
MAZUR SEMINAR. Talk 10KRIS KLOSIN1. Eisenstein quotientLet N denote an odd prime, J = J0(N)=Q the Jacobian of the modular curveX0(N) = X0(N)=Q, and T the Hecke algebra acting on J . We embed X0(N) ,!J by sending the cusp 1 to 0. By a result of Ribet [3] (cf. Tobias's talk), thereis a one-to-one correspondence between the following sets:1. Isogeny classes of C-simple abelian variety factors of J=C.2. Isogeny classes of Q-simple abelian variety factors of J=Q.3. Fields k� occuring in the product decomposition T 
Q = Q k� (cf. Tobias'talk).4. Irreducible components of SpecT.To any ideal a � T with �nite index we associate an abelian variety Ja over
Q that is the optimal quotient of J whose C-simple factors are in one-to-onecorrespondence with those irreducible components of Spec T that meet the zero-dimensional support of the ideal a.Lemma 1.1 Let 
a � T be the kernel of T ! Ta = proj.limT=am. Let 
aJ � Jbe the subabelian variety (de�ned over Q) generated by the images � � J for� 2 
a. Then Ja is the quotient abelian variety:0! 
aJ ! J ! Ja ! 0:Proof. We will use the fact that 
a = \�, where the intersection is over allthe minimal primes � of T that meet the support of T=a. (We postpone theproof of this identity to the Appendix). By exercise II.5.6.b in Hartshorne,Supp T=a = V(a). As J is isogenous to QA�, with A� Q-simple, to determinewhich factors appear in the decomposition of 
a, we will consider the tangentspace T0
aJ = 
aT0J � T0J (the �rst equality was proven in Trevor's talk,cf. Corollary 1.2). As T0J is a Q-vector space 
aT0J = (
a 
 Q)T0J . Since
T =Q k�, we have �
Q =Q� 6=�0 k�, with �0 corresponding to �. We concludethat the Q-simple factors of J=
aJ correspond exactly to those minimal primes� of T which meet Supp T=a. ˜Now, note that a is a proper ideal of T if and only if there exists a prime ideal1



p � T, such that a � p. Let � � p be a minimal prime. Then p 2 V(a) \ V(�),hence V(a)\V(�) 6= ; if anf only if p is proper. Thus 
a is proper if and only if
a is proper. Hence by Lemma 1.1 we conclude that Ja 6= 0 if and only if a � Tis proper.De�nition 1.2 The Eisenstein ideal I � T is the ideal generated by the ele-ments 1 + l� Tl for all primes l 6= N and by 1+w. (for de�nitions of Tl and wsee James' talk)Proposition 1.3 If the genus of X0(N) is nonzero then the Eisenstein ideal Iis proper and of �nite index in T.Proof. It is a known fact that the genus of X0(N) is nonzero if and only ifn := num(N�112 ) > 1. For every positive integer r, we denote by �(r) the sum ofall positive divisors of r which are prime to N , and by � the formal power seriesP1r=1 �(r)qr . We will show that T=I ' Z=mZ for some m > 1. The naturalhomomorphism Z ! T=I is surjective, as modulo the Eisenstein ideal all theHecke operators are congruent to integers. First suppose that T=I ' Z. Thenthe composite � : T ! T=I ' Z is a nonzero homomorphism, and it remainsso after extending scalars to C. Thus there exists a normalized eigenform f oflevel N and weight 2, with Trf = �(Tr)f . We have �(Tr) = �(r), hence theFourier expansion of f at in�nity agrees with �, but it can be shown that � isnot a q-expansion of a modular form over C of level N and weight 2. Thus
T=I ' Z=m for some positive integer m.In his IHES paper Mazur proves that there exists a normalized eigenform f 0with integer Fourier coe�cients at in�nity which are congruent to coe�ecientsof � mod n. Hence there is a nonzero homomorphism T ! Z (given by theeigenvalues of f 0) such that the composite �0 : T ! Z ! Z=nZ is given byTr 7! �(r). Since �(p) = p + 1 for a prime p 6= N , Dirichlet's Theorem onprimes in arithmetic progression guarantrees that �0 is nontrivial if n > 1, i.e.it surjects onto some nonzero subgroup Z=n0Z ,! Z=nZ. However �0 kills I,hence Z=mZ ' T=I ! Z=n0Z is surjective, i.e. n0 j m. This implies that I isproper. ˜Remark Working somewhat harder, one can actaully prove that T=I ' Z=nZ(cf. Proposition 9.7, page 96 in Mazur's IHES paper), but we will not need thisfact.De�nition 1.4 The abelian variety JI which we will denote by ~J is called theEisenstein quotient.Note that Lemma 1.1 and Proposition 1.3 ensure that ~J is nonzero.
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2. Mordell-Weil group of ~J .Let C denote the subgroup of J(Q) generated by the linear equivalence class ofthe divisor c := (0)� (1).Lemma 2.1 The group C is �nite.Proof. It can be checked that Tlc = (1+ l)c for all l 6= N and that w intechangesthe two cusps (cf. James's talk "cuspology"). Hence I kills c, so in view ofProposition 1.3, multiplication by [T : I] kills c. ˜We now state without proof a theorem of Mazur (Theorem II.3.1 in Mazur'sIHES paper) that is the key ingredient in Mazur's proof of the Ogg's conjecture.It allows us to reduce the proof to working with just the elliptic curves withpotentially good reduction at all odd primes 6= N .Theorem 2.2 The natural projection J ! ~J induces an isomorphism of thesubgroup C onto the Mordell-Weil group ~J(Q). In particular ~J(Q) is �nite.3. Reduction to the case of elliptic curves with potentially goodreduction at odd primes 6= NProposition 3.1 Let (E=Q; C) denote a pair consisting of an elliptic curve over
Q and a cyclic subgroup C of prime order N > 2. The curve E has potentiallygood reduction at all odd primes p 6= N .Remark In fact E has potentially good reduction at all odd primes (cf. [2]Corollary 4.3). In our proof we will use the following result presented in Trevor'stalk, which does not allow us to handle the case p = N .Proposition 3.2 Let A denote the Neron model over Z[1=2N ] of any nonzerooptimal quotient A of J . De�ne X0(N)=Q ! J ! A by sending the cusp 1 to0, and let f denote the morphism extending this map over Spec Z[1=2N ]. Then1 2 X0(N)(Z(p)) is the only point reducing to 1 2 X0(N)(Fp) that also mapsto 0 in A(Z(p)) under f .Proof of Proposition 3:1. We will take A in the Proposition 3.2 to be ~J , anddenote by ~J the Neron model of ~J over Z(p). Suppose that E has potentially3



multiplicative reduction. The Neron mapping property yields a morphism �that makes the following diagram commute.Spec Q
(E;C)

//

››

Y0(N)Q
// X0(N)Q

››Spec Z(p) �
// X0(N)Z(p)Spec Fp ��=� mod p
//

OO X0(N)FpOOWe note that the fact that E has potentially multiplicative reduction at p meansexactly that the map �� is a cusp of X0(N)Fp . As was discussed in James's talk,the Atkin-Lehner involution permutes the cusps 0 and 1, so we can assumewithout loss of generality that �� hits 1 (i.e. if necessary we replace (E;C) with(E=C;E[N ]=C)). Consider the following commutative diagram:Spec Q
�Q

//

››

X0(N)Q
//

››

J0(N) //

››

~J
››Spec Z(p) �

// X0(N)Z(p) // J0(N)Z(p) // ~Jwhere J0(N)Z(p) denotes the Neron model of J0(N). Since 1Z(p) maps to 0under f : X0(N)Z(p) ! ~J and both �Z(p) and 1Z(p) reduce to 1=Fp , they bothmap to 0 mod p.By theorem 2.2, we have ~J (Z(p)) = ~J(Q) = ~J(Q)tors. Suppose ~J(Q)torscontains a point of order m 6= 1, i.e. there is an inclusion i : Z=mZ ,! ~J [m](Q).Let R = Z(p), K = Q. Then G := ~J [m]=R is a �nite 
at group scheme (cf.Tong's talk), hence proper. Thus GK(K) = G(R). Put H = Z=mZ=R andconsider the closed immersion HK ! GK coming from the inclusion i. De�nea morphism H ! G by sending 1 to the image of the 1 2 H(K) under thecomposite H(K)! G(K) = G(R).We will now use the following fact discussed in Tong's and Eiji's talks (whichis Mazur's Proposition 1.1)Proposition 3.3 Suppose p 6= 2 and let f : H ! G be a morphism of �nite 
atgroup schemes over a discrete valuation ring R with mixed characteristic (0; p).Let K denote the fraction �eld of R. If fK : HK ! GK is a closed immersion,then f is a closed immersion. 4



By proposition 3.3 we conclude that H ! G is a closed immersion, so HFp !GFp is as well. Thus, Z=mZ injects into ~J [n](Fp), so ~J (Z(p)) injects into ~J (Fp).Hence �Z(p) also maps to 0 in ~J . Thus by Proposition 3.2 �Z(p) =1Z(p) , hencealso �Q =1Q, contradicting the fact that �Q factors through Y0(N). ˜4. Ogg's conjectureWe are now ready to prove Ogg's conjecture. In view of the talks by Brian,Bryden, and Sreekar, all we need to establish is the following claim:Theorem 4.1 Let N be 11 or a prime greater than 16. Then there are noelliptic curves over Q with a torsion subgroup of order divisible by N .Proof. Suppose E(Q) possesses a cyclic subgroup of order N for N as in thestatement of the theorem. By Proposition 3.1 E has potentially good reductionat 3. We will show that N � 7 and thus obtain a contradiction. We �rst treatthe case when E has good reduction at 3. In this case its Neron model E over
Z(3) is an elliptic curve and thus the map Z=NZ ,! E(Q)tors ! E=F3(F3) isinjective. By Hasse-Weil jE=F3(F3)j � 7, so we are done.Now assume that E has additive reduction at 3, and let E denote its Neronmodel over Z(3). We have the following exact sequence:0! E0=F3 ! E=F3 ! �0(E=F3)! 0;where the �rst term denotes the identity component of the middle term andthe last term is the �nite etale component group (cf. [4], proposition 2.18, p.495). By Corollary 7.2 in [5] and the discussion that follows after it, we deducethat since F3 is perfect, the �rst term is Ga. To derive that N � 7, we willagain use Proposition 3.3 in the same way as in the proof of Proposition 3.1.Let R = Z(3), K = Q. Then G = E [N ] is a �nite 
at group scheme over Z(3)(cf. Tong's talk). Take H to be Z=NZ=Z(3) and consider the closed immersionGK ! HK coming from the inclusion Z=NZ ,! E[N ](Q). This as before givesrise to the morphism H ! G de�ned by sending 1 to the image of 1 underthe composite H(K) ! G(K) = G(R). (The last equality follows from theproperness of G over Z(3)). Then by Proposition 3.3 we conclude that H ! Gis a closed immersion, so HF3 ! GF3 is also. Hence Z=NZ injects into E(F3).Now invoking the fact that j�0(EF3)j � 4 ([6], ch. "Neron models"), we concludethat the image of Z=NZ in �0(EF3(F3)) is zero, so E0(F3) contains an elementof order N . However, E0(F3) ' Ga(F3) = F3, so N � 3. ˜
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