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1. Eisenstein quotient

Let N denote an odd prime, J = Jo(N),q the Jacobian of the modular curve
Xo(N) = Xo(N) /g, and T the Hecke algebra acting on J. We embed Xo(N) —
J by sending the cusp oo to 0. By a result of Ribet [3] (cf. Tobias’s talk), there
is a one-to-one correspondence between the following sets:

1. Isogeny classes of C-simple abelian variety factors of J/c.
2. Isogeny classes of Q-simple abelian variety factors of J,q.

3. Fields k, occuring in the product decomposition T @ Q = [] k. (cf. Tobias’
talk).

4. Irreducible components of SpecT.

To any ideal a C T with finite index we associate an abelian variety J® over
Q that is the optimal quotient of J whose C-simple factors are in one-to-one
correspondence with those irreducible components of Spec T that meet the zero-
dimensional support of the ideal a.

Lemma 1.1 Let 7, C T be the kernel of T — T, = proj.limT/a™. Let v4J C J
be the subabelian variety (defined over Q) generated by the images « - J for
@ € 4. Then J® is the quotient abelian variety:

0=~y > J—=J"—=0.

Proof. We will use the fact that v, = Nn, where the intersection is over all
the minimal primes n of T that meet the support of T/a. (We postpone the
proof of this identity to the Appendix). By exercise I1.5.6.b in Hartshorne,
Supp T/a = V(a). As J is isogenous to [[ Aq, with A, Q-simple, to determine
which factors appear in the decomposition of 7v,, we will consider the tangent
space TovaJ = vaToJ C TpJ (the first equality was proven in Trevor’s talk,
cf. Corollary 1.2). As TyJ is a Q-vector space v,LoJ = (74 ® Q)TpJ. Since
T = [[ ko, we have n®Q =[], ka, With ao corresponding to . We conclude
that the Q-simple factors of .J/v4.J correspond exactly to those minimal primes
n of T which meet Supp T/a. O

Now, note that a is a proper ideal of T if and only if there exists a prime ideal



p C T, such that a C p. Let  C p be a minimal prime. Then p € V(a) NV(n),
hence V(a) NV(n) # 0 if anf only if p is proper. Thus 7, is proper if and only if
a is proper. Hence by Lemma 1.1 we conclude that J* # 0 if and only if a C T
is proper.

Definition 1.2 The Eisenstein ideal J C T is the ideal generated by the ele-
ments 1+ [ —7; for all primes [ # N and by 1+ w. (for definitions of 7; and w
see James’ talk)

Proposition 1.3 If the genus of Xo(N) is nonzero then the Eisenstein ideal J
is proper and of finite index in T.

Proof. It is a known fact that the genus of X (V) is nonzero if and only if
N—1

n :=num(=p-) > 1. For every positive integer r, we denote by o(r) the sum of
all positive divisors of r which are prime to IV, and by ¢ the formal power series
Yoo, o(r)g". We will show that T/J ~ Z/mZ for some m > 1. The natural
homomorphism Z — T/J is surjective, as modulo the Eisenstein ideal all the
Hecke operators are congruent to integers. First suppose that T/J ~ Z. Then
the composite A : T — T/J ~ Z is a nonzero homomorphism, and it remains
so after extending scalars to C. Thus there exists a normalized eigenform f of
level N and weight 2, with T.f = A(T,)f. We have A(T}) = o(r), hence the
Fourier expansion of f at infinity agrees with §, but it can be shown that § is
not a g-expansion of a modular form over C of level V and weight 2. Thus
T/3 ~ Z/m for some positive integer m.

In his IHES paper Mazur proves that there exists a normalized eigenform f'
with integer Fourier coefficients at infinity which are congruent to coeffiecients
of § mod n. Hence there is a nonzero homomorphism T — Z (given by the
eigenvalues of f') such that the composite \' : T — Z — Z/nZ is given by
T, — o(r). Since o(p) = p + 1 for a prime p # N, Dirichlet’s Theorem on
primes in arithmetic progression guarantrees that A’ is nontrivial if n > 1, i.e.
it surjects onto some nonzero subgroup Z/n'Z — Z/nZ. However X' kills 7,
hence Z/mZ ~ T/3 — Z/n'Z is surjective, i.e. n' | m. This implies that J is
proper. [

Remark Working somewhat harder, one can actaully prove that T/J ~ Z/nZ
(cf. Proposition 9.7, page 96 in Mazur’s IHES paper), but we will not need this
fact.

Definition 1.4 The abelian variety J7 which we will denote by J is called the
Eisenstein quotient.

Note that Lemma 1.1 and Proposition 1.3 ensure that .J is nonzero.



2. Mordell-Weil group of .J.

Let C' denote the subgroup of J(Q) generated by the linear equivalence class of
the divisor ¢ := (0) — (00).

Lemma 2.1 The group C is finite.

Proof. Tt can be checked that Tjc = (1+1)c for all ] # N and that w intechanges
the two cusps (cf. James’s talk ”cuspology”). Hence J kills ¢, so in view of
Proposition 1.3, multiplication by [T : J] kills ¢. O

We now state without proof a theorem of Mazur (Theorem II1.3.1 in Mazur’s
IHES paper) that is the key ingredient in Mazur’s proof of the Ogg’s conjecture.
It allows us to reduce the proof to working with just the elliptic curves with
potentially good reduction at all odd primes # N.

Theorem 2.2 The natural projection J — J induces an isomorphism of the
subgroup C onto the Mordell-Weil group J(Q). In particular J(Q) is finite.

3. Reduction to the case of elliptic curves with potentially good
reduction at odd primes # N

Proposition 3.1 Let (E/qg, C) denote a pair consisting of an elliptic curve over
Q and a cyclic subgroup C' of prime order N > 2. The curve E has potentially
good reduction at all odd primes p # N.

Remark In fact E has potentially good reduction at all odd primes (cf. [2]
Corollary 4.3). In our proof we will use the following result presented in Trevor’s
talk, which does not allow us to handle the case p = N.

Proposition 3.2 Let A denote the Neron model over Z[1/2N] of any nonzero
optimal quotient A of .J. Define Xo(N)/g — J — A by sending the cusp oo to
0, and let f denote the morphism extending this map over Spec Z[1/2N]. Then
o0 € Xo(N)(Z(y)) is the only point reducing to oo € Xo(NV)(F,) that also maps
to 0 in A(Z(p)) under f.

Proof of Proposition 3.1. We will take A in the Proposition 3.2 to be J, and
denote by J the Neron model of J over Z,). Suppose that E has potentially



multiplicative reduction. The Neron mapping property yields a morphism &
that makes the following diagram commute.

E,C
Spec @ ~ 2 Vo (V) —— Xo(N)g

| |

Spec Z(p) ¢ XO (N)Z(p)
SpeclF, =€ modp Xo(N)r,

We note that the fact that E has potentially multiplicative reduction at p means
exactly that the map € is a cusp of Xo(N)r,. As was discussed in James’s talk,
the Atkin-Lehner involution permutes the cusps 0 and oo, so we can assume
without loss of generality that & hits oo (i.e. if necessary we replace (E,C) with
(E/C,E[N]/C)). Consider the following commutative diagram:

Spec @ —2 s Xo(N)g —— Jo(N) ———

J |

Spec Zp) —£ Xo(N)zyy —— Jo(N)z(py —— 7

<

where Jo(NV)z,, denotes the Neron model of Jo(INV). Since ooz, maps to 0

under f : XO(N)Z(P) — J and both €z, and ooz, reduce to oo,r,, they both
map to 0 mod p.

By theorem 2.2, we have j(Z(p)) = J(Q) = J(Q)iors- Suppose J(Q)ors
contains a point of order m # 1, i.e. there is an inclusion i : Z/mZ < J[m](Q).
Let R = Z,), K = Q. Then G := j[m]/R is a finite flat group scheme (cf.
Tong’s talk), hence proper. Thus Gg(K) = G(R). Put H = Z/mZ/R and
consider the closed immersion Hg — Gk coming from the inclusion i. Define
a morphism H — G by sending 1 to the image of the 1 € H(K) under the
composite H(K) - G(K) = G(R).

We will now use the following fact discussed in Tong’s and Eiji’s talks (which
is Mazur’s Proposition 1.1)

Proposition 3.3 Suppose p # 2 and let f : H — G be a morphism of finite flat
group schemes over a discrete valuation ring R with mixed characteristic (0, p).
Let K denote the fraction field of R. If fx : Hx — Gk is a closed immersion,
then f is a closed immersion.



By proposition 3.3 we conclude that H — G is a closed immersion, so Hr, —
GF, is as well. Thus, Z/mZ injects into J[n](F,), so j(Z(p)) injects into J ().
Hence &z, also maps to 0 in J. Thus by Proposition 3.2 &, = 00z, hence
also &g = oog, contradicting the fact that g factors through Yo (V). O

4. Ogg’s conjecture

We are now ready to prove Ogg’s conjecture. In view of the talks by Brian,
Bryden, and Sreekar, all we need to establish is the following claim:

Theorem 4.1 Let N be 11 or a prime greater than 16. Then there are no
elliptic curves over Q with a torsion subgroup of order divisible by V.

Proof. Suppose E(Q) possesses a cyclic subgroup of order N for N as in the
statement of the theorem. By Proposition 3.1 E has potentially good reduction
at 3. We will show that NV < 7 and thus obtain a contradiction. We first treat
the case when E has good reduction at 3. In this case its Neron model £ over
Z(3) is an elliptic curve and thus the map Z/NZ — E(Q)iors = E/r,(F3) is
injective. By Hasse-Weil |€/r, (F3)| < 7, so we are done.

Now assume that E has additive reduction at 3, and let £ denote its Neron
model over Zz). We have the following exact sequence:

0= Ep, = E/ry = m0(Epp,) = 0,

where the first term denotes the identity component of the middle term and
the last term is the finite etale component group (cf. [4], proposition 2.18, p.
495). By Corollary 7.2 in [5] and the discussion that follows after it, we deduce
that since F3 is perfect, the first term is G,. To derive that N < 7, we will
again use Proposition 3.3 in the same way as in the proof of Proposition 3.1.
Let R = Z), K = Q. Then G = £[N] is a finite flat group scheme over Zs,
(cf. Tong’s talk). Take H to be Z/NZ/Z and consider the closed immersion

3

Gk — Hg coming from the inclusion Z/}\;Z — E[N](Q). This as before gives
rise to the morphism H — G defined by sending 1 to the image of 1 under
the composite H(K) — G(K) = G(R). (The last equality follows from the
properness of G over Zs)). Then by Proposition 3.3 we conclude that H — G
is a closed immersion, so Hr, — G, is also. Hence Z/NZ injects into £(F3).
Now invoking the fact that |mo(Er,)| < 4 ([6], ch. ”Neron models”), we conclude
that the image of Z/NZ in mo(Er,(F3)) is zero, so EY(F3) contains an element
of order N. However, £%(F3) ~ G,(F3) = F3,s0 N < 3.




References

[1] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. THES 47,
1977.

[2] B. Mazur, Rational Isogenies of Prime Degree, Invent. Math. 44, 129-162,
1978.

[3] K. Ribet, Endomorphism of semi-stable abelian varieties over number fields,
Ann. of Math., 101, 555-562, 1975.

[4] Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press,
Oxford, 2002.

[5] B. Conrad, Minimal models for elliptic curves, unpublished manuscript, 2003.
[6] J. Silverman, Advanced topics in the arithmetic of elliptic curves, Grad.
Texts Math., 151, Springer, New York-Heidelberg-Berlin, 1979.



