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What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8 x 8 chessboard?

A domino tiling is a placement of dominoes on a region, where
» Each domino covers two squares.

» The dominoes cover the whole region and do not overlap.
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Introduction

What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8 x 8 chessboard?

The TRUE number is:

12,988,816.

We have the answer! But what does it mean?
And how would you calculate it?
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» Represent the graph numerically as a matrix.

» Take the determinant of this matrix.
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Introduction

Domino tilings

How to determine the “answer”?
» Convert the chessboard into a combinatorial structure (a graph).
» Represent the graph numerically as a matrix.
» Take the determinant of this matrix.

» Use the structure of the matrices to determine their eigenvalues.

Question: How many domino tilings are there of an m x n board?

Answer: If m and n are both even, then we have the formula (!):
m/2 n/2

[ k
H H 4 cos? i + 4 cos? il .
m+1 n+1

j=1 k=1

Learn how to count ... better.
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Introduction

Combinatorial questions

What kind of questions come up in combinatorics?

They are questions about discrete objects.
» Can we count the objects?
» Count means give a number.
» Can we enumerate the arrangements?
» Enumerate means give a description or list.

» Do any objects have a desired property?
» This is an existence question.

» Can we construct an object with a desired property?
» We need to find a method of construction.

> Is there a "best” object?
» Prove optimality.

Mastering “Combinatorics” means internalizing techniques and
strategies to know the best way to approach a counting question.

Uses a different kind of reasoning than in other math classes.
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Introduction

To do well in this class:

» Come to class prepared.

» Print out and read over course notes.
» Read sections before class.

» Form good study groups.
» Discuss homework and classwork.
» Bounce proof ideas around.
» You will depend on this group.
» Put in the time.
» Three credits = 6-9 hours per week out of class.
» Homework stresses key concepts from class; learning takes time.
» Stay in contact.
» If you are confused, ask questions (in class and out).
» Don't fall behind in coursework or project.
» | need to understand your concerns.

Visit the webpage. First homework (many parts!) due Wed.



Introduction

Get to know each other

Arrange yourselves into groups.
» Introduce yourself. (your name, where you are from)
» What brought you to this class?

» Fill out the front of your notecard:

» Write your name. (Stylize if you wish.)
» Write some words about how | might remember you & your name.
» Draw something (anything!) in the remaining space.

» Exchange contact information. (phone / email / other)

» Small talk suggestion: Did you do anything in the snow?
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Four Counting Questions (p. 2)

Here are four counting questions.
Q1. How many 8-character passwords are there using A-Z, a—z, 0-97

Q2. In how many ways can a baseball manager order nine fixed
baseball players in a lineup?

Q3. How many Pick-6 lottery tickets are there?
(Choose six numbers between 1-40.)

Q4. How many possible orders for a dozen donuts are there when
the store has 30 varieties?

Group discussion: Use your powers of estimation
to order these from smallest to largest.

< < <
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Definition: A k-list or k-word is a list of length k.

»> A list or word is always ordered and a set is always unordered.
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Simple Counting — §1.1

Counting words

Definition: A list or word is an ordered sequence of objects.
Definition: A k-list or k-word is a list of length k.
»> A list or word is always ordered and a set is always unordered.

Question: How many lists have three entries where
» The first two entries can be either A or B.

» The last entry is either 5 or 6.

Answer: We can solve this using a tree diagram:

Alternatively: Notice two independent choices
for each character. Multiply 2-2-2 =8.
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The product principle: When counting lists (h, b, ..., k),
IF there are ¢; choices for entry /, each leading to a different list,

AND IF there are ¢; choices for entry /;,
no matter the choices made for /; through /;_1,
each leading to a different list

THEN there are ¢c1¢ - - - ¢, such lists.
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The Product Principle

This illustrates:

The product principle: When counting lists (h, b, ..., k),
IF there are ¢; choices for entry /, each leading to a different list,

AND IF there are ¢; choices for entry /;,
no matter the choices made for /; through /;_1,
each leading to a different list

THEN there are ¢c1¢ - - - ¢, such lists.

Caution: The product principle seems simple,
but we must be careful when we use it.
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Q1. How many 8-character passwords are there using A-Z, a—z, 0-97

Answer: Creating a word of length 8, with choices for each
character. Therefore, the number of 8-character passwords is .
(=218,340,105,584,896)
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Lists WITH repetition

Q1. How many 8-character passwords are there using A-Z, a—z, 0-97

Answer: Creating a word of length 8, with choices for each
character. Therefore, the number of 8-character passwords is .
(=218,340,105,584,896)

In general, the number of words of length k that can be made from
an alphabet of length n and where repetition is allowed is n*
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» n=1. 5= {s}
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Strategy: “Try small problems, see a pattern.”

> n=0:S=0~ {0}, size 1.

> n=1:S={s1} ~ {0,{s1}}, size 2.

> n=2:5={s1,5}
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Application: Counting Subsets

Example. How many subsets of a set S = {s1,s2,...,5s,} are there?
Strategy: “Try small problems, see a pattern.”
> n=0:S=0~ {0}, size 1.
> n=1:S={s1} ~ {0,{s1}}, size 2.
> n=2:S={s1,5} ~ {0,{s1},{s2},{s1,52}}, size 4.
0, s}, st {s1,s},
> n=3:S5S={s1,9,5} ~ {{53},{5{1,15};,},{5{2,25}3},{;,152,253}}’ 8.

It appears that the number of subsets of S is

This number also counts

Equiv.: We can label the subsets by whether or not they contain s;.

000,100,010,110,}

For example, for n = 3, we label the subsets {001,101,011,111
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Simple Counting — §1.1
Permutations

Q2. In how many ways can a baseball manager order nine fixed
baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

Multiplying gives that the number of lineups is =362,880.

Definition: A permutation of an n-set S is an (ordered) list of all
elements of S. There are n! such permutations.

Definition: A k-permutation of an n-set S is an (ordered) list of k
distinct elements of S.

» “Permutation” always refers to a list without repetition.

Question: How many k-permutations of n are there?

11
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Lists WITHOUT repetition

Question: How many 8-character passwords are there using A-Z,
a—z, 0-9, containing no repeated character?

OK: 2eas3FGS, 10293465 Not OK: 2kdjfng2, 00000000

Answer: The number of choices for each character are:

for a total of (62)s = % passwords.

In general, the number of words of length k that can be made from
an alphabet of length n and where repetition is NOT allowed is (n).

» That is, the number of k-permutations of an n-set is (n).

» Special case: For n-permutations of an n-set: n!.
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Notation
Some quantities appear frequently, so we use shorthand notation:

» [n]:={1,2,...,n} » 2° := set of all subsets of S
» nl :=n-(n—-1)-(n—2)---2-1

> (M= (n=1)-(1-2) (0 -kt D) = s

% Leave answers to counting questions in terms of these quantities.

% Do NOT multiply out unless you are comparing values.
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Notation

Some quantities appear frequently, so we use shorthand notation:
» [n]:={1,2,...,n} » 2° := set of all subsets of S
» nl :=n-(n—-1)-(n—2)---2-1

> (n)g:=n-(n—=1)-(n—=2)---(n—k+1)=
n\ n! _(n)
> <k> T K=k Pl

() =("%7)

% Leave answers to counting questions in terms of these quantities.

(n— k)!

v

% Do NOT multiply out unless you are comparing values.
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Counting subsets of a set

My question: In how many ways are there to choose a subset of k
objects out of a set of n objects?

Your answer: (Z) “n choose k.

Question: In how many ways can you choose 4 objects out of 107 (

Q3. How many Pick-6 lottery tickets are there?
(Choose six numbers between 1-40.)

Answer: (460)

10
4

14

)
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Counting subsets of a set

My question: In how many ways are there to choose a subset of k
objects out of a set of n objects?

Your answer: (Z) “n choose k.

Question: In how many ways can you choose 4 objects out of 107 (119)

Q3. How many Pick-6 lottery tickets are there?
(Choose six numbers between 1-40.)

Answer: (*0)=3,838,380.

> (}) is called a binomial coefficient.
» Alternate phrasing: How many k-subsets of an n-set are there?

» The individual objects we are counting are unordered.
They are subsets, not lists.



Simple Counting — §1.1

A formula for (Z)

You may know that () =

n!

KI(n—k)!

But why?
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k
You may know that () = #lk), = L(n)k. But why?
Let's rearrange it. And prove it!

()i = <Z>k!

“In how many ways are there to create a k-list of an n-set?”

We ask the question:

LHS:

RHS:
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A formula for (”)

15

k
You may know that () = #lk), = L(n)k. But why?
Let's rearrange it. And prove it!

()i = <Z>k!

“In how many ways are there to create a k-list of an n-set?”

LHS:

We ask the question:

RHS:

Since we counted the same quantity twice, they must be equal!
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Definition: A multiset is an unordered collection of elements
where repetition is allowed.

» Example. {a,a, b,d} is a multiset.

Definition: We say M is a multisubset of a set (or multiset) S
if every element of M is an element of S.

» Example. M ={a,a,a,b,d} is a multisubset of S = {a, b, ¢, d}.
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» Example. {a,a, b,d} is a multiset.

Definition: We say M is a multisubset of a set (or multiset) S
if every element of M is an element of S.

» Example. M ={a,a,a,b,d} is a multisubset of S = {a, b, ¢, d}.

Think Write Pair Share: Enumerate all multisubsets of [3].

[In other words, list them all or completely describe the list.]

Answer:
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Counting Multisets

Definition: A multiset is an unordered collection of elements
where repetition is allowed.

» Example. {a,a, b,d} is a multiset.

Definition: We say M is a multisubset of a set (or multiset) S
if every element of M is an element of S.

» Example. M ={a,a,a,b,d} is a multisubset of S = {a, b, ¢, d}.

Think Write Pair Share: Enumerate all multisubsets of [3].

[In other words, list them all or completely describe the list.]

Answer:

How would you describe a k-multisubset of [n]?
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Balls and Walls

Question: How many k-multisets
can be made from an n-set?

— s the same as —

Question: How many ways are there
to place k indistinguishable balls
into n distinguishable bins?
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Question: How many {o, | }-words
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Question: How many ways to choose
k ball pos'ns out of k 4+ n — 1 total?
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— is the same as —

Question: How many ways are there
to place k indistinguishable balls
into n distinguishable bins?

— is the same as —

Question: How many {o, | }-words
contain k balls and (n — 1) walls?

— which we can count by: —

Question: How many ways to choose
k ball pos'ns out of k 4+ n — 1 total?

2 0 3 41
{a%, b, c°, d*'} k—6

o
[eXeXe]
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Q4. How many possible orders for a dozen donuts are there when
the store has 30 varieties?
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Answer: (( )) :( ):
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Answering Q1-Q4

Q4. How many possible orders for a dozen donuts are there when
the store has 30 varieties?

Answer: () =( ) =7,898,654,920.

Correct order:

Q2. Order 9 baseball pIayers 9') 362,880
Q3. Pick-6; numbers 1—40 3,838,380
Q4. 12 donuts from 30 12 7,898,654,920

Q1. 8-character passwords (628) 218,340,105,584,896

18
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Summary
order matters order doesn't matter
(choose a list) (choose a set)
repetition
allowed
repetition
not allowed
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