+i to wk+j in G2. The diagonal k × k matrix D1 has as its entries dii = wt(ei) and the diagonal k × k

matrix D2 has as its entries dii = wt(e′i). We insist on the following restriction:

wt(ei)wt(e′i) = 1 for 1 ≤ i ≤ k.

Note that this implies that D1 = D−1

2 . The weighted hamburger theorem (Theorem 2.3 from [2]) states:

Theorem 2. det MH = c+ − c−.

Remark 3. For a general graph H, calculation is required to calculate the entries of MH . Also, the matrix
I − M̂ matrix is sparse compared to MH . These properties make it unclear if the calculation of det(MH)

takes less processor time to compute than det(I − M̂), even if the former is of smaller order than the
latter.

The original proof of the weighted hamburger theorem was based on an involution-like argument
with terms canceling in the permutation expansion of the determinant of MH . We now will reprove the
weighted hamburger theorem in a different, simpler way. For one, any weighted hamburger graph H

with 2k distinguished vertices has an equivalent complete weighted hamburger graph K with exactly 2k
vertices. That is, K has one weighted directed edge between each pair of vertices vi and vj (i < j) in the
upper half and between each pair of vertices wk+i and wk+j (i > j) in the lower half. The weights on
the edges of these new edges in K are determined by the weights of the edges in H. More precisely, the
weight of the edge from vi to vj in K is equal to the sum of the weights of the paths from vi to vj in H

not passing through any other distinguished vertex along the way. (See Figure 2 for an example.) In our
conversion from H to K, we do not modify the weights on the edges in E3.

By construction, this conversion from H to K preserves the weighted cycle system sum c+ − c−,
because we can think of every weighted cycle system in K as a family of weighted cycle systems in H

that visit the same distinguished vertices in order. We will now apply Theorem 1 to find the weighted
cycle sum on K.

The weighted adjacency matrix M̃ of K is of the form

M̃ =

[
Ã D1

−D2 B̃

]
,
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Figure 2: Conversion from a hamburger graph H to a complete weighted hamburger graph K

where by the structure of K, we know Ã is an upper-triangular matrix and B̃ is a lower-triangular matrix.
Compare this matrix to the hamburger matrix MH in Equation (2). The entries of A in MH are the

sum of the weights of the paths from vi to vj in H with no routing restriction, while the entries of Ã are
the sum of the weights of the paths from vi to vj in H without visiting any other distinguished vertices.
We now apply another well-known combinatorial fact, that in an weighted acyclic directed graph with
(weighted) adjacency matrix N , the number of paths from vi to vj is equal to the (i, j) entry of (I−N)−1.
(This appears for example in [1], Theorem 1.9.) This theorem applied to graphs G1 and G2 implies that

A = (I − Ã)−1 and B = (I − B̃)−1, respectively. We use this fact in the calculation below.
Theorem 1 tells us that the weighted cycle sum of K is equal to the determinant of

I − M̃ =

[
I − Ã −D1

D2 I − B̃

]
. (3)

Since A and B both are triangular matrices with 1’s along the diagonal, multiplying on the left by the

block matrix

[
A 0
0 B

]
does not change the determinant. This implies

det(I − M̃) = det

[
A 0
0 B

][
I − Ã −D1

D2 I − B̃

]
= det

[
I −AD1

BD2 I

]
= det

[
AD1 I

−I BD2

]
.

The last equivalence is because negating the last k columns of the matrix and interchanging k columns
of the matrix (ci with ck+i) both contribute a sign of (−1)k to the determinant. When D1 = D−1

2 , we

can multiply this result on the right by det

[
D−1

1 0
0 D−1

2

]
= 1, yielding

det(I − M̃) = det

[
A D−1

2

−D−1

1 B

]
= det

[
A D1

−D2 B

]
= det(MH).

This reproves the weighted hamburger theorem.
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