Planarity

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- ▶ Do the edges cross?
- ▶ Are there knots in the graph structure?

Planarity

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- ▶ Do the edges cross?
- ► Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

Planarity

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- ▶ Do the edges cross?
- ► Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- ▶ The curves must be **simple**, which means no self-intersections.
- ▶ No two edges can intersect twice. (Mult. edges: Except at endpts)
- No three edges can intersect at the same point.

Planarity

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- ▶ Do the edges cross?
- ► Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- ▶ The curves must be **simple**, which means no self-intersections.
- ▶ No two edges can intersect twice. (Mult. edges: Except at endpts)
- ▶ No three edges can intersect at the same point.

Definition. A **plane drawing** of a graph G is a drawing of the graph in the plane with no crossings.

Planarity

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- ▶ Do the edges cross?
- ► Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- ▶ The curves must be **simple**, which means no self-intersections.
- No two edges can intersect twice. (Mult. edges: Except at endpts)
- ▶ No three edges can intersect at the same point.

Definition. A **plane drawing** of a graph G is a drawing of the graph in the plane with no crossings.

Definition. A graph G is **planar** if there exists a plane drawing of G. Otherwise, we say G is **nonplanar**.

Planarity

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

- ▶ Do the edges cross?
- ► Are there knots in the graph structure?

Definition. A **drawing** of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- ▶ The curves must be **simple**, which means no self-intersections.
- ▶ No two edges can intersect twice. (Mult. edges: Except at endpts)
- ▶ No three edges can intersect at the same point.

Definition. A **plane drawing** of a graph G is a drawing of the graph in the plane with no crossings.

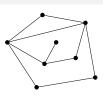
Definition. A graph G is **planar** if there exists a plane drawing of G. Otherwise, we say G is **nonplanar**.

Example. K_4 is planar because there exists a plane drawing of K_4 .

Vertices, Edges, and Faces

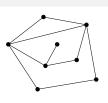
Definition. In a plane drawing, edges divide the plane into **regions**, or **faces**.

There will always be one face with infinite area. This is called the **outside face**.



Vertices, Edges, and Faces

Definition. In a plane drawing, edges divide the plane into **regions**, or **faces**.



There will always be one face with infinite area. This is called the **outside face**.

Notation. Let p=# of vertices, q=# of edges, r=# of regions. Compute the following data:

Graph	p	q	r	
Tetrahedron				
Cube				
Octahedron				
Dodecahedron				
Icosahedron				

In 1750, Euler noticed that ______ in each of these examples.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p-q+r=2.

Proof. (by induction on the number of cycles)

Base Case: If G is a connected graph with no cycles, then G

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p-q+r=2.

Proof. (by induction on the number of cycles)

Base Case: If G is a connected graph with no cycles, then G

Therefore r =____

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p-q+r=2.

Proof. (by induction on the number of cycles)

Base Case: If G is a connected graph with no cycles, then G ______ Therefore r =_____, and we have p - q + r = p - (p - 1) + 1 = 2.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p-q+r=2.

Proof. (by induction on the number of cycles)

Base Case: If G is a connected graph with no cycles, then G ______ Therefore r =_____, and we have p - q + r = p - (p - 1) + 1 = 2.

Inductive Hypothesis: Suppose that for all plane drawings with fewer than k cycles, we have p - q + r = 2.

Want to show: In a plane drawing of a graph G with k cycles, p - q + r = 2 also holds.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p-q+r=2.

Proof. (by induction on the number of cycles)

Base Case: If G is a connected graph with no cycles, then G ______ Therefore r =_____, and we have p - q + r = p - (p - 1) + 1 = 2.

Inductive Hypothesis: Suppose that for all plane drawings with fewer than k cycles, we have p - q + r = 2.

Want to show: In a plane drawing of a graph G with k cycles, p-q+r=2 also holds.

Let C be a cycle in G, and e be an edge of C. Edge e is adjacent to:

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of G, p-q+r=2.

Proof. (by induction on the number of cycles)

Base Case: If G is a connected graph with no cycles, then G ______ Therefore r =_____, and we have p - q + r = p - (p - 1) + 1 = 2.

Inductive Hypothesis: Suppose that for all plane drawings with fewer than k cycles, we have p - q + r = 2.

Want to show: In a plane drawing of a graph G with k cycles, p-q+r=2 also holds.

Let C be a cycle in G, and e be an edge of C. Edge e is adjacent to:

Now remove e: Define $H = G \setminus e$. Now H has fewer cycles than G, and one fewer region. The inductive hypothesis holds for H, giving:

Maximal Planar Graphs

A graph with "too many" edges cannot be planar.

Goal: Find a numerical characterization of "too many"

Maximal Planar Graphs

A graph with "too many" edges cannot be planar.

Goal: Find a numerical characterization of "too many"

Definition. A planar graph is called **maximal planar** if adding an edge between any two non-adjacent vertices results in a non-planar graph.

Examples: Octahedron $K_5 \setminus e$

Maximal Planar Graphs

A graph with "too many" edges cannot be planar.

Goal: Find a numerical characterization of "too many"

Definition. A planar graph is called **maximal planar** if adding an edge between any two non-adjacent vertices results in a non-planar graph.

Examples: Octahedron $K_5 \setminus e$

What do we notice about these graphs?

Numerical Conditions on Planar Graphs

Numerical Conditions on Planar Graphs

Claim. Every face of a maximal planar graph is a _____! Proof. Otherwise,

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6.

Numerical Conditions on Planar Graphs

Claim. Every face of a maximal planar graph is a ______!

Proof. Otherwise,

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6.

Proof. Consider any plane drawing of *G*.

Let p=# of vertices, q=# of edges, and r=# of regions.

We count the number of face-edge incidences in two ways:

Numerical Conditions on Planar Graphs

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6.

Proof. Consider any plane drawing of *G*.

Let p = # of vertices, q = # of edges, and r = # of regions.

We count the number of face-edge incidences in two ways:

From a face-centric POV, the number of face-edge incidences is

Numerical Conditions on Planar Graphs

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6.

Proof. Consider any plane drawing of *G*.

Let p = # of vertices, q = # of edges, and r = # of regions.

We count the number of face-edge incidences in two ways:

From a face-centric POV, the number of face-edge incidences is

From an edge-centric POV, the number of face-edge incidences is

Numerical Conditions on Planar Graphs

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6.

Proof. Consider any plane drawing of *G*.

Let p=# of vertices, q=# of edges, and r=# of regions.

We count the number of face-edge incidences in two ways:

From a face-centric POV, the number of face-edge incidences is

From an edge-centric POV, the number of face-edge incidences is

Substituting into Euler's formula: p - q + (2q/3) = 2, so

Numerical Conditions on Planar Graphs

Claim. Every face of a maximal planar graph is a _____!

Proof. Otherwise,

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6.

Proof. Consider any plane drawing of G.

Let p=# of vertices, q=# of edges, and r=# of regions.

We count the number of face-edge incidences in two ways:

From a face-centric POV, the number of face-edge incidences is

From an edge-centric POV, the number of face-edge incidences is

Substituting into Euler's formula: p - q + (2q/3) = 2, so

Question. Do we need $p \ge 3$?

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \ge 3$ vertices has at most 3p - 6 edges.

- ► Start with any planar graph *G* with *p* vertices and *q* edges.
- ▶ Add edges to G until it is maximal planar. (with $Q \ge q$ edges.)
- ▶ This resulting graph satisfies Q = 3p 6; hence $q \le 3p 6$.

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \ge 3$ vertices has at most 3p-6 edges.

- \blacktriangleright Start with any planar graph G with p vertices and q edges.
- ▶ Add edges to G until it is maximal planar. (with $Q \ge q$ edges.)
- ▶ This resulting graph satisfies Q = 3p 6; hence $q \le 3p 6$.

Theorem 8.1.4. The graph K_5 is not planar.

Proof.

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \ge 3$ vertices has at most 3p-6 edges.

- \blacktriangleright Start with any planar graph G with p vertices and q edges.
- ▶ Add edges to G until it is maximal planar. (with $Q \ge q$ edges.)
- ▶ This resulting graph satisfies Q = 3p 6; hence $q \le 3p 6$.

Theorem 8.1.4. The graph K_5 is not planar.

Proof.

Theorem 8.1.7. Every planar graph has a vertex with degree \leq 5. *Proof.*

Numerical Conditions on Planar Graphs

Recall: The **girth** g(G) of a graph G is the smallest cycle size.

Numerical Conditions on Planar Graphs

Recall: The girth g(G) of a graph G is the smallest cycle size.

Theorem 8.1.5.* If G is planar with girth ≥ 4 , then $q \leq 2p - 4$.

Numerical Conditions on Planar Graphs

Recall: The girth g(G) of a graph G is the smallest cycle size.

Theorem 8.1.5.* If G is planar with girth ≥ 4 , then $q \leq 2p - 4$.

Proof. Modify the above proof—instead of 3r = 2q, we know $4r \le 2q$. This implies that

$$2 = p - q + r \le p - q + \frac{2q}{4} = p - \frac{q}{2}.$$

Therefore, $q \le 2p - 4$.

Numerical Conditions on Planar Graphs

Recall: The girth g(G) of a graph G is the smallest cycle size.

Theorem 8.1.5.* If G is planar with girth ≥ 4 , then $q \leq 2p - 4$.

Proof. Modify the above proof—instead of 3r = 2q, we know $4r \le 2q$. This implies that

$$2 = p - q + r \le p - q + \frac{2q}{4} = p - \frac{q}{2}.$$

Therefore, $q \leq 2p - 4$.

Theorem 8.1.5. If G is planar and bipartite, then $q \le 2p - 4$.

Theorem 8.1.6. $K_{3,3}$ is not planar.