
CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) ANDTHE BLOCH-KATO CONJECTUREKRZYSZTOF KLOSIN1Abstract. Let k be a positive integer divisible by 4, ` > k a prime, andf an elliptic cuspidal eigenform (ordinary at `) of weight k � 1, level 4, andnon-trivial character. Let �f be the `-adic Galois representation attachedto f . In this paper we provide evidence for the Bloch-Kato conjecture forthe motives ad0M0(�1) and ad0M0(2), where M0 is the motif attached to f .More precisely, let L(Symm2 f; s) denote the symmetric square L-function of f .We prove that (under certain conditions) ord`(Lalg(Symm2 f; k)) � ord`(#S),where S is the (Pontryagin dual of the) Selmer group attached to the Galoismodule ad0 �f jGK (�1), and K = Q(p�1). Our method uses an idea ofRibet [45] in that we introduce an intermediate step and produce congruencesbetween CAP and non-CAP modular forms on the unitary group U(2; 2).1. IntroductionLet ` > 2 be a prime and let � be a prime of Q lying over `. The idea of linkingup �-divisibility of an L-value with the existence of congruences among modularforms and using these congruences to construct elements in a Selmer group goesback to Ribet and his proof of the converse to Herbrand's theorem [45]. In thatpaper a special value L(�;�1) of an even Dirichlet character � is realized as aconstant term of an Eisenstein series E�. If L(�;�1) � 0 (mod �), one shows thereexists a cuspidal Hecke eigenform f whose Hecke eigenvalues are congruent to thoseof E� (mod �) and as a result of that the mod � Galois representation �f attachedto f is reducible (a consequence of the congruence) but can be chosen to be non-semisimple (a consequence of the irreducibility of the �-adic Galois representation�f ), thus giving rise to a non-split extension of one-dimensional Galois modulesover F`. This extension can be interpreted as a non-zero element in a certain piece(determined by �) of the class group of Q(�`).This strategy can be phrased in the language of automorphic representationssuggesting ways to generalize it to other situations. Let � be an automorphicrepresentation of an algebraic groupM over Q. RealizeM as a Levi subgroup in amaximal parabolic subgroup of a larger algebraic group G overQ and lift � (e.g., byinducing) to an automorphic representation � of G(A). Assuming one knows howto attach �-adic Galois representations to automorphic representations of G(A), theone attached to � will be reducible and semisimple. If � divides a certain L-valueL(�), construct a representation �0 of G(A), whose Hecke eigenvalues are congruentto those of � mod � and whose �-adic Galois representation is irreducible. Thesetwo conditions (respectively) ensure that the mod � Galois representation attached1Cornell University, Department of Mathematics, 310 Malott Hall, Ithaca, NY14853-4201, USADate: April 24, 2008. 1



2 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)to �0 is reducible and non-semisimple, thus giving rise to some non-split extensionof Galois modules which one interprets as lying in an appropriate Selmer grouprelated to �. In Ribet's case, M = GL1�GL1, G = GL2, � = �
 1, � (resp. �0)is the automorphic representation of GL2(A) attached to E� (resp. f).Some versions of this approach have been applied by several authors: Mazur,Wiles, Bella��che-Chenevier, Skinner-Urban, Brown, Berger ([41, 60, 1, 9, 3])) togive lower bounds in terms of L-values on the orders of Selmer groups. The di�cultpoint is the construction of �0 and di�erent cases require di�erent methods to tacklethat point.Let K = Q(i), f 2 Sk�1 �4; ��4� ��, a normalized cuspidal Hecke eigenform, ` > ka prime such that f is ordinary at `. Write Lint(Symm2 f; k) for the value at k of thesymmetric square L-function of f divided by a suitable \integral" period. In thisarticle we implement the above strategy with M = ResK=Q(GL2=K), G = U(2; 2) -a quasi-split unitary group associated with the extension K=Q, � = base change toK of the automorphic representation associated to f , and L(�) = Lint(Symm2 f; k).This will allow us to construct elements in the Selmer group of V := ad0 �f jGK (�1),where �f is the �-adic Galois representation attached to f , GK = Gal(K=K), and�1 denotes a Tate twist. We will now describe the construction of � = the lift of� to G(A) and of the representation �0.The representation � is obtained by lifting f to a Hecke eigenform Ff 2 Sk,where Sk is the space of (weight k and level 1) hermitian modular forms as de�nedby Braun [6, 7, 8], using the Maass lifting constructed by Kojima, Gritsenko andKrieg [36, 23, 37]. Denote by SMk � Sk the image of the Maass lift. It is known thatthe eigenvalues of eigenforms in Sk lie in a number �eld. In fact we always choosea su�ciently large �nite extension E of Q` and �x embeddings Q ,! Q` ,! C,so we can view all the algebraic numbers of our interest as lying inside the same�eld E. From now on � will denote a uniformizer of E and O its valuation ring.Assuming Lint(Symm2 f; k) � 0 (mod �), we need to construct a hermitian modulareigenform F 0 2 Sk orthogonal to the Maass space SMk whose Hecke eigenvalues arecongruent to those of Ff (mod �). The form F 0 will give rise to the representation �0as above. Indeed, the �-adic Galois representation attached to Ff is reducible andsemisimple of the form �f�(�f
�), where � is the `-adic cyclotomic character, whileit is conjectured that the �-adic Galois representation attached to an eigenformorthogonal to the Maass space is irreducible. In proving a bound on the Selmergroup we will need to assume this conjecture (see Theorem 1.2).The construction of F 0 is carried out in several steps. Note that, unlike inRibet's case, our lift Ff is a cusp form, so there is no \constant term" which would\naturally" contain the L-value Lint(Symm2 f; k). Let � be a Hecke character ofK of in�nity type (z=jzj)�t with �k � t � �6. We �rst de�ne a \nice" hermitianmodular form � which is essentially a product of a hermitian Siegel Eisenstein seriesD and a hermitian theta series �� depending on the character �. Using some resultsof Shimura [49, 50, 51] on algebraicity of Fourier coe�cients of hermitian Eisensteinseries we show that � has �-integral Fourier coe�cients. We write(1.1) � = CFfFf + F with CFf = (�)��3 hD��; Ff ihFf ; Ff i ;where (�) is a �-adic unit, F is orthogonal to Ff , i.e., hFf ; F i = 0, and the innerproducts are the Petersson inner products on Sk. Using results of Shimura [51] and



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 3some formulae due to Raghavan and Sengupta [44] we are able to express the innerproducts by L-functions related to f . More precisely, we get(1.2) hD��; Ff ihFf ; Ff i = (�) ��1 Lint(BC(f); 1 + t+k2 ; �!)Lint(BC(f); 2 + t+k2 ; �!)Lint(Symm2 f; k) ;where (�) 2 E with ord�((�)) � 0, � is the Hida congruence ideal of f , ! is theunrami�ed Hecke character of K of in�nity type (z=jzj)�k, and Lint(BC(f); s;  )is the L-function of the base change of f to K twisted by the Hecke character . Note that (ignoring the factor ��1 for the moment) if one can �nd � whichmakes the numerator of the right-hand side of (1.2) a �-adic unit, then using (1.1)and �-integrality of the Fourier coe�cients of � and of Ff we see that if �n jLint(Symm2 f; k) then we can write CFf = a��n with a a �-adic unit and henceFf � �a�1�nF (mod �n ). However F 00 := �a�1�nF need not be orthogonalto the Maass space. To achieve this last property we modify F 00 appropriately(to obtain F 0) using some results of Hida as well as deformation theory of Galoisrepresentations.This way we obtain the �rst main result of the paper. To simplify the exposi-tion here we omit a certain technical hypothesis on the character �. For the fullstatement see Theorem 7.12.Theorem 1.1. With notation as before, assume that k 2 Z+, 4 j k, ` > k, fis ordinary at ` and the mod � representation �f restricted to GK is absolutelyirreducible. Assume there exists a Hecke character � of K of conductor prime to`, in�nity type (z=jzj)t, �k � t � �6, such that the numerator of the right-handside of (1.2) is a �-adic unit. If ord�(Lint Symm2 f; k) = n > 0, then there existsF 0 2 Sk, orthogonal to the Maass space, such that F 0 � Ff (mod �n).To be precise, the form F 0 in Theorem 1.1 need not be a Hecke eigenform. Tomeasure congruences between Ff and eigenforms orthogonal to the Maass space weintroduce the notion of a CAP ideal, which is a simple modi�cation of the Eisensteinideal introduced by Mazur [39]. Theorem 1.1 implies that(1.3) ord`(If ) � ord`(#O=�n);where If is the index of the CAP ideal of Ff inside the hermitian Hecke O-algebraacting on the orthogonal complement of SMk localized at the maximal ideal corre-sponding to Ff .We emphasize that the ordinarity assumption on f is essential to our method.It is used to ensure that F 0 is orthogonal to the Maass space (see section 8). For agiven f it is unknown for how many primes f is ordinary, although one conjecturesthat for a non-CM form (which is the case here) this set of primes has Dirichletdensity one. An analogous statement for elliptic curves is due to Serre [48].Let VQ be the E[GQ]-module ad0 �f (�1). Fix a GQ-stable O-lattice TQ � VQand set WQ := VQ=TQ. For A = V; T;W , write AK for AQ regarded as an E[GK ]-module. Write �` for the set of primes of K lying over `. Let Sel�`(WK) bethe Selmer group of WK in the sense of Bloch-Kato (for de�nition see section 9)and write S�`(WK) for the Pontryagin dual of Sel�`(WK). Then our second maintheorem (which uses a result of Urban [55]) is the following (again we omit somemild hypotheses on f - see section 9):



4 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Theorem 1.2. Assume that for every eigenform F 2 Sk orthogonal to SMk the�-adic Galois attached to F is absolutely irreducible. Thenord`(#S�`(WK)) � ord`(If ):The existence of �-adic Galois representations attached to general automorphicforms on G is at this point only conjectural, so Theorem 1.2 is conditional upon thatconjecture. In fact once this conjecture is known in full strength, one should be ableto remove the irreducibility assumption from Theorem 1.2, as it is expected thatGalois representations attached to non-Maass cuspidal eigenforms are irreducible.Combining Theorem 1.2 with (1.3) which is a consequence of Theorem 1.1, weobtain the following corollary.Corollary 1.3. With the same assumptions as in Theorems 1.1 and 1.2 one hasord`(#S�`(WK)) � ord`(#O=Lint(Symm2 f; k)):Let us brie
y explain the relation of Corollary 1.3 to the Bloch-Kato conjectureforM = ad0M0(�1), whereM0 is the motif attached to f . Let � = f2; `g and writeS�(WQ) for the Pontryagin dual of Sel�(WQ) (where we require that the classesbe unrami�ed away from ` and crystalline at `). Let L(M; s) = Qp Lp(s � 1) bethe L-function of M de�ned by(1.4) Lp(s) := ((1� �p;1��1p;2p�s)�1(1� p�s)�1(1� ��1p;1�p;2p�s)�1 p 6= 2(1� p�s)�1 p = 2;where �p;1, �p;2 are the p-Satake parameters of f . Then the Bloch-Kato conjecturefor M can be phrased in the following way:Conjecture 1.4 (Bloch-Kato). One has(1.5) #S�(WQ) �Tam!(TQ) = L(M; 0)
!(TQ)Oas fractional ideals of E, where Tam!(TQ) is the `-Tamagawa factor and 
!(VQ)is a certain period de�ned with respect to the \integral structures" TQ and ! (forprecise de�nitions see section 9.3).Given our assumptions (which in particular include the ordinarity assumptionon f) Corollary 1.3 falls short of proving that the left-hand side of (1.5) containsthe right-hand side of (1.5), but provides some evidence for it. In fact (for anappropriate choice of TQ and !) the right-hand side of (1.5) equalsLint(Symm2 f; k)�O. However, the Selmer group on the left-hand side of (1.5) could potentiallybe smaller than S�`(WK) and we do not know if Tam(TQ) = O. For a moredetailed discussion see section 9.3. In that section we also explain the relation ofCorollary 1.3 to the Bloch-Kato conjecture for the motif ad0M0(2) which is \dual"to ad0M0(�1).The Bloch-Kato conjecture is currently known only for a few motives - see [33] fora survey of known cases. The most recent result is due to Diamond, Flach and Guo[13] and it concerns the motives ad0M0 and ad0M0(1), while our result concernsthe motives ad0M0(�1) and ad0M0(2). The method used in [13] is related to themethod employed by Wiles and Taylor to prove the Taniyama-Shimura conjecture[61, 54] and so is di�erent from ours.Let us brie
y discuss the organization of the paper. In section 2 we introducenotation which is used throughout the paper. In section 4 we summarize the basic



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 5facts concerning the Maass lifting f 7! Ff and compute the Petersson inner producthFf ; Ff i in terms of L(Symm2 f; k). To carry out the calculations we need to�rst compute the residue of the hermitian Klingen Eisenstein series and this isdone in section 3. The inner product hD��; Ff i is computed in section 6. Insection 5 we gather the necessary facts concerning the hermitian Hecke algebrawhich are later used in section 7, where the �rst main theorem (Theorem 1.1) isproved assuming existence of a certain Hecke operator which allows one to \kill"the \Maass part" of the form F 00 as above, i.e., obtain a form F 0 that would beorthogonal to SMk . The existence of such a Hecke operator is proved in section 8using methods of deformation theory of Galois representations. Finally in section9 we prove Theorem 1.2 and Corollary 1.3 and discuss the relation of the latter tothe Bloch-Kato conjecture.We also want to mention that it seems possible to extend our result to an arbi-trary imaginary quadratic �eld K provided one knows how to construct a Hecke-equivariant Maass lifting in that setting. Such a construction has recently beencarried out by the author [35] for K with prime discriminant (see also [30]). Wehope to use that construction to prove Theorems 1.1 and 1.2 for such a K in asubsequent paper.The author would like to thank Joel Bella��che, Tobias Berger, Jim Brown, andChris Skinner for many useful and inspiring conversations. We would also like tothank the anonymous referee for suggesting various improvements to the Introduc-tion and section 9. 2. Notation and TerminologyIn this section we introduce some basic concepts and establish notation whichwill be used throughout this paper unless explicitly indicated otherwise.2.1. Number �elds and Hecke characters. Throughout this paper ` will alwaysdenote an odd prime. Let i = p�1, K = Q(i) and let OK be the ring of integersof K. For � 2 K, denote by � the image of � under the non-trivial automorphismof K. Set N� := N(�) := ��, and for an ideal n of OK , set Nn := #(OK=n). Asremarked below we will always view K as a sub�eld of C. For � 2 C, � will denotethe complex conjugate of � and we set j�j := p��.Let L be a number �eld with ring of integers OL. For a place v of L, denote byLv the completion of L at v and by OL;v the valuation ring of Lv. If p is a place ofQ, we set Lp := Qp
QL and OL;p := Zp
ZOL. The letter v will be used to denoteplaces of number �elds (including Q and K), while the letter p will be reserved fora (�nite or in�nite) place of Q. For a �nite p, let ordp denote the p-adic valuationon Qp. For notational convenience we also de�ne ordp(1) := 1. If � 2 Qp, thenj�jQp := p�ordp(�) denotes the p-adic norm of �. For p = 1, j � jQ1 = j � jR = j � jis the usual absolute value on Q1 = R.In this paper we �x once and for all an algebraic closure Q of the rationals andalgebraic closures Qp of Qp, as well as compatible embeddings Q ,! Qp ,! C forall �nite places p of Q. We extend ordp to a function from Qp into Q. Let L bea number �eld. We write GL for Gal(L=L). If p is a prime of L, we also writeDp � GL for the decomposition group of p and Ip � Dp for the inertia group of p.The chosen embeddings allow us to identify Dp with Gal(Lp=Lp).



6 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)For a number �eld L let AL denote the ring of adeles of L and put A := AQ.Write AL;1 and AL;f for the in�nite part and the �nite part of AL respectively.For � = (�p) 2 A set j�jA := Qp j�jQp . By a Hecke character of A�L (or of L, forshort) we mean a continuous homomorphism : L� nA�L ! C�whose image is contained inside fz 2 C j jzj = 1g: The trivial Hecke characterwill be denoted by 1. The character  factors into a product of local characters =Qv  v , where v runs over all places of L. If n is the ideal of the ring of integersOL of L such that�  v(xv) = 1 if v is a �nite place of L, xv 2 O�L;v and x� 1 2 nOL;v� no ideal m strictly containing n has the above property,then n will be called the conductor of  . If m is an ideal of OL, then we set m :=Q v , where the product runs over all the �nite places of L such that v j m.For a Hecke character  of A�L , denote by  � the associated ideal character. Let be a Hecke character of A�K . We will sometimes think of  as a characterof (ResK=Q GL1)(A). We have a factorization  = Qp  p into local characters p : �ResK=Q GL1� (Qp) ! C�. For M 2 Z, we set  M := Qp 6=1; pjM  p. If  isa Hecke character of A�K , we set  Q =  jA� .2.2. The unitary group. To the imaginary quadratic extension K=Q one asso-ciates the unitary similitude groupGU(n; n) = fA 2 ResK=QGLn j AJ �At = �(A)Jg;where J = � �InIn �, with In denoting the n� n identity matrix, the bar over Astanding for the action of the non-trivial automorphism of K=Q and �(A) 2 GL1.For a matrix (or scalar) A with entries in a ring a�ording an action of Gal(K=Q),we will sometimes write A� for �At and Â for (A�)�1. We will also make use of thegroups U(n; n) = fA 2 GU(n; n) j �(A) = 1g;and SU(n; n) = fA 2 U(n; n) j detA = 1g:Since the case n = 2 will be of particular interest to us we set G = U(2; 2),G1 = SU(2; 2) and G� = GU(2; 2).For a Q-subgroup H of G write H1 for H \ G1. Denote by Ga the additivegroup. In G we choose a maximal torusT =8>><>>:2664a b â b̂3775 j a; b 2 ResK=Q GL19>>=>>; ;and a Borel subgroup B = TUB with unipotent radicalUB =8>><>>:26641 � � 
1 �
 � ��� �1��� 13775 j �; �; 
 2 ResK=QGa; � 2 Ga; � + 
 �� 2 Ga9>>=>>; :



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 7Let TQ = 8>><>>:2664a b a�1 b�13775 j a; b 2 GL19>>=>>;denote the maximal Q-split torus contained in T . Let R(G) be the set of roots ofTQ, and denote by ej , j = 1; 2, the root de�ned byej : 2664a1 a2 a�11 a�12 3775 7! aj :The choice of B determines a subset R+(G) � R(G) of positive roots. We haveR+(G) = fe1 + e2; e1 � e2; 2e1; 2e2g:We �x a set �(G) � R+(G) of simple roots�(G) := fe1 � e2; 2e2g:If � � �(G), denote the parabolic subgroup corresponding to � by P�. We haveP�(G) = G and P; = B. The other two possible subsets of �(G) correspond tomaximal Q-parabolics of G:� the Siegel parabolic P := Pfe1�e2g =MPUP with Levi subgroupMP = ��A Â� j A 2 ResK=Q GL2� ;and (abelian) unipotent radicalUP =8>><>>:26641 b1 b21 b2 b41 13775 j b1; b4 2 Ga; b2 2 ResK=QGa9>>=>>;� the Klingen parabolic Q := Pf2e2g =MQUQ with Levi subgroupMQ = 8>><>>:2664x a bx̂c d3775 j x 2 ResK=Q GL1; �a bc d� 2 U(1; 1)9>>=>>; ;and (non-abelian) unipotent radicalUQ = 8>><>>:26641 � � 
1 �
1��� 13775 j �; �; 
 2 ResK=QGa; � + 
 �� 2 Ga9>>=>>;For an associative ring R with identity and an R-module N we write Nnm to denotethe R-module of n �m matrices with entries in N . We also set Nn := Nn1 , andMn(N) := Nnn . Let x = [A BC D ] 2 M2n(N) with A;B;C;D 2 Mn(N). De�neax = A, bx = B, cx = C, dx = D.



8 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)For M 2 Q, N 2 Z such that MN 2 Z we will denote by D(M;N) the groupG(R) Qp-1K0;p(M;N) � G(A), where(2.1) K0;p(M;N) = fx 2 G(Qp) j ax; dx 2M2(OK;p) ;bx 2M2(M�1OK;p); cx 2M2(MNOK;p)	 :If M = 1, denote D(M;N) simply by D(N) and K0;p(M;N) by K0;p(N). Forany �nite p, the group K0;p := K0;p(1) = G(Zp) is a maximal (open) compactsubgroup of G(Qp). Note that if p - N , then K0;p = K0;p(N). We write K0;f(N) :=Qp-1K0;p(N) and K0;f := K0;f(1). Note that K0;f is a maximal (open) compactsubgroup of G(Af). SetK0;1 := �� A B�B A� 2 G(R) j A;B 2 GL2(C); AA� +BB� = I2; AB� = BA�� :Then K0;1 is a maximal compact subgroup of G(R). LetU(m) := fA 2 GLm(C) j AA� = Img :We have K0;1 = G(R) \ U(4) ��! U(2)� U(2);where the last isomorphism is given by� A B�B A� 7! (A+ iB;A� iB) 2 U(2)� U(2):Finally, set K0(N) := K0;1K0;f(N) and K0 := K0(1). The last group is a maximalcompact subgroup of G(A). Let M 2 Q, N 2 Z be such that MN 2 Z. We de�nethe following congruence subgroups of G(Q):�h0(M;N) := G(Q) \D(M;N);�h1(M;N) := f� 2 �h0(M;N) j a� � 1 2M2(NOK)g;�h(M;N) := f� 2 �h1(M;N) j b� 2M2(M�1NOK)g;(2.2)and set �h0(N) := �h0(1; N), �h1(N) := �h1(1; N) and �h(N) := �h(1; N). Becausewe will frequently use the group �h0(1) = fA 2 GL4(OK) j AJA� = Jg, we reserve aspecial notation for it and denote it by �Z. Note that the groups �h0(N), �h1(N) and�h(N) are U(2; 2)-analogues of the standard congruence subgroups �0(N), �1(N)and �(N) of SL2(Z). In general the superscript `h' will indicate that an object isin some way related to the group U(2; 2). The letter `h' stands for `hermitian', asthis is the standard name of modular forms on U(2; 2).2.3. Modular forms. In this paper we will make use of the theory of modularforms on congruence subgroups of two di�erent groups: SL2(Z) and �Z. We willuse both the classical and the adelic formulation of the theories. In the adelicframework one usually speaks of automorphic forms rather than modular formsand in this case SL2 is usually replaced with GL2. For more details see e.g. [22],chapter 3. In the classical setting the modular forms on congruence subgroupsof SL2(Z) will be referred to as elliptic modular forms, and those on congruencesubgroups of �Z as hermitian modular forms.



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 92.3.1. Elliptic modular forms. The theory of elliptic modular forms is well-known,so we omit most of the de�nitions and refer the reader to standard sources, e.g.[42]. Let H := fz 2 C j Im (z) > 0gdenote the complex upper half-plane. In the case of elliptic modular forms wewill denote by �0(N) the subgroup of SL2(Z) consisting of matrices whose lower-left entries are divisible by N , and by �1(N) the subgroup of �0(N) consisting ofmatrices whose upper left entries are congruent to 1 modulo N . Let � � SL2(Z) bea congruence subgroup. Set Mm(�) (resp. Sm(�)) to denote the C-space of ellipticmodular forms (resp. cusp forms) of weight m and level �. We also denote byMm(N; ) (resp. Sm(N; )) the space of elliptic modular forms (resp. cusp forms)of weight m, level N and character  . For f; g 2Mm(�) with either f or g a cuspform, and �0 � � a �nite index subgroup, we de�ne the Petersson inner producthf; gi�0 := Z�0nH f(z)g(z)(Im z)m�2 dx dy;and set hf; gi := 1[SL2(Z) : �0] hf; gi�0 ;where SL2(Z) := SL2(Z)= h�I2i and �0 is the image of �0 in SL2(Z). The valuehf; gi is independent of �0.Every elliptic modular form f 2Mm(N; ) possesses a Fourier expansion f(z) =P1n=0 a(n)qn, where throughout this paper in such series q will denote e(z) := e2�iz.For 
 = � a bc d � 2 GL+2 (R), set j(
; z) = cz + d.In this paper we will be particularly interested in the space Sm �4; ��4� ��, where��4� � is the non-trivial character of (Z=4Z)�. Regarded as a function Z! f1;�1g,it assigns the value 1 to all prime numbers p such that (p) splits in K and thevalue �1 to all prime numbers p such that (p) is inert in K. Note that sincethe character ��4� � is primitive, the space Sm �4; ��4� �� has a basis consisting ofprimitive normalized eigenforms. We will denote this (unique) basis by N . Forf =P1n=1 a(n)qn 2 N , set f� :=P1n=1 a(n)qn 2 N .Fact 2.1. ([42], section 4.6) One has a(p) = ��4p � a(p) for any rational prime p - 2.This implies that a(p) = a(p) if (p) splits in K and a(p) = �a(p) if (p) is inert inK.For f 2 N and E a �nite extension of Q` containing the eigenvalues of Tn, n =1; 2; : : : we will denote by �f : GQ ! GL2(E) the Galois representation attachedto f by Deligne (cf. e.g., [11], section 3.1). We will write �f for the reduction of�f modulo a uniformizer of E with respect to some lattice � in E2. In general �fdepends on the lattice �, however the isomorphism class of its semisimpli�cation�ssf is independent of �. Thus, if �f is irreducible (which we will assume), it iswell-de�ned.2.3.2. Hermitian modular forms. For a systematic treatment of the theory of her-mitian modular forms see [6, 7, 8] as well as [23, 37, 36]. We begin by de�ning thehermitian upper half-planeH = fZ 2M2(C) j � i(Z � Z�) > 0g;



10 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)where i = [ i i ]. Set ReZ = 12 (Z + Z�) and ImZ = � 12 i(Z � Z�). LetG+� (R) := fg 2 G�(R) j �(g) > 0g:The group G+� (R) acts on H by 
Z = (a
Z + b
)(c
Z + d
)�1, with 
 2 G+� (R).For a holomorphic function F on H, an integer m and 
 2 G+� (R) putF jm
 = �(
)2m�4j(
; Z)�mF (
Z);with the automorphy factor j(
; Z) = det(c
Z + d
).Let �h be a congruence subgroup of �Z. We say that a holomorphic function Fon H is a hermitian modular form of weight m and level �h ifF jm
 = F for all 
 2 �h:The group �h is called the level of F . If �h = �h0(N) for some N 2 Z, then wesay that F is of level N . Forms of level 1 will sometimes be referred to as formsof full level. One can also de�ne hermitian modular forms with a character. Let�h = �h0(N) and let  : A�K ! C� be a Hecke character such that for all �nite p, p(a) = 1 for every a 2 O�K;p with a� 1 2 NOK;p. We say that F is of level N andcharacter  if F jm
 =  N (det a
)F for every 
 2 �h0(N):A hermitian modular form of level �h(M;N) possesses a Fourier expansionF (Z) = X�2S(M) c(�)e(tr �Z);where S(M) = fx 2 S j tr xL(M) � Zg with S = fh 2 M2(K) j h� = hg andL(M) = S \M2(MOK). As we will be particularly interested in the case whenM = 1, we setS := S(1) = ��t1 t2t2 t3� 2M2(K) j t1; t3 2 Z; t2 2 12OK� :Denote by Mm(�h) the C-space of hermitian modular forms of weight m andlevel �h, and byMm(N; ) the C-space of hermitian modular forms of weight m,level N and character  . For F 2 Mm(�h) and � 2 G+� (R) one has F jm� 2Mm(��1�h�) and there is an expansionF jm� =X�2S c�(�)e(tr �Z):We call F a cusp form if for all � 2 G+� (R), c�(�) = 0 for every � such that det � =0. Denote by Sm(�h) (resp. Sm(N; )) the subspace of cusp forms insideMm(�h)(resp. Mm(N; )). If  = 1, setMm(N) :=Mm(N;1) and Sm(N) := Sm(N;1).Theorem 2.2 (q-expansion principle, [28], section 8.4). Let ` be a rational primeand N a positive integer with ` - N . Suppose all Fourier coe�cients of F 2Mm(N; ) lie inside the valuation ring O of a �nite extension E of Q`. If 
 2 �Z,then all Fourier coe�cients of F jm
 also lie in O.If F and F 0 are two hermitian modular forms of weightm, level �h and character , and either F or F 0 is a cusp form, we de�ne for any �nite index subgroup �h0 of�h, the Petersson inner producthF; F 0i�h0 := Z�h0nH F (Z)F 0(Z)(detY )m�4dXdY;



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 11where X = ReZ and Y = ImZ, andhF; F 0i = [�Z : �h0 ]�1 hF; F 0i�h0 ;where �Z := �Z= hii and �h0 is the image of �h0 in �Z. The value hF; F 0i is indepen-dent of �h0 .There exist adelic analogues of hermitian modular forms. For F 2 Mm(N; ),the function 'F : G(A) ! C de�ned by'F (g) = j(g1; i)�mF (g1; i) �1(det dk);where g = gQg1k 2 G(Q)G(R)K0;f(N), is an automorphic form on G(A).3. Eisenstein seriesThe goal of this section is to compute the residue of the hermitian KlingenEisenstein series (cf. De�nition 3.1 and Theorem 3.10). This computation will beused in the next section.3.1. Siegel, Klingen and Borel Eisenstein series. Siegel and Klingen Eisen-stein series are induced from the maximal parabolic subgroups P and Q of G =U(2; 2) respectively. (For the de�nitions of P and Q see section 2.2.) Let�P : P (A)! R+be the modulus character of P (A),(3.1) �P ��A Â�u� = j detA detAj2A;with A 2 ResK=Q GL2(A), u 2 UP (A), and�Q : Q(A)! R+the modulus character of Q(A),(3.2) �Q0BB@2664x a bx̂c d3775u1CCA = jxxj3A;with x 2 ResK=QGL1(A), � a bc d � 2 U(1; 1)(A) and u 2 UQ(A). As before, K0 =K0;1K0;f will denote the maximal compact subgroup of G(A). Using the Iwasawadecomposition G(A) = P (A)K0 we extend both characters �P and �Q to functionson G(A) and denote these extensions again by �P and �Q.De�nition 3.1. For g 2 G(A), the seriesEP (g; s) := XP (Q)nG(Q) �P (
g)sis called the (hermitian) Siegel Eisenstein series, while the seriesEQ(g; s) := XQ(Q)nG(Q) �Q(
g)sis called the (hermitian) Klingen Eisenstein series.Properties of EP (g; s) were investigated by Shimura in [50]. We summarize themin the following proposition.



12 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Proposition 3.2 (Shimura). The series EP (g; s) is absolutely convergent for Re (s) >1 and can be meromorphically continued to the entire s-plane with only a simplepole at s = 1. One has(3.3) ress=1 EP (g; s) = 45L �2; ��4� ��4�L �3; ��4� �� ;where L(�; �) denotes the Dirichlet L-function.Properties of the Klingen Eisenstein series were investigated by Raghavan andSengupta in [44]. The only di�erence is that instead of EQ(g; s), [44] uses anEisenstein series that we will denote by Es(Z). The connection between EQ(g; s)and Es(Z) is provided by Lemma 4.6. After the connection has been establishedthe following proposition follows from Lemma 1 in [44].Proposition 3.3 (Raghavan-Sengupta). The series EQ(g; s) converges absolutelyfor Re (s) > 1 and can be meromorphically continued to the entire s-plane. The pos-sible poles of EQ(g; s) are at most simple and are contained in the set f0; 1=3; 2=3; 1g:In section 3.4 we will show that EQ(g; s) has a simple pole at s = 1 and calculatethe residue.Both EP (g; s) and EQ(g; s) have their classical analogues, i.e., series in which gis replaced by a variable Z in the hermitian upper half-plane H. Let g1 2 G(R)be such that Z = g1i and set g = (g1; 1) 2 G(R)�G(Af). De�neEP (Z; s) := EP (g; s)and EQ(Z; s) = EQ(g; s):We will show in Lemma 4.6 thatEQ(Z; s) = X
2Q(Z)n�Z� det Im (
Z)(Im (
Z))2;2�3s ;where for any matrix M we denote its (i; j)-th entry by Mi;j .Remark 3.4. Note that we use the same symbols EP (�; s) and EQ(�; s) to denoteboth the adelic and the classical Eisenstein series. We distinguish them by insertingg 2 G(A) or Z 2 H in the place of the dot. We will continue this abuse of notationfor other Eisenstein series we study.We now turn to the Eisenstein series which is induced from the Borel subgroupB of G, which we call the Borel Eisenstein series. It is a function of two complexvariables s and z, de�ned byEB(g; s; z) := X
2B(Q)nG(Q) �Q(
g)s�P (
g)z:Note that as the Levi subgroup of B is abelian (it is the torus T ), the character�sQ�zP is a cuspidal automorphic form on T (A). Thus the following propositionfollows from [43], Proposition II.1.5.Proposition 3.5. The series EB(g; s; z) is absolutely convergent for(s; z) 2 f(s0; z0) 2 C�C j Re (s0) > 2=3;Re (z0) > 1=2g:It can be meromorphically continued to all of C�C.



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 13Remark 3.6. It follows from the general theory (cf. [38], chapter 7) that by takingiterated residues of Eisenstein series induced from minimal parabolics one obtainsEisenstein series on other parabolics. These series are usually referred to as residualEisenstein series. In fact EP and EQ are residues of EB taken with respect to thevariable s and z respectively. We will prove this fact in section 3.5, but see also[32], Remark 5.6.3.2. Siegel Eisenstein series with positive weight. In this section we de�nean Eisenstein series induced from the Siegel parabolic, having positive weight, leveland non-trivial character. For notation refer to section 2. Let m;N be integerswith m � 0 and N > 0. Note that K0;1 is the stabilizer of i in G(R). Let  :K� nA�K ! C� be a Hecke character of A�K with local decomposition  =Qp  p,where p runs over all the places of Q. Assume that 1(x1) = � x1jx1j�mand  p(xp) = 1 if p 6=1; xp 2 O�K;p; and xp � 1 2 NOK;p:As before we set  N = QpjN  p. Let �P denote the modulus character of P . Wede�ne �P :MP (Q)UP (A) nG(A)! Cby setting�P (g) = (0 g 62 P (A)K0(N) (det dq)�1 N (det d�)�1j(�1; i)�m g = q� 2 P (A)K0(N):Note that �P has a local decomposition �P =Qp �P;p, where(3.4) �P;p(qp�p) =8><>: p(det dqp)�1 if p - N1; p(det dqp)�1 p(det d�p) if p j N; p 6=1; 1(det dq1)�1j(�1; i)�m if p =1and �P has a local decomposition �P =Qp �P;p, where(3.5) �P;p��A Â�u�� = j detA detAjQp :De�nition 3.7. The seriesE(g; s;N;m;  ) := X
2P (Q)nG(Q)�P (
g)�P (
g)s=2is called the (hermitian) Siegel Eisenstein series of weight m, level N and character . The series E(g; s;N;m;  ) converges for Re (s) su�ciently large, and can becontinued to a meromorphic function on all of C (cf. [50], Proposition 19.1). Italso has a complex analogue E(Z; s;m;  ;N) de�ned byE(Z; s;m;  ;N) := j(g1; i)mE(g; s;N;m;  )



14 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)for Z = g1i, g = gQg1�f 2 G(Q)G(R)K0;f(N). It follows from Lemma 18.7(3)of [50] and formulas (16.40) and (16.48) of [51], together with the fact that K hasclass number one thatE(Z; s;m;  ;N) = X
2(P (Q)\�h0(N))n�h0(N) N (det d
)�1(det ImZ)s�m=2jm
 == X
2(P (Q)\�h0(N))n�h0(N) N (det d
)�1 det(c
Z + d
)�m�� j det(c
Z + d
)j�2s+m(det ImZ)s�m=2:
(3.6)
3.3. The Eisenstein series on U(1; 1). Let B1 denote the upper-triangular Borelsubgroup of U(1; 1) with Levi decomposition B1 = T1U1, whereT1 := ��a â� j a 2 ResK=QGL1�and U1 = ��1 x1� j x 2 Ga� :Let �1 : B1(A)! R+ be the modulus character given by�1��a â�u� = jaajAfor u 2 U1(A). Let K1 = K1;1K1;f denote the maximal compact subgroup ofU(1; 1)(A) withK1;1 = �� � ��� �� 2 GL2(C) j j�j2 + j�j2 = 1; �� 2 R�being the maximal compact subgroup of U(1; 1)(R) and K1;f =Qp 6=1U(1; 1)(Zp).As usually we extend �1 to a map on U(1; 1)(A) using the Iwasawa decomposition.For g 2 U(1; 1)(A), set(3.7) EU(1;1)(g; s) = X
2B1(Q)nU(1;1)(Q) �1(
g)s:The following proposition follows from [50], Theorem 19.7.Proposition 3.8. The series EU(1;1)(g; s) converges absolutely for Re (s) > 1 andcontinues meromorphically to all of C. It has a simple pole at s = 1 with residue3=�.We now de�ne a complex analogue of EU(1;1)(g; s). As SL2(R) acts transitivelyon H, so does U(1; 1)(R) � SL2(R). Hence for every z1 2 H there exists g1 2U(1; 1)(R) such that z1 = g1i. Set g = (g1; 1) 2 U(1; 1)(R) � U(1; 1)(Af). Aneasy calculation shows that(3.8) �1(g) = Im (z1):For z1 and g as above, de�ne the complex Eisenstein series corresponding toEU(1;1)(g; s) by(3.9) EU(1;1)(z1; s) := EU(1;1)(g; s):



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 15It is easy to see that(3.10) EU(1;1)(z1; s) = X
2B1(Z)nU(1;1)(Z)(Im (
z1))s:The series EU(1;1)(z1; s) possesses a Fourier expansion of the formEU(1;1)(z1; s) = Xn2Z cn(y1; s)e2�inx1 ;where x1 := Re (z1) and y1 := Im (z1).Lemma 3.9. Let z1 and g be as before, i.e., z1 = g1i. Thenc0(s; y1) = ys1 + �(2s� 1)�(2s) � �s� 12��(s) p� y1�s1 ;where �(s) denotes the Riemann zeta function.Proof. This is a standard argument. See, e.g., [10], the proof of Theorem 1.6.1. ˜3.4. Residue of the Klingen Eisenstein series. Let EQ(g; s) be the KlingenEisenstein series de�ned in section 3.1. This section and section 3.5 are devoted toproving the following theorem.Theorem 3.10. The series EQ(g; s) has a simple pole at s = 1 and one has(3.11) ress=1 EQ(g; s) = 5�2L �2; ��4� ��4�K(2)L �3; ��4� �� ;where �K(s) denotes the Dedekind zeta function of K.Theorem 3.10 is a consequence of the following proposition.Proposition 3.11. The following statements hold:(i) For any �xed s 2 C with Re (s) > 2=3 the function EB(g; s; z) has a simplepole at z = 1=2 and(3.12) resz=1=2EB(g; s; z) = 32�EQ(g; s+ 1=3):(ii) For any �xed z 2 C with Re (z) > 1=2 the function EB(g; s; z) has a simplepole at s = 2=3 and(3.13) ress= 23 EB(g; s; z) = �26�K(2)EP (g; z + 1=2) :Indeed, using Proposition 3.11 and interchanging the order of taking residues weobtain: ress= 23 EQ�g; s+ 13� = 2�3 �26�K(2)resz= 12 EP �g; 12 + z� :By Proposition 3.2, resz= 12 EP �g; 12 + z� = 45L �2; ��4� ��4�L �3; ��4� �� ;and thus we �nally getress=1 EQ(g; s) = 5�2L �2; ��4� ��4�K(2)L �3; ��4� �� ;



16 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)which proves Theorem 3.10.We now prepare for the proof of Proposition 3.11, which will be completed insection 3.5.Let � x a bx̂c d � 2 MQ(A). Since � a bc d � 2 U(1; 1)(A), we can use the Iwasawadecomposition for U(1; 1)(A) with respect to the upper-triangular Borel to write� a bc d � = � � �̂� �� with � 2 K1, whereK1 is as in section 3.3. Note that if � = [ �1 �2�3 �4 ],then � 1 �1 �21�3 �4 � 2 K0. De�ne a character�Q :MQ(A)! R+by �Q0BB@2664x a bx̂c d37751CCA = �Q0BB@2664x 1 x̂ 1377526641 � �1 �̂37751CCA = j��jA;and a character �P :MP (A)! R+by:(3.14) �P ��A Â�� =�P 0BB@2664x �y x̂� ŷ37752664�1 �2�3 �4 �01 �02�03 �0437751CCA = jxy�1(xy�1)jA;where we used the Iwasawa decomposition for GL2(AK) = ResK=Q GL2(A) withrespect to its upper-triangular Borel BR, and its maximal compact subgroup KR =U(2) Qv-1GL2(OK;v) to write A 2 GL2(AK) asA = �x �y� ��1 �2�3 �4� 2 BR(A)KR:We again have " �1 �2�3 �4 �01 �02�03 �04 # 2 K0.Extend �Q and �P as well as �Q and �P to functions on G(A) using the Iwasawadecompositions(3.15) G(A) = B(A)K0 = P (A)K0 = Q(A)K0:A simple calculation shows that(3.16) �sQ�zP = �s+ 23 zQ �2zQ = � 34 s+zP � 32 sPfor any complex numbers s and z. Let EB(g; s; z) be the Borel Eisenstein seriesde�ned in section 3.1. By Proposition 3.5 the series is absolutely convergent ifRe (s) > 2=3 and Re (z) > 1=2 and admits meromorphic continuation to all of C2.Using identity (3.16) and rearranging terms we get:EB(g; s; z) := X
2Q(Q)nG(Q) �Q(
g)s+ 23 z X�2B(Q)nQ(Q)�Q(�
g)2z =



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 17(3.17) = X
2P (Q)nG(Q) �P (
g) 34 s+z X�2B(Q)nP (Q)�P (�
g) 32 s:Let EU(1;1)(g; s) be the Eisenstein series de�ned by formula (3.7). We also de�nean Eisenstein series on ResK=Q GL2(A) by:(3.18) EResK=Q GL2(g; s) = X
2BR(Q)nResK=Q GL2(Q) �R(
g)s;where �R denotes the modulus character on BR de�ned by:�R : BR ! R+(3.19) �R ��a �b�� = jaab�1b�1j1=2A :The following maps �Q :MQUQ ! U(1; 1)0BB@2664x a bx̂c d3775 ; u1CCA 7! �a bc d� ;(3.20)and �P : P ! ResK=QGL2�A X̂A� 7! A(3.21)give bijections B(Q) nQ(Q) �= B1(Q) nU(1; 1)(Q)and B(Q) n P (Q) �= BR(Q) nResK=Q GL2(Q);respectively.On the A-points we can extend �Q to a map G(A)! U(1; 1)(A)=K1 and �P to amap G(A) ! ResK=Q GL2(A)=KR by declaring them to be trivial on K0. Hencewe can rewrite (3.17) as(3.22) EB(g; s; z) := X
2Q(Q)nG(Q) �Q(
g)s+ 23 zEU(1;1)(�Q(
g); 2z) == X
2P (Q)nG(Q) �P (
g) 34 s+zEResK=Q GL2(�P (
g); 32s):3.5. EQ(g; s) as a residual Eisenstein series. In this section we complete theproof of Proposition 3.11. We will only present a proof of part (i) of the proposi-tion as the proof of (ii) is completely analogous. (In part (ii) the role of EU(1;1)(see below) is played by EResK=Q GL2 for which an easy computation shows thatress=1 EResK=Q GL2(g; s) = �2=(4�K(2)).) In what follows Z will denote a variable inthe hermitian upper half-plane H, and z1 a variable in the complex upper half-planeH. Otherwise we use notation from sections 3.1-3.4. Write g = gQg1� 2 G(A)with gQ 2 G(Q), g1 2 G(R) and � 2 K0;f. We have EB(g; s; z) = EB(g1; s; z)and EQ(g; s) = EQ(g1; s), hence it is enough to prove (3.12) for g = (g1; 1) 2G(R) � G(Af). Let K1 denote the maximal compact subgroup of U(1; 1)(A) and



18 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)let �Q : G(A)! U(1; 1)(A)=K1 be as in formula (3.20). Lemmas 3.12 and 3.14 areeasy.Lemma 3.12. If g = (g1; 1) 2 G(A), then Im (�Q(g)1i) = Im (g1i)2;2.Remark 3.13. Note that for any 2 � 2 matrix M with entries in C one hasIm (M2;2) = (Im (M))2;2. Hence the conclusion of Lemma 3.12 can also be writtenas Im (�Q(g)1i) = Im ((g1i)2;2).Lemma 3.14. For any Z 2 H, there exists 
 2 Q(Z) such that (Im 
Z)2;2 > 12 .The next lemma is just a simple adaptation to the case of hermitian modularforms of the proof of Hilfsatz 2.10 of [21].Lemma 3.15. For every Z 2 H, we havesup
2�Z det Im (
Z) <1:Proposition 3.16. Let � > 0 and g = (g1; 1) 2 G(R) �G(Af). For every s 2 Cwith Re (s) > 1 + � and every z 2 C with jz � 12 j < �, the series(3.23) D := jz � 1=2j X
2Q(Q)nG(Q) ����Q(
g)s+2z=3EU(1;1)(�Q(
g); 2z)���converges.Proof. Using the same arguments as in the proof of Lemma 4.6 (cf. section 4.2)one shows thatD = X
2Q(Z)n�Z ������ det Im (
Z)(Im (
Z))2;2�3s+2z����� jz � 1=2j jEU(1;1)(�Q(
g)1i; 2z)j:(Note that z0 := �Q(
g)1i is a complex variable.) As g = (g1; 1) and 
 2 �Z �K0;f, we have �Q(
g)1 = �Q((
g1; 1))1. By Lemmas 3.12 and 3.14 we can �nd aset S of representatives of Q(Z) n �Z such that for every 
 2 S we have(3.24) Im (�Q(
g)1i) = Im ((
g1i)2;2) > 12 :The series EU(1;1)(z1; 2z) has a Fourier expansion of the formEU(1;1)(z1; 2z) =Xn2Z cn(2z; Im (z1))e2�inRe (z1);and EU(1;1)(z1; 2z) � c0(2z; Im (z1)) for every �xed z1 continues to a holomor-phic function on the entire z-plane and for every �xed z is rapidly decreasingas Im (z1) ! 1. It follows that for any given N > 0 there exists a constantM(N) (independent of z1 and independent of z as long as jz � 1=2j < �) suchthat jEU(1;1)(z1; 2z)� c0(2z; Im (z1))j < M(N) as long as Im (z1) > N . Set x
 :=Re (�Q(
g)1i) and y
 := Im (�Q(
g)1i) = Im ((
g1i)2;2) : Taking N = 1=2, wesee by formula (3.24) that there exists a constant M (independent of 
) such thatjEU(1;1)(x
 + iy
 ; 2z)j �M + jc0(2z; y
)j. Using (3.8) and Lemma 3.9 one sees thatthere exists a positive constant C independent of z and of 
 such thatjz � 1=2jjc0(2z; y
)j < C + jy
 j1+2� :



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 19Thus we conclude that there exists a positive constant A (independent of z and 
)such that �����z � 12�EU(1;1) (�Q(
g1)i; 2z)���� � A(1 + Im (�Q(
g1)i)1+2�) == A(1 + Im (
g1i)1+2�2;2 ):(3.25)For s0 2 C lying inside the region of absolute convergence of Es0 (Z) letjEjs0(Z) := X
2Q(Z)n�Z ������ det Im (
Z)(Im (
Z))2;2�s0 �����denote the majorant of Es(Z). By formula (3.25) we have(3.26) D � AjEj3s+2z(Z) +AX
2S ������ det Im (
Z)(Im (
Z))2;2�3s+2z����� (Im (
Z))1+2�2;2 :Note that jEj3s+2z(Z) is well-de�ned (i.e., 3s + 2z is in the region of absoluteconvergence of Es0(Z)) by our assumption on s and z. Denote the second term ofthe right-hand side of formula (3.26) by D2. ThenD2 = AX
2S ������ det Im (
Z)(Im (
Z))2;2�3s+2z�(1+2�)����� (det Im (
Z))1+2� :By Lemma 3.15 there exists a constant M(Z) such that det Im (
Z) � M(Z) forevery 
 2 S and henceD2 � AM(Z)1+2� jEj3s+2z�(1+2�) <1as Re (3s + 2z � (1 + 2�)) > 3 by our assumptions on z and s. This �nishes theproof. ˜Proof of Proposition 3.11. We need to show that for a �xed s 2 C with Re (s) >2=3 and for every � > 0 there exists � > 0 such that jz � 1=2j < � implies(3.27) D(z) := ����z � 12� X
2Q(Q)nG(Q) �Q(
g)s+2z=3EU(1;1)(�Q(
g); 2z)�� 32� X
2Q(Q)nG(Q) �Q(
g)s+1=3��� < �:As remarked at the beginning of the section we can assume without loss ofgenerality that g = (g1; 1) 2 G(R) � G(Af). We �rst show that (3.27) holds fors with Re (s) > 1. Fix s 2 C with Re (s) > 1 and �0 > 0 such that 0 < �0 <Re (s) � 1. From now on assume jz � 1=2j < �0. Fix a set S of representatives ofQ(Q)nG(Q). By Proposition 3.16 and the fact that EQ(g; s0) converges absolutelyfor s0 with Re (s0) > 1, there exists a �nite subset S1 of S such that the followingtwo inequalities:(3.28) X
2S2 ���(�Q(
g))s+1=3��� < ��6 ;(3.29) X
2S2 ����z � 12 ���� ��� �Q(
g)s+2z=3EU(1;1)(�Q(
g); 2z)��� < �4



20 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)are simultaneously satis�ed. Here S2 denotes the complement of S1 in S. We haveD(z) � D1(z) +D2(z), whereDj(z) := �������z � 12� X
2Sj �Q(
g)s+2z=3EU(1;1)(�Q(
g); 2z)� 32� X
2Sj �Q(
g)s+1=3������ :Note that if we replace �0 with a smaller �00 > 0, then estimates (3.28) and (3.29)remain true as long as jz�1=2j < �00 for the same choice of S1. Hence we �nd � > 0with � < �0 such that D1(z) < �2 . This is clearly possible as D1(z) is a �nite sumand it follows from Proposition 3.8 that 3=2� is the residue of EU(1;1)(�Q(
g); 2z)at z = 1=2. On the other hand D2(z) � D3(z) +D4(z), whereD3(z) := X
2S2 ����z � 12 ���� ��� �Q(
g)s+2z=3EU(1;1)(�Q(
g); 2z)���and D4(z) := 32� X
2S2 ���(�Q(
g))s+1=3��� :Formulas (3.28) and (3.29) imply now that D3(z) < �=4 and D4(z) < �=4. HenceD(z) � D1(z) +D2(z) � D1(z) +D3(z) +D4(z) < �as desired.We have thus established the equality resz=1=2EB(g; s; z) = 32�EQ(g; s+1=3) fors with Re (s) > 1. However, both sides are meromorphic functions in s and sincethe right-hand side is holomorphic for Re (s) > 2=3, so must be the left-hand side.Hence they agree for Re (s) > 2=3. ˜4. The Petersson norm of a Maass liftThe goal of this section is to express the denominator of CFf in formula (1.1) bya special value of the symmetric square L-function of f .4.1. Maass lifts. Let H, as before, denote the complex upper half-plane. ThespaceH�C�C a�ords an action of the Jacobi modular group �J := SL2(Z)nO2K ,under which �� a bc d � ; �; �� takes (�; z; w) 2 H�C�C to �a�+bc�+d ; zc�+d ; wc�+d�.De�nition 4.1. A holomorphic function� : H�C�C! Cis called a Jacobi form of weight k and index m if for every � a bc d � 2 SL2(Z) and�; � 2 OK ,� = �jk;m �a bc d� := (c� + d)�ke��m czwc� + d� �m �a� + bc� + d ; zc� + d ; wc� + d�and � = �jm[�; �] := e(m��t+ �z + �w) �m(�; z + �� + �;w + ��t+ ��):Let k be a positive integer divisible by 4 and F a hermitian cusp form of weightk and full level. By rearranging the Fourier expansion F (Z) =PB2S c(B)e(trBZ)of F we obtain(4.1) F (Z) = Xm2Z>0 �m(�; z; w)e(m� 0)



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 21where Z = [ � zw � 0 ] 2 H and�m(�; z; w) = Xl2Z�0;t2 12OKtt�lm c��l t�t m�� e(l� + �tz + tw)is a Jacobi form of weight k and index m. The expansion (4.1) is called the Fourier-Jacobi expansion of F .De�nition 4.2. The Maass space denoted by SMk (�Z) is the C-linear subspace ofSk(�Z) consisting of those F 2 Sk(�Z) which satisfy the following condition: thereexists a function c�F : Z�0 ! C such thatcF (B) = Xd2Z>0;dj�(B)dk�1c�F (4 detB=d2)for all B 2 S, where �(B) := maxnq 2 Z>0 j 1qB 2 So : We call F 2 SMk (�Z) aMaass form or a CAP form.Theorem 4.3 (Raghavan-Sengupta [44]). There exists a C-linear isomorphismbetween the Maass space and the space(4.2) S+k�1 �4;��4� �� :== (� 2 Sk�1 �4;��4� �� j � = 1Xn=1 b(n)qn; b(n) = 0 if ��4n � = 1) :We will describe this isomorphism in more detail. Any Jacobi form  of weight kand index 1 can be written as a �nite linear combination:(4.3)  (�; z; w) =Xt2A ft(�)�t(�; z; w);where A = �0; 12 ; i2 ; i+12 	, �t(�; z; w) :=P�2t+OK e(��� + �lz + w) andft(�) = Xl�0;l��4nt (mod 4) c�F (l)e(l�=4):The map  (�; z; w) 7! f0(�) gives an injection of Jk;1, the space of Jacobi formsof weight k and index 1, into Sk�1 �4; ��4� ��. If we put  = �1 and de�ne �by �jk�1 � �14 � = f0, the composite F 7! �1(�; z; w) 7! f0(�) 7! � gives theisomorphism alluded to in Theorem 4.3. Denoting this isomorphism by 
, we canmap any normalized Hecke eigenform f = Pn�1 b(n)qn 2 Sk�1 �4; ��4� �� to theelement Ff := 
�1(f � f�) 2 SMk (�Z). Here f� = Pn�1 b(n)qn. This lifting isHecke equivariant in a sense, which will be explained in section 5.4. Note thatFf = �Ff� and Ff 6= 0 if and only if f 6= f�.De�nition 4.4. If f 6= f�, then Ff is called the Maass lift of f or the CAP lift off .Proposition 4.5. If f =P1n=1 b(n)qn 2 Sk�1 �4; ��4� �� is a normalized eigenform,then(4.4) c�Ff (n) = ( �2iu(n) (b(n)� b(n)) if n 6� 1 (mod 4)0 if n � 1 (mod 4) ;



22 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)where u(n) := #ft 2 A j 4N(t) � �n (mod 4)g.Proof. This follows from formula (4) on page 670 in [37]. ˜4.2. The Petersson norm of Ff . To express hFf ; Ff i by an L-value we will usean identity proved in [44] that involves a variant Es(Z) (de�ned below) of theKlingen Eisenstein series EQ(g; s) (which was de�ned in section 3.1). For a matrixM , denote byMi;j the (i; j)-th entry ofM . Let C be the subgroup of �Z consistingof all matrices whose last row is �0 0 0 1�. SetEs(Z) = X
2Cn�Z� det Im 
Z(Im 
Z)1;1�s :The series converges for Re (s) > 3 ([44], Lemma 1).Lemma 4.6. Let g = (g1; 1) 2 G(A) and Z = g1i. Then(4.5) EQ(g; s) = 14E3s(Z):Proof. First note that Es(Z) = 4 X
2C0n�Z� det Im 
Z(Im 
Z)1;1�s ;where C0 is the subgroup of �Z consisting of matrices whose last row is of the form�0 0 0 �� with � 2 O�K . Moreover we have C0 = wQ(Z)w�1 with w = � 11 11 �.This givesX
2C0n�Z� det Im 
Z(Im 
Z)1;1�s = X
2Q(Z)n�Z� det Imw
w�1Z(Imw
w�1Z)1;1�s = X
2Q(Z)n�Z� det Im 
Z(Im 
Z)2;2�s ;as w 2 �Z.Now for 
 2 �Z we have �Q(
g) = �Q(q), where q = (q1; 1) and 
g1 = q1�1with q1 2 Q(R), �1 2 K0;1. If q1 = um with m = � x a bx̂c d� 2 MQ(R) andu 2 UQ(R), then�Q(
g) = �Q(um) = �Q(m(m�1um)) = �Q(m) = jxxj3A:Moreover Im 
Z = Im 
g1i = Im q1i = Im um i:A direct calculation shows that det Im u(mi) = det Imm i and that (Im u(mi))2;2 =(Immi)2;2. On the other handImm i = "xx 1(ci+d)(ci+d)# ;hence we have det Im 
Z(Im 
Z)2;2 = �Q(
g)1=3:The lemma now follows from the fact that the natural injectionQ(Z) n �Z ! Q(Q) nG(Q)



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 23is a bijection. This is a consequence of the identityQ(A) = Q(Q)Q(R)Q(Qp-1 Zp),which follows from Lemma 8.14 of [50]. ˜Set(4.6) E�s (Z) := ��2s�(s)�(s� 1)�(2s� 2)�K(s)Es(Z):In [44] Raghavan and Sengupta prove that E�s (Z) can be analytically continuedin s to the entire complex plane except for possible simple poles at s = 0; 1 ; 2 ; 3.Using Lemma 4.6 and Theorem 3.10 we conclude that E�s (Z) has a simple pole ats = 3 and(4.7) ress=3 E�s (Z) = 2�2 �(3):Combining results of section 3 of [44] with a formula on page 200 in [loc. cit.] weget 
Ff ; E�s�k+3Ff � = 4�3s��3s+2k�6�(s)�(s� k + 2)�(s� k + 3)��0@ 3Yj=1 �(s� k + j)1AL(Symm2 f; s) h�1; �1i :(4.8)Here we de�ne L(Symm2 f; s) for a normalized eigenform f =P1n=1 a(n)qn as anEuler product:L(Symm2 f; s) = (1� a(2)22�s)�1(1� a(2)22�s)�1��Yp 6=2 �(1� �2p;1p�s)(1� �p;1�p;2p�s)(1� �2p;2p�s)��1(4.9)where the complex numbers �p;1 and �p;2 are the p-Satake parameters of f de�nedby the equation1� a(p)x+��4p � pk�2x2 = (1� �p;1x)(1� �p;2x):Combining formulas (4.7) and (4.8) we obtain:(4.10) hFf ; Ff i = 2�2k�3�(k) � ��k�2 h�1; �1iL(Symm2 f; k):Finally, to relate h�1; �1i to hf; fi, in the next subsection we will prove the followinglemma.Lemma 4.7. The following identity holds:(4.11) h�1; �1i = 2 hf; fi�1(N) = 24 hf; fi :Combining Lemma 4.7 with formula (4.10) we �nally obtain:Theorem 4.8. The following identity holds:(4.12) hFf ; Ff i = 2�2k+2 � 3 � �(k) � ��k�2 hf; fiL(Symm2 f; k):



24 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)4.3. Inner product formula for Jacobi forms. This section is devoted to prov-ing Lemma 4.7.Proof of Lemma 4.7. Let  1 and  2 denote two Jacobi forms of weight k and indexm. It is easy to show that(4.13)h 1;  2i = ZF vk �ZF�  1(�; z; w) 2(�; z; w)e��jz�wj2v dz0 dz1 dw0 dw1� du dv;where F is the standard fundamental domain for the action of SL2(Z) on thecomplex upper half-plane and F� � f�g �C�C is a fundamental domain for theaction of the matrices ��1 0 0� and �1 � �� (�; � 2 OK) on C � C. Afterperforming a change of variables on C�C (keeping � �xed)z0 = z + w w0 = z � w;and denoting by F 0� the fundamental domain F� in the new variables, the integralover F� in (4.13) becomes18 ZF 0�  1(�; z0; w0) 2(�; z0; w0)vke��j z0+w02 � z0�w02 j2v dz00 dz01 dw00 dw01:Set  1 =  2 = �1, where �1 is the �rst Fourier-Jacobi coe�cient of the CAPform Ff . Using formula (4.3) we can write:(4.14) h�1; �1i = 18Xt2AXt02AZF ft(�)ft0(�)vk�4I(t; t0; �) du dvwith I(t; t0; �) = ZF 0�� Xa2t+OK Xb2t0+OK e(N(a)� + az + aw) e(N(b)� + bz + bw)�� e��v ((Im (z0))2+(Re (w0))2)� dz00 dz01 dw00 dw01:(4.15)Changing variables again we get(4.16) I(t; t0; �) = Xa2t+OK Xb2t0+OK e(N(a)� �N(b)� )I1 I2with I1 = 4 Z
1 e(2x0Re (a)� 2x0Re (b)) e�2 (2x01)dx00 dx01;where 
1 is the parallelogram in C spanned by the two R-linearly independentcomplex numbers 1 and � , and x0 = x00 + ix01 2 C, with x00; x01 2 R. Before wede�ne I2 we note that I1 can be written as(4.17) I1 = 4 Z Im (�)0 e��v �4(x01)2 �Z 10 e(2x0Re (a)� 2x0Re (b)) dx00� dx01:Now the integral inside the parantheses in (4.17) equals e�8�Re (a) x01 if Re (a) =Re (b) and 0 otherwise. Hence(4.18) I1 = � 4 R Im (�)0 e�4�v (x01)2 e�8�Re (a) x01 dx01 if Re (a) = Re (b)0 if Re (a) 6= Re (b)



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 25The integral I2 := 4 Z
2 e(�2y0 Im (a) + 2y0 Im (b))e��v �4(y01) dy00 dy01;where 
2 denotes the region in the complex plane spanned by the two R-linearlyindependent complex numbers 1 and �� and y0 = y00 + iy01 2 C with y00; y01 2 R,can be handled in a similar way. In fact one gets:(4.19) I2 = � 4 R Im (�)0 e�4�v (y01)2 e8�Im (a) x01 dx01 if Im (a) = Im (b)0 if Im (a) 6= Im (b) :Substituting (4.18) and (4.19) into (4.16) one sees that I(t; t0; �) = 0 if t 6= t0, andthat after rearranging termsI(t; t; �) = 160@ XRe (a)2Re (t)+Z Z v0 e� 4�v ((Re (a))v+x01)2dx011A��0@ XIm (a)2Im (t)+Z Z v0 e� 4�v ((Im (a))v+y01)2dy011A == 16 ZR e� 4�v (Re (t)+x01)2 dx01 ZR e� 4�v (Im (t)+y01)2 dy01 = 4v;(4.20)
where � = u+ iv. Hence(4.21) h�1; �1i = ZFXt2A ft(�)ft(�)vk�4 � 4v du dv:From this it follows that Pt2A ft(�)ft(�)vk�1 is \invariant" under SL2(Z). Wewant to relate (4.21) tohf; fi0 := Z�1(4)nH f(�)f(�)vk�3 du dv:Denote by hft; fti0 the integral R�1(4)nH ft(�)ft(�)vk�3 du dv. We will use cal-culations carried out in [36]. In particular one has f1=2 = fi=2 and f(i+1)=2 =f0jk�1 [ 12 1 ], hence we conclude that the quantities hft; fti0 are well-de�ned, sincef0jk�1� = f0 for all � 2 �1(4). Moreover, we haveXt2A hft; fti0 = hf0; f0i0 + 
f(i+1)=2; f(i+1)=2�0 + 2 
f1=2; f1=2�0 == hf0; f0i0 + 
f(i+1)=2jk�1 [ 12 1 ] ; f(i+1)=2jk�1 [ 12 1 ]�0 + 2 
f1=2; f1=2�0 == 2 hf0; f0i0 + 2 
f1=2; f1=2�0 :
(4.22)

We use formula (3.5') from [36], which is erroneously stated there, and shouldread f1=2(�) = � i2 f0jk�1 � �11 � (�) � i2f0jk�1 � �11 �2 � (�);hence
f1=2; f1=2�0 = 12 hf0; f0i0 + i2 �hf0; f0jk�1 [ 12 1 ]i0 � hf0jk�1 [ 12 1 ] ; f0i0� = 12 hf0; f0i0



26 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)as f0jk�1 [ 14 1 ] = f0. Thus we obtainXt2A hft; fti0 = 3 hf0; f0i0 = 3 
f0jk�1 � �14 � ; f0jk�1 � �14 ��0 = 3 h�; �i0 :Since � = f � f� , and hf; f�i0 = 0, we get h�; �i0 = 2 hf; fi0, so �nallyh�1; �1i = 4[SL2(Z) : �1(4)]Xt2A hft; fti0 = 24[SL2(Z) : �1(4)] hf; fi = 2 hf; fi0 :
˜5. Hecke operators5.1. Elliptic Hecke algebra. The theory of Hecke operators acting on the spaceof elliptic modular forms is well-known, so we refer the reader to standard sources(e.g., [42], [14]) for de�nitions of most of the objects as well as their basic propertiesused in this subsection.De�nition 5.1. Let k be a positive integer divisible by 4, and A a Z-algebra.Denote by TZ the Z-subalgebra of EndC �Sk�1 �4; ��4� ��� generated by the Heckeoperators Tn, n = 1; 2; : : : . We set(1) TA := TZ 
Z A;(2) T0A to be the A-subalgebra of TA generated by the set�0 := fTpgp split in K [ fTp2gp inert in K ;(3) T(2)A to be the A-subalgebra of EndC �Sk�1 �4; ��4� ��� generated by TA andthe (A-linear) operator TrT2 which multiplies any normalized eigenformg =Pa(n)qn by a(2) + a(2).Suppose f = P1n=1 af (n)qn 2 Sk�1 �4; ��4� �� is a primitive normalized eigen-form. Recall that we denote the set of such forms by N . For T 2 TC, set �f;C(T )to denote the eigenvalue of T corresponding to f . It is a well-known fact that�f;C(Tn) = af (n) for all f 2 N and that the set faf (n)gn2Z>0 is contained in thering of integers of a �nite extension Lf of Q. Let E be a �nite extension of Q`containing the �elds Lf for all f 2 N . Denote by O the valuation ring of E and by� a uniformizer of O. Then faf (n)gf2N ;n2Z>0 � O. Moreover, one has(5.1) TE = Yf2N Eand(5.2) TO =Y

m

TO;m;where TO;m denotes the localization of TO at m and the product runs over allmaximal ideals of TO. Every f 2 N gives rise to an O-algebra homomorphismTO ! O assigning to T the eigenvalue of T corresponding to f . We denote thishomomorphism by �f and its reduction mod � by �f . If m = ker�f , we write mffor m or if we want to emphasize the ring m lives in, we write mTO ;f . The algebraT0Z is studied in detail in section 8.1.



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 275.2. Hermitian Hecke algebra. The theory of Hecke operators acting on thespace Sk(�Z) is discussed in [23] and [37]. We summarize it here to the degree thatwe need it. For the formulation of the theory which is valid for hermitian modularforms of level higher than one (as well as the non-holomorphic ones) see [34]. Seealso [35] for a theory of Hecke operators acting on the space of adelic hermitianmodular forms.Set � := G+� (Q) \M4(OK). For a 2 �, the double coset space �Za�Z decom-poses into a �nite disjoint union of right cosets�Za�Z =aj �Zajwith aj 2 �. For F 2 Sk(�Z) set F jk[�Za�Z] :=Pj F jkaj :De�nition 5.2. The hermitian Hecke algebra (over C), denoted by ThC is thesubalgebra of EndC(Sk(�Z)) generated by the double cosets of the form �Za�Z fora 2 �. We call F 2 Sk(�Z) an eigenform if it is an eigenfunction for all T 2 ThC.We will denote the eigenvalue of T corresponding to F by �F;C(T ).For a rational prime p we de�ne an operator(5.3) T hp := �Z � 1 1 p p ��Z;if p is inert in K we additionally de�neT h1;p := �Z " 1 p p2 p#�Z;and if p = �� splits or rami�es in K we de�ne(5.4) T h� := �Z � 1 � p � ��Z:We now describe the action of the operators T hp , T h1;p and T h� on the Fouriercoe�cients of hermitian modular forms. As before let S := fh 2M2(K) j h� = hg.To shorten our notation we de�ne the following elements of GL2(K):�a = �1~a p� ; a 2 OK=pOK ; p inert; ~a any lift of a to OK�p = �p 1� ; p inert;�a = �1a �� ; a = 0; 1; : : : ; p� 1; p = �� split;�p = �� 1� ; p = �� split;(5.5)
and for a 2� 2 matrix M , we set ~M = [ 11 ]M [ 11 ]. Moreover, if B 2 S, we sets(B) := 8><>:p ordp(det(B)) = 0;�p(p� 1) ordp(det(B)) > 0; ordp(�(B)) = 0;p2(p� 1) ordp(�(B)) > 0;where �(B) is as in De�nition 4.2. Finally, if p is inert we write P1p for the disjointunion of OK=pOK and p.



28 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Lemma 5.3. Let F 2 Sk(�Z) with Fourier expansionF (Z) = XB2S cF (B)e2�itr (BZ);and let T 2 ThC. Then TF (Z) = XB2S cTF (B)e2�itr (BZ);with(5.6) cTF (B) =8>>>>><>>>>>:p2k�4cF (p�1B) + cF (pB) + pk�3Pa2P1p cF (p�1��aB�a) T = T hp ; p inert;p2k�4cF (p�1B) + cF (pB) + pk�3Ppa;b=0 cF ((�a�̂b)�B�a�̂b) T = T hp ; p split;pk�2��kPpa=0 �cF ( ~��aB ~�a) + pk�2cF ( ~̂��aB ~̂�a)� T = T h� ; p split;p2k�4s(B) + pk�6Pa2P1p �cF (~��aB~�a) + p2k�2cF (�̂�aB�̂a)� T = T h1;p; p inert:Proof. This follows easily from the right coset decomposition of each of the Heckeoperators. The decomposition of T hp was computed by Krieg in [37], p.677. Thedecomposition of T hp for split p and that of T h� was computed by the author in [35],Lemmas 6.5, 6.8, but see also Lemmas 6.6 and 6.9 in loc. cit. Finally, one can showthat T1;p decomposes in the following way:T h1;p := �Z " 1 p p2 p#�Z == �Z " p2 p 1 p# t a�2OK=p�Z � p p�p2 p�� 1 �t a�;
2OK=p�2Z=p2 �Z " 1 � �+�
 
p p
p2��p p # t a�2OK=p�2Z=p �Z " p p�1 � �p p2 #tG�;�2Z=pZ���0 (mod p)�Z � p �p �p p � t G�2(Z=pZ)�
2(OK=pOK)� �Z " p � 
p 
 j
j2��1p p # :(5.7)
This can be deduced from the calculations in [23]. ˜Remark 5.4. Note that in Lemma 5.3, we have cF (B) = 0 unless B 2 S.For any split or rami�ed prime p = �� set �0p := fT h� ; T h� ; Tpg and for any inertprime p, set �0p := fT hp ; T h1;pg.Proposition 5.5 (Gritsenko, [23]). The Hecke algebra ThC is generated as a C-algebra by the set Sp �0p.Proposition 5.6. The space Sk(�Z) has a basis consisting of eigenforms.Proof. This is a standard argument, which uses the fact that ThC is commutativeand all T 2 ThC are self-adjoint. ˜



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 295.3. Integral structure of the hermitian Hecke algebra. For a split or ram-i�ed prime p = �� set �p = fT hp ; �kp2�kT h� ; �kp2�kT h�gand for an inert prime p set �p := fT hp ; T h1;pg:De�nition 5.7. Set ThZ (resp. Th;(2)Z ) to be the Z-subalgebra of ThC generated bySp�p (respectively by Sp 6=2�p). For any Z-algebra A, set ThA := ThZ 
Z A andTh;(2)A := Th;(2)Z 
Z A.Note that ThZ is a �nite free Z-algebra.Lemma 5.8. Let ` > 2 be a rational prime, E a �nite extension of Q` and O thevaluation ring of E. Suppose that F (Z) = PB2S cF (B)e2�itr (BZ) 2 Sk(�Z) withcF (B) 2 O for all B 2 S. Let T 2 ThO. Then TF (Z) = PB2S cTF (B)e2�itr (BZ)with cTF (B) 2 O for every B 2 S.Proof. This follows directly from Lemma 5.3 and the assumption that ` be odd.(The latter implies that the operators T h2 and (i + 1)k22�kT hi+1 preserve the O-integrality of the Fourier coe�cients of F .) ˜From now on N h will denote a �xed basis of eigenforms of Sk(�Z).Theorem 5.9. Let F 2 N h. There exists a number �eld LF with ring of integersOLF such that �F;C(T ) 2 OLF for all T 2 ThOLF .Proof. This is similar to the Eichler-Shimura isomorphism in the case of ellipticmodular forms. ˜Let ` be a rational prime and E a �nite extension of Q` containing the �eldsLF from Theorem 5.9 for all F 2 N h. Denote by O the valuation ring of E andby � a uniformizer of O. As in the case of elliptic modular forms, F 2 N h givesrise to an O-algebra homomorphism ThO ! O assigning to T the eigenvalue of Tcorresponding to the eigenform F . We denote this homomorphism by �F and itsmod � reduction by �F . Theorem 5.9 implies that we haveThE �= YF2NhE:Moreover, as in the elliptic modular case, we have(5.8) ThO �=Y
m

ThO;m;where the product runs over the maximal ideals of ThO and ThO;m denotes thelocalization of ThO at m. A similar description holds for Th;(2)O . As before, if
m = ker�F , we write mF for m or if we want to emphasize what ring m lives in, wewrite mThO;F or mTh;(2)O ;F accordingly.



30 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)5.4. Action on the Maass space.Theorem 5.10 (Gritsenko, [23], section 2). The action of the Hecke algebra ThCrespects the decomposition of Sk(�Z) into the Maass space and its orthogonal com-plement.Theorem 5.11 (Gritsenko, [23], section 3). There exists a C-algebra mapDesc : ThC ! T(2)Csuch that for every T 2 ThC the diagramSMaassk (�Z) T
// SMaassk (�Z)Sk�1 �4; ��4� ��Desc(T )//f 7!Ff OO Sk�1 �4; ��4� ��f 7!FfOOcommutes. In particular one hasDesc(T hp ) = pk�1 + pk�2 + pk�3 + Tp2 for all p 6= 2,Desc(T h1;p) = pk�4(1 + p2)Tp2 + p2k�8(p3 + p2 + p� 1) if p is inert in K,Desc(T h� ) = pk�2��k(1 + p)Tp if p = �� is split in K;Desc(T h1+i) = 3 � 2k�4(1 + i)�kTr T2Desc(T h2 ) = 2k�4(1 + i)�k�(Tr T2)2 � 2k�1�:(5.9)Here Tn is as in section 5.1, and Tr T2 denotes the operator from De�nition 5.1.Corollary 5.12. If f 2 Sk�1 �4; ��4� �� is an eigenform, then so is Ff .Remark 5.13. Let f 2 N , f 6= f�. We will always assume that either Ff or Ff�belongs to N h. Hence we can write N h = NMtNNM, where NM consists of Maasslifts Ff with f 2 N and NNM consists of eigenforms orthogonal to those in NM.5.5. Lifting Hecke operators to the Maass space. Let E and O be as before.We will now prove a result regarding the map Desc, which will be used in section7.3. Let TZ and T0Z be as in De�nition 5.1. It is clear from Theorem 5.11 andthe de�nition of Th;(2)Z that Desc(Th;(2)A ) = T0A for any O-algebra A. Moreover, wehave the following diagram(5.10) Th;(2)O Desc

//o
››

T0Oo
››Q

m(2) Th;(2)O;m(2) //
Q

m0 T0O;m0with the lower horizontal arrow de�ned so that the diagram commutes. It is clearthat Desc respects the direct product decomposition in diagram (5.10). In partic-ular, for f 2 N , Desc : Th;(2)O “ T0O factors through Th;(2)O;m(2)Ff “ T0O;m0f . Let TMObe the image of Th;(2)O in EndC(SMk (�Z)). The horizontal arrows in diagram (5.10)



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 31factor through TMO �=QmM TMO;mM and the following diagram(5.11) Th;(2)O //o
››

TMO //o
››

T0Oo
››Q

m(2) Th;(2)O;m(2) //
Q ~m TMO;mM //

Q
m0 T0O;m0commutes. All the horizontal arrows in diagram (5.11) are surjections and thelower ones are induced from the upper ones, which respect the direct productdecompositions. In particular we haveTh;(2)O;m(2)Ff “ TMO;mMFf “ T0O;m0f :Let NMFf := fF 2 NM j mMFf = mMF g: The goal of this section is to prove thefollowing proposition.Proposition 5.14. If f 2 N , f 6= f� is ordinary at `, and ` - (k�1)(k�2)(k�3),then for every split prime p = ��, p - `, there exists TM(p) 2 TMO;mMFf such thatDesc(TM(p)) 2 T0O;m0f equals the image of Tp 2 T0O under the canonical projectionT0O “ T0O;m0f .As will be discussed in section 9.1, to every eigenform F 2 Sk(�Z) one canattach a 4-dimensional `-adic Galois representation �F . Moreover, if F = Fg , forsome g 2 N , then the Galois representation has a special form(5.12) �Fg = ��gjGK (�g 
 �)jGK� ;where �g is the Galois representation attached to g (cf. section 2.3) and � is the`-adic cyclotomic character. Let f be as in Proposition 5.14. Set R0 :=QF2NMFf Oand let R be the O-subalgebra of R0 generated by the tuples (�F (T ))F2NMFf for allT 2 TMO . Note that the expression �F (T ) makes sense since SMk (�Z) is Hecke stable.Then R is a complete Noetherian local O-algebra with residue �eld F = O=�. It isa standard argument to show that R �= TMO;mMFf .Proof of Proposition 5.14. Let I` denote the inertia group at `. For every g 2 N ,ordinary at `, we have by (5.12) and Theorem 3.26 (2) in [27] that�Fg jI` �= 2664�k�2 �1 �k�1 ��3775 :If ` - (k � 1)(k � 2)(k � 3) it is easy to see that there exists � 2 I` such that theelements �1 := �k�2(�), �2 := 1, �3 := �k�1(�), �4 := �(�) are all distinct mod �.For every g as above, we choose a basis of the space of �g so that �g is O-valuedand �Fg (�) = diag(�1; �2; �3; �4). Let S be the set consisting of the places of Klying over ` and the place (i+ 1). Note that we can treat �Fg as a representationof GK;S , the Galois group of the maximal Galois extension of K unrami�ed awayfrom S. Moreover, tr �Fg (GK;S) � R, since GK;S is generated by conjugates of



32 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Frobp, p 62 S and for such a p, tr �Fg (Frobp) 2 R by Theorem 9.2 (i) and the factthat the coe�cients of the characteristic polynomial of �Fg (Frobp) belong to ThO.Set ej =Yl6=j � � �l�j � �l 2 O[GK;S ] ,! R[GK;S ]and e := e1 + e2. Let� := YFg2NMFf �Fg : GK;S ! YFg2NMFf GL4(O):We extend � to an R-algebra map �0 : R[GK;S ]!M4(R0). Note that�0(Frob� e) = YFg2NMFf �Fg(Frob�)�0Fg (e) = YFg2NMFf �g(Frob�)and thus tr �0(Frob� e) = (ag(p))Fg2NMFf 2 R;where g =P1n=1 ag(n)qn. De�ne TM(p) to be the image of tr �0(Frob� e) under theO-algebra isomorphism R ��! TMO;mMFf . ˜Corollary 5.15. If f 2 N , f 6= f� is ordinary at `, and ` - (k � 1)(k � 2)(k � 3),then for every split prime p = ��, p - `, there exists T h(p) 2 Th;(2)O;m(2)Ff such thatDesc(T h(p)) 2 T0O;m0f equals the image of Tp 2 T0O under the canonical projectionT0O “ T0O;m0f . 6. The standard L-function of a Maass liftLet Ff be the Maass lift of f 2 N . The goal of this section is to study thenumerator of the coe�cient CFf in formula (1.1). To do so we need to de�nethe cusp form � in (1.1). This will be done in subsection 7.3 (formula (7.15)).In this section we de�ne an Eisenstein series E(Z; s;m;�h) and a theta series ��such that their product is closely related to �. We then express the inner product
Ff ; E(Z; s;m;�h)��� by an L-function associated to f .We begin by de�ning the appropriate theta series which will be used in the innerproduct. Let f be an ideal of OK and � a Hecke character of K with conductor f.We assume that the in�nity component of � has the form�1(x1) = jx1jtxt1 ;for some integer �k � t < �6. Following [50] we �x a Hecke character � of K suchthat �1(y1) = jy1jy1 and �jA� = ��4� � :Such a character always exists, but is not unique (cf. [51], lemma A.5.1). Put 0 = ��1��2. Let l = t+ k + 2 and � = l � 2. Let � 2 S be such that the Fouriercoe�cient cFf (�) is non-zero. Let b 2 Q be such that g� � g 2 bZ for all g 2 O2K ,and let c0 2 Z be such that g� ��1 g 2 (c0)�1Z for all g 2 O2K . Let c 2 Z be suchthat bc generates the Z-fractional ideal (4c0)NK=Q(f) \ (b)f. Note that when b = 1,(c) = (4c0NK=Q(f)).



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 33De�ne a Schwartz function � : M2(AK;f) ! C by setting �(x) = �f(detx) ifx 2 Qp-1M2(OK;p) and �(x) = 0 otherwise. Then the theta series of our interestis de�ned by: ��(Z) = X�2M2(K)�(�) (det �)� e(tr (�� ��Z)):We have �� 2 Ml(�h0(b; c);  0) by [50], appendix, Proposition 7.16 and [51], page278. In fact, since � 6= 0, �� is cusp form ([50], appendix, page 277). In this sectionwe will denote by �h1 a congruence subgroup of �Z such that �� 2 Ml(�h1) and�h1 \K� = f1g. We set �h := �h1 \ G1(Q). Note that we have Ff 2 Mk(�h). Wealso de�ne an Eisenstein series of weight m = k � l and level �h by putting:E(Z; s;m;�h) = X
2�h\P (Q)n�h(det ImZ)s�m2 jm
:The Petersson inner product of Ff against E(�; s;m;�h) �� has the form
Ff ; E(�; s;m;�h) ��)��h = Z�hnH Ff (Z)E(Z; s;m;�h) ��(Z)(det ImZ)k�4dXdY:Note that we use a volume form, which is 4 times the volume form used in [51]. Bycombining formulas (22.9), (22.18b) and (20.19) from [51] we arrive at the following:
Ff ; E(�; s;m;�h) ��)��h = 64[�h0(c) : �h1(c)]b�4�((s� 2))(det �)�s� 12 (k+l)+2�� cFf (�)Lst(Ff ; s+ 1; �)B(s)Lc(2s; �Q)Lc �2s� 1; �Q ��4� �� :(6.1)
The meaning of the various factors in the product is explained below. We startwith the L-function Lst(Ff ; s; �) = Yp-1Lst(Ff ; s; �)p:This is the standard L-function of Ff twisted by the Hecke character �:(6.2)Lst(Ff ; s; �)p = (Q4j=1f(1�N(p)4��1p;j��(p)N(p)�s)(1�N(p)4�p;j��(p)N(p)�s)gQ2j=1f(1�N(p)2��1p;j��(p)N(p)�s)(1�N(p)�p;j��(p)N(p)�s)g�1;for (p) = pp and (p) = pe, respectively. Here �p;i denote the p-Satake parametersof Ff . (For the de�nition of p-Satake parameters when p inerts or rami�es in K,see [29], and for the case when p splits in K, see [24].) The L-function in thedenominator of (6.1) is the Dirichlet L-function with Euler factors at all p j cremoved (cf. De�nition 7.2). Furthermore,�((s)) = (4�)�2s�k�l+1 ��s+ 12 (k + l)���s+ 12 (k + l)� 1� ;and B(s) = Qv2b gp(��(pOK)p�2s), where b denotes the set of primes at whichb�1� is not regular in the sense of ([51], 16.1) and gp is a polynomial with coe�cientsin Z and constant term 1.For a prime p of OK of residue characteristic p, with p odd, set �p;j := �dp;j ,where �p;j , j = 1; 2 denote the p-Satake parameters of f (cf. section 4.2), and dis the degree over Fp of the �eld OK=p. For the prime p = (i + 1) of OK , set�p;1 := a(2) and �p;2 := a(2).



34 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)De�nition 6.1. For a Hecke character  of K, setL(BC(f); s;  ) := Y
p-1 2Yj=1(1�  �(p)�p;j(Np)�s):Remark 6.2. If �f denotes the automorphic representation of GL2(A) associatedwith f , then L(BC(f); s;  ) is the classical analogue of the L-function attached tothe base change of �f to K twisted by  .Remark 6.3. Let g be the modular form associated with the character  (cf.[31], section 12.3) and suppose that  1(x1) = � x1jx1j�u. ThenL(BC(f); s;  ) = (1�  �(p)a(2)2�s)�1D(s+ u=2; f�; g );where D(s; �; �) denotes the convolution L-function de�ned in [26], where it is de-noted by L(�f� 
 �g ; s). Here p denotes the prime of OK lying over (2).Proposition 6.4. Let � be as before. The following identity holds(6.3) Lst(Ff ; s; �) = L(BC(f); s� 2 + k=2; !�)L(BC(f); s� 3 + k=2; !�):Here ! is the unique Hecke character of K unrami�ed at all �nite places within�nity type !1(z) = � zz ��k=2.Proof. This is a straightforward calculation on the Satake parameters of f and ofFf . ˜7. CongruenceIn this section we de�ne a hermitian modular form � as in (1.1) and formulatethe main congruence result (Theorem 7.12). The form � will be constructed (insection 7.3) as a combination of a certain Eisenstein series and a theta series, whosearithmetic properties are studied below.7.1. Fourier coe�cients of Eisenstein series. We keep the notation from sec-tion 6 and assume b = 1. Consider the set Xm;c of Hecke characters �0 of K, suchthat(7.1) �01(x1) = xm1jx1jm ;(7.2) �0p(xp) = 1 if p -1; xp 2 O�K;p and xp � 1 2 cOK;p:Here m = k � l = �t� 2 > 0 (since t < �6) denotes the weight of the Eisensteinseries E(Z; s;m;�h) de�ned in section 6. For g 2 G(A), let E(g; s; c;m; �0) denotethe Siegel Eisenstein series de�ned in section 3.2. We put, as before,E(Z; s;m; �0; c) = j(g1; i)mE(g; s; c;m; �0);where Z = g1i and g = (g1; 1). Recall that in section 6 we made use of acongruence subgroup �h1 of G(Q) such that �� 2 Ml(�h1) and �h1 \ K� = f1g.In this section we �x a particular choice of �h1 , namely, we set �h1 := �h1(c): Notethat as long as c - 2, we have �h1(c) \K� = f1g and since (cond 0) j c, where  0is the character of ��, we have �� 2 Ml(�h1(c)). The following lemma provides aconnection between E(Z; s;m; �0; c) and E(Z; s;m;�h1(c)). Here E(Z; s;m;�h1(c)) isde�ned in the same way asE(Z; s;m;�h) in section 6. Recall that �h := �h1\G1(Q).



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 35Lemma 7.1. The set Xm;c is non-empty and(#Xm;c)E(Z; s;m;�h1(c)) = X�02X E(Z; s;m; �0; c):Proof. This is identical to the proof of Lemma 17.2 in [51]. Note that �h1(c) ��h(c). ˜De�nition 7.2. Let M be a non-zero integer. For a Hecke character  of Q setLM (s;  ) := L(s;  ) YpjM(1�  �(p)p�s);where L(s;  ) denotes the Dirichlet L-function.Recall that for any Hecke character  : K� nA�K ! C� we denote by  Q itsrestriction to A�. Moreover, if  satis�es (7.1) and (7.2) for c 2 Z, set  c(x) = (x). Let(7.3) D(Z; s;m; �0; c) = Lc(2s; �0Q)Lc�2s� 1; �0Q��4� ��E(Z; s;m; �0; c):It has been shown in [51] (Theorem 17.12(iii)) that D(Z; s;m; �0; c) is holomorphicin the variable Z for s = 2� m2 as long as m � 2. In our case m = �t� 2 > 4 ast < �6. It follows from formula (18.6.2) in [50] that(7.4) D(Z; s;m; �0; c)jm
 = (�0c)(det d
)D(Z; s;m; �0; c) == ((�0)c)�1c (det a
)D(Z; s;m; �0; c):Instead of looking at D(Z; s;m; �0; c) we will study the Fourier expansion of atransform D�(Z; s;m; �0; c) de�ned by(7.5) D�(Z; s;m; �0; c) = D(Z; s;m; �0; c)jmJ:First note that since D is holomorphic at s = 2� m2 , so is D�. WriteD�(Z; 2�m=2;m; �0; c) =Xh2S c�0h e(tr hZ)for the Fourier expansion of D�. Here S := fh 2M2(K) j h� = hg.Lemma 7.3.(7.6) c�0h = i�2m22m+1�3c2�� 1�rank(h)Yj=0 Lc 2�m� j; �0��4� �j�1! Yp2c fh;Y 1=2;p(�0(p)pm�4);where fh;Y 1=2;p is a polynomial with coe�cients in Z and constant term 1, and c isa certain �nite set of primes. If n < 1 we set Qnj=0 = 1.Proof. The lemma follows from Propositions 18.14 and 19.2 in [50], combined withLemma 18.7 of [50] and formulas (4.34K) and (4.35K) in [49]. It is a straightforwardcalculation. ˜Proposition 7.4. Fix a prime ` - 2c, and assume that �k � t < �6. Set�Q;c := Qpjc �Q;p. Let E0 be a �nite extension of Q` containing K(�Q;c), the�nite extension of K generated by the values of �Q;c. Denote by O0 the valuationring of E0. For every h 2 S, we have ��3c�Qh 2 O0.



36 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Proof. The proposition follows from Lemma 7.3 upon noting that for every Dirichletcharacter  of conductor dividing c and every n 2 Z<0, one has L(n;  ) 2 Z`[ ](by a simple argument using [59], Corollary 5.13) and (1 �  (p)p�n) 2 Z`[ ] forevery p j c. ˜Let �� be as above. Set ��� := ��jlJ .Corollary 7.5. Fix a prime ` - 2c, and assume that �k � t < �6. Let E0 be a�nite extension of Q` containing K(�Q;c; �c), where �c denotes the set of c-th rootsof 1. Denote by O0 the valuation ring of E0. Then the Fourier coe�cients of��3D�(Z; 2�m=2;m; ( 0)c; c) ���(Z)all lie in O0.Proof. Note that it follows from the de�nition of �� and Theorem 2.2 that theFourier coe�cients of ���(Z) lie in O. Thus the Corollary is a consequence ofProposition 7.4. ˜7.2. Some formulae. We keep notation from the previous section. Note that since�� 2 Ml(c;  0), we have D(Z; 2 � m=2;m; ( 0)c; c) ��(Z) 2 Mk(c) by (7.4). Forf 2 N we can write(7.7)D(Z; 2�m=2;m; ( 0)c; c) ��(Z) = hD(�; 2�m=2;m; ( 0)c; c) ��; Ff i�h0 (c)hFf ; Ff i�h0(c) Ff + F 0;where F 0 2Mk(c) and hFf ; F 0i = 0. Our goal now is to express(7.8) hD(�; 2�m=2;m; ( 0)c; c) ��; Ff i�h0(c)in terms of L-functions of f . In section 6 we already carried out this task for theinner product 
Ff ; E(�; s;m;�h) ����h with �h = �h1(c) \ G1(Q), so we will nowrelate the two inner products to each other. We �rst relate the inner product (7.8)to 
Ff ; E(�; s;m;�h1(c)) ����h1 (c).We have(7.9) 
E(�; s;m;�h1(c)) ��; Ff��h1 (c) =Z�h1(c)nHE(Z; s;m;�h1(c)) ��(Z) Ff (Z) (det Y )k�4 dX dY == Z�h0(c)nH ��(Z)0@ X
2�h1(c)n�h0(c) 0c(det a
)E(Z; s;m;�h1(c))jm
1A Ff (Z) dX dY:



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 37Using Lemma 7.1 (note that ( 0)c 2 Xm;c) we get(7.10) X
2�h1(c)n�h0(c) 0c(det a
)E(Z; s;m;�h1(c))jm
 == (#Xm;c)�1 X�02X X
2�h1(c)n�h0(c) 0c(det a
)E(Z; s;m; �0; c)jm
 == (#Xm;c)�1 X�02XE(Z; s;m; �0; c) X
2�h1(c)n�h0(c)( 0((�0)c)�1)c(det a
) == (#Xm;c)�1[�h0(c) : �h1(c)]E(Z; s;m; ( 0)c; c);where the last equality follows from the orthogonality relation for characters uponnoting that both  0 and �0 are trivial on �h1(c). Thus (7.3), (7.9) and (7.10) implythat(7.11) hD(�; s;m; ( 0)c; c)��; Ff i�h0(c) = [�h0(c) : �h1(c)]�1 #Xm;c � Lc(2s;  0Q)�� Lc�2s� 1;  0Q��4� ��
E(�; s;m;�h1(c))��; Ff��h1 (c) :Moreover, by [51], formula (17.5) and Remark 17.12(2), we haveE(Z; s;m;�h1(c)) = 1[�h1(c) : �h] X�2�hn�h1(c)E(Z; s;m;�h)jm�:Hence we get(7.12) hD(�; s;m; ( 0)c; c)��; Ff i�h0(c) = [�h0(c) : �h]�1#Xm;c � Lc(2s;  0Q)�� Lc�2s� 1;  0Q��4� ��
E(�; s;m;�h)��; Ff ��h :Using (6.1) we obtainhD(�; s;m; ( 0)c; c)��; Ff i�h0 (c) = 16�((4�)�2s0)(det �)�s0B(s)�1 �#Xm;c�� Lc(2s;  0Q)Lc�2s� 1;  0Q��4� ���� �(s0) �(s0 � 1) cFf (�)Lst(Ff ; s+ 1; �)Lc(2s; �Q)Lc �2s� 1; �Q ��4� �� ;
(7.13)
where s0 := s+ k � 1 + t=2, and �nallyhD(�; 2�m=2;m; ( 0)c; c)��; Ff i�h0(c) = R��2t�2k�3�(t+ k + 2)�(t+ k + 1)�� Lst(F; 3�m=2; �);(7.14)where R := #Xm;c � 2�4(t+k+1)cFf (�)B(2�m=2)�1 (det �)�t�k�2.7.3. Main congruence result. We will now prove the �rst main result of thispaper. We will show that �n-divisibility of the algebraic part of L(Symm2 f; k)implies the existence of a non-Maass cusp form congruent to Ff modulo �n. Wekeep notation from previous sections.



38 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)7.3.1. Algebraicity of CFf . Let ` - 2c be a rational prime, and let E be a �niteextension ofQ` with valuation ring O. We will always assume that E is \su�cientlylarge" in the sense that it contains certain algebraic numbers/number �elds, whichwill be speci�ed later. In particular, we assume that E contains the �eld E0 ofCorollary 7.5. Fix a uniformizer � 2 O. We denote the �-adic valuation by ord�.To shorten notation in this section we set D(Z) := D(Z; 2�m=2;m; ( 0)c; c); andD�(Z) = D�(Z; 2 � m=2;m; ( 0)c; c): Applying the operator jkJ to both sides of(7.7), we get D���� = hD��; Ff ihFf ; Ff i Ff +G0 2Mk(J�1�h0(c)J)where G0 := F 0jkJ and we have hFf ; G0i = 0. By Corollary 7.5, the Fouriercoe�cients of ��3D���� lie in O. De�ne a trace operatortr :Mk(J�1�h0(c)J)!Mk(�Z)by F 0 7! X
2J�1�h0(c)Jn�Z F 0jk
and set(7.15) � := ��3tr (D����) = [�Z : �h0(c)]��3 hD��; Ff ihFf ; Ff i Ff +G00;where G00 = ��3trG0 2 Mk(�Z) and we have hFf ; G00i = 0. By the q-expansionprinciple (Theorem 2.2), the Fourier coe�cients of � lie in O. SetCFf := [�Z : �h0(c)]��3 hD��; Ff ihFf ; Ff i :By Proposition 4.5, the Fourier coe�cients of Ff lie in the ring of integers Z`of Q` and generate a �nite extension of Q`. We assume E contains all the Fouriercoe�cients of Ff . The numerator and denominator of hD��;Ff ihFf ;Ff i were studied insections 7.2 and 4.2 respectively.Lemma 7.6.hD��; Ff ihFf ; Ff i = (�) � Lalg(BC(f); 1 + t+k2 ; �!)Lalg(BC(f); 2 + t+k2 ; �!)Lalg(Symm2 f; k) ;where � := #Xm;c � B(2�m=2)�1(det �)�k�t�2�3cFf (�);Lalg(BC(f); j + (t+ k)=2; �!) := �(t+ k + j)L(BC(f); j + t+k2 ; �!)�t+k+2j hf; fi ;Lalg(Symm2 f; n) := �(n)L(Symm2 f; n)�n+2 hf; fifor any integer n, and (�) 2 Q \ E is a �-adic unit.Proof. This is a straightforward calculation using (7.14), Proposition 6.4 and The-orem 4.8. ˜



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 39It follows from Remark 6.3 and from Theorem 1 on page 325 in [26] that(7.16) Lalg(BC(f); 1 + (t+ k)=2; �!) 2 Qand(7.17) Lalg(BC(f); 2 + (t+ k)=2; �!) 2 Qand from a result of Sturm [53] that(7.18) Lalg(Symm2 f; k) 2 Q:We note here that [53] uses a de�nition of the Petersson norm of f which di�ersfrom ours by a factor of 3� , the volume of the fundamental domain for the action ofSL2(Z) on the complex upper half-plane. We assume that E contains values (7.16),(7.17), and (7.18).Corollary 7.7. CFf 2 Q \ E:As we are ultimately interested in (mod �) congruences between hermitian mod-ular forms, we will use \integral periods" 
+f , 
�f instead of hf; fi (cf. section 8.3).It follows from Proposition 8.15 in section 8.3 that we have:(7.19) hf; fi = (�) � 
+f 
�f ;where � 2 Z` is de�ned in section 8.3 and (�) is a �-adic unit as long as f is ordinaryat ` and ` > k, which we assume in what follows. We also assume that E contains� and that ` - #Xm;c.Corollary 7.8.(7.20)CFf = (�) cFf (�) ��1 Lint(BC(f); 2 + (t+ k)=2; �!)Lint(BC(f); 1 + (t+ k)=2; �!)Lint(Symm2 f; k) ;whereLint(BC(f); j + (t+ k)=2; �!) := �(t+ k + j)L(BC(f); j + (t+ k)=2; �!)�t+k+2j 
+f 
�f ;Lint(Symm2 f; k) := �(k)L(Symm2 f; k)�k+2 
+f 
�f ;and (�) 2 E with ord�((�)) � 0.Proof. This follows directly from Lemma 7.6 upon noting that ord�(B(2�m=2)) �0 and ord�(det �) � 0. ˜We are now going to show that we can choose � to make cFf (�) in (7.20) a �-adicunit. Since we have derived our formulas with the assumption b = 1, where b isde�ned in section 6, we need to choose � appropriately so this assumption remainsvalid. If � is `-ordinary in the sense of the following de�nition, then we can takeb = 1.De�nition 7.9. For a rational prime `, we will say that � 2 S is `-ordinary if thefollowing two conditions are simultaneously satis�ed:� fg��ggg2O2K = Z� there exists c0 2 Z with (c0; `) = 1 such that fg���1ggg2O2K � (c0)�1Z.



40 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Lemma 7.10. If f 2 N is such that the Galois representation �f jGK is absolutelyirreducible, then there exists an `-ordinary � 2 S such that ord�(cFf (�)) = 0.Proof. Write the Fourier expansion of f as f =P1n=1 b(n)qn. Since Ff is a Maassform, we have cFf (�) =Pd2Z>0; dj�(�) dk�1c�Ff (4 det �=d2), where c�Ff and �(�) werede�ned in De�nition 4.2. Note that � = [ n 1 ] is `-ordinary (with c0 = n) for anypositive integer n with (n; `) = 1. Using Proposition 4.5 and Fact 2.1 we getcFf ([ 1 1 ]) = �2i(b(2)2 � b(2)2)and cFf ([ p 1 ]) = 2ib(p)(b(2)2 + b(2)2)if p 6= ` is inert in K. As will be shown in Proposition 8.13, absolute irreducibil-ity of �f jGK implies that there exists an inert prime p0, distinct from `, suchthat b(p0) is a �-adic unit. Suppose now that both ord� �cFf ([ 1 1 ])� > 0 andord� �cFf ([ p0 1 ])� > 0. Then we must have ord�(b(2)) > 0, which is impossible as` is odd and jb(2)j = 2(k�2)=2 (cf. [31], formula (6.90)). ˜De�nition 7.11. For f 2 N such that the Galois representation �f jGK is abso-lutely irreducible, let Sf;` denote the set of positive integer n with (n; `) = 1 suchthat ord� �cFf ([ n 1 ])� = 0. By the proof of Lemma 7.10 the set Sf;` is non-empty.7.3.2. Congruence between Ff and a non-Maass form. Our goal is to prove thatFf is congruent to a non-Maass form. Note that if CFf = a��n, with a 2 O�and n > 0, then Ff is congruent to �a�1�nG00 mod �n. However, G00 need not apriori be orthogonal to the Maass space. We overcome this obstacle by introducinga certain Hecke operator ~T h which will kill the \Maass part" of G00. For g 2 N andF 2 N h, the set� := f�g;C(T ) j g 2 N ; T 2 TZg [ f�F;C(T ) j F 2 N h; T 2 ThZgis contained in the ring of integers of a �nite extension of Q (cf. section 5.1 andTheorem 5.9). We assume that E contains �. From now on assume that the Galoisrepresentation �f jGK is absolutely irreducible. Without loss of generality we alsoassume that Ff 2 N h (cf. Remark 5.13). For any F 2 N h, let mF � ThO be themaximal ideal corresponding to F . It follows from (5.8) that there exists T h 2 ThOsuch that T hFf = Ff and T hF = 0 for all F 2 N h such that mF 6= mFf . We applyT h to both sides of � = CFfFf +G00:As the Fourier coe�cients of Ff and � lie in O, so do the Fourier coe�cients ofT h� by Lemma 5.8. Moreover, since �� is a cusp form, so are � and T h�. LetS(2)k;Ff � Sk(�Z) denote the subspace spanned byN h;(2)Ff := fF 2 N h j m
(2)F = m

(2)Ff g;where m
(2)F and m

(2)Ff are the maximal ideals of Th;(2)O corresponding to F and Ff ,respectively (cf. section 5.5). Then T h�; T hFf = Ff ; T hG00 2 S(2)k;Ff . The imageof Th;(2)O inside EndC(S(2)k;Ff ) can be naturally identi�ed with Th;(2)O;m(2)Ff . By the



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 41commutativity of diagram (5.10) and the discussion following the diagram, the O-algebra map Desc : Th;(2)O “ T0O factors through Th;(2)O;m(2)Ff “ T0O;m0f . The algebraT0O;m0f can be identi�ed with the image of T0O inside EndC(Sk�1;f ), where Sk�1;f �Sk�1 �4; ��4� �� is the subspace spanned by N 0f := fg 2 N j m0f = m0gg. Here m0fand m0g denote the maximal ideals of T0O corresponding to f and g, respectively.Denote by �f the natural projectionT0O “ T0O;m0f , and by �f the natural projectionTh;(2)O “ Th;(2)O;m(2)Ff . Assume ` > k, hence in particular ` - (k � 1)(k � 2)(k � 3). ByCorollary 5.15, for every split prime p = ��, p - `, there exists T h(p) 2 Th;(2)O;m(2)Ffsuch that Desc(T h(p)) = �f (Tp) 2 T0O;m0f . As will be proven in section 8 (cf.Proposition 8.14) there exists a Hecke operator T 2 T0O;m0f such that Tf = �f ,Tf� = �f�, and Tg = 0 for all g 2 N 0f , g 6= f; f�. The operator T is a polynomialPT in the elements of �f (�0) with coe�cients in O (here �0 is as in De�nition 5.1).Let ~T h 2 Th;(2)O;m(2)Ff be the Hecke operator given by the polynomial P ~Th obtainedfrom PT by substituting� �f (T hp � pk�1 � pk�2 � pk�3) for �f (Tp2) if p inert in K,� T h(p) for �f (Tp) if p - ` splits in K,� �f (�k0`2�k(`+ 1)�1T h�0) for �(T`) if ` = �0�0 splits in K.Note that �k0`2�k(`+1)�1T h�0 is indeed an element of ThO;m(2)Ff as `+1 is invertiblein O. It follows from (5.9) that Desc( ~T h) = T . Apply ~T h to both sides ofT h� = CFfFf + T hG00:Note that ~T hT h� is again a cusp form. The operator ~T h preserves the Maass spaceand its orthogonal complement by Theorem 5.10. Another application of Lemma5.8 shows that the Fourier coe�cients of ~T hT h� lie in O. Moreover, since Desc is aC-algebra map, it is clear from the de�nition of ~T h that ~T hFf = �Ff and ~T hF = 0for any F inside the Maass space of Sk(�Z) which is orthogonal to Ff . We thus get(7.21) ~T hT h� = �CFfFf + ~T hT hG00with ~T hT hG00 orthogonal to the Maass space.As CFf 2 Q \ E � C by Corollary 7.7, it makes sense to talk about its �-adic valuation. Suppose ord�(� CFf ) = �n 2 Z<0. We write F � F 0 (mod �n)to mean that ord�(cF (h) � cF 0(h)) � n for every h 2 S. Note that since theFourier coe�cients of ~T hT h� and of Ff lie in O, but � CFf 62 O, we must havethat either ~T hT hG00 6= 0 or Ff � 0 mod �. However, by Proposition 4.5, the latteris only possible if f � f� mod � and this contradicts absolute irreducibility of�f jGK by Proposition 8.13 in section 8.2. Hence we must have ~T hT hG00 6= 0. Write� CFf = a��n with a 2 O�. Then the Fourier coe�cients of �n ~T hT hG00 lie in Oand one has Ff � �a�1�n ~T hT hG00 (mod �n):As explained above, �a�1�n ~T hT hG00 is a hermitian modular form orthogonal tothe Maass space.We have proven the following theorem:



42 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Theorem 7.12. Let k a positive integer divisible by 4 and ` > k a rational prime.Let f 2 N be ordinary at ` and such that �f jGK is absolutely irreducible. Fix apositive integer m 2 Sf;` and a Hecke character � of K such that ord`(cond�) = 0,�1(z) = � zjzj��t with �k � t < �6, and ` - #X�t�2;4mNK=Q(cond�). Let E be asu�ciently large �nite extension of Q` with uniformizer �. If�n := ord�0@ 2Yj=1Lint(BC(f); j + (t+ k)=2; �!)1A� ord�(Lint(Symm2 f; k)) < 0where ! is the unique Hecke character of K which is unrami�ed at all �nite placesand such that !1(z) = � zjzj��k, then there exists F 0 2 Sk(�Z), orthogonal to theMaass space, such that F 0 � Ff (mod �n).Remark 7.13. For � and m as in Theorem 7.12, set c = 4mNK=Q(cond�). InTheorem 7.12, we say that E is su�ciently large if it contains the �eld K(�Q;c; �c),the set �, the elements (7.16), (7.17), (7.18), the Fourier coe�cients of Ff and thenumber �.Corollary 7.14. Suppose that � in Theorem 7.12 can be chosen so thatord�0@ 2Yj=1Lint(BC(f); j + (t+ k)=2; �!)1A = 0;then n in Theorem 7.12 can be taken to be ord�(Lint(Symm2 f; k)).Remark 7.15. The existence of character � as in Corollary 7.14 is not knownin general. Some results in this direction (although not applicable to the caseconsidered here) have been obtained by Vatsal in [57]. The problem in our case isthat one would need to control the �-adic valuation of two L-values at the sametime.Remark 7.16. The ordinarity assumption on f in Theorem 7.12 is crucial to ourmethod and is used in section 8 to construct the Hecke operator T annihilating theMaass part of G00 as above as well as to ensure that (�) in (7.19) is a �-adic unit.One expects that the set of primes ` of Q such that a given (non-CM) form f isordinary at ` has Dirichlet density one, but for now no proof of this fact is known.An analogous statement for elliptic curves was proved by Serre [48].7.4. Congruence between Ff and a non-CAP eigenform.Corollary 7.17. Under the assumptions of Theorem 7.12 there exists a non-CAPcuspidal Hecke eigenform F such that ord�(�Ff (T h) � �F (T h)) > 0 for all Heckeoperators T h 2 ThO.Proof. Let F 0 be as in Theorem 7.12. Using the decomposition (5.8), we see thatthere exists a Hecke operator T h0 2 ThO such that T h0 Ff = Ff and T h0 F = 0 foreach F 2 Sk(�Z) which is orthogonal to all Hecke eigenforms whose eigenvalues arecongruent to those of Ff (mod �). Suppose all the elements ofN h whose eigenvaluesare congruent to those of Ff (mod �) are CAP forms. Then applying T h0 to thecongruence Ff � F 0, we get Ff � 0 (mod �). By Proposition 4.5 this is onlypossible if f � f� (mod �). This however leads to a contradiction by Proposition8.13. ˜



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 437.5. The CAP ideal. Recall that we have a Hecke-stable decompositionSk(�Z) = SMk (�Z)� SNMk (�Z);where SNMk (�Z) denotes the orthogonal complement of SMk (�Z) inside Sk(�Z). De-note by TNMO the image of ThO inside EndC(SNMk (�Z)) and let � : ThO “ TNMObe the canonical O-algebra epimorphism. Let Ann(Ff ) � ThO denote the annihi-lator of Ff . It is a prime ideal of ThO and �Ff : ThO “ O induces an O-algebraisomorphism ThO=Ann(Ff ) ��! O.De�nition 7.18. As � is surjective, �(Ann(Ff )) is an ideal of TNMO . We call itthe CAP ideal associated to Ff .There exists a non-negative integer r for which the diagram(7.22) ThO �
//

››

TNMO
››ThO=Ann(Ff ) �

//o�Ff
››

TNMO =�(Ann(Ff ))o
››O // O=�rOall of whose arrows are O-algebra epimorphisms, commutes.Corollary 7.19. If r is the integer from diagram (7.22), and n is as in Theorem7.12, then r � n.Proof. Set NNM := fF 2 N h j F 2 SNMk (�Z)g: Choose any T h 2 ��1(�r) � ThO.Suppose that r < n, and let F 0 be as in Theorem 7.12. We have(7.23) Ff � F 0 (mod �n):and T hF 0 = �rF 0. Hence applying T h to both sides of (7.23), we obtain 0 ��rF 0 (mod �n), which leads to(7.24) F 0 � 0 (mod �n�r):Since r < n, (7.23) and (7.24) imply that Ff � 0 (mod �), which is impossible asshown in the proof of Corollary 7.17. ˜Remark 7.20. The CAP ideal can be regarded as an analogue of the Eisensteinideal in the case of classical modular forms (see e.g. [39]). It measures congru-ences between Ff and non-CAP modular forms. We will show in section 9.2 thatord`(#TNMO =�(Ann(Ff ))) provides a lower bound for the `-adic valuation of theorder of the Selmer group we study in section 9.1.8. Hecke algebras and deformation ringsThe goal of this section is to prove Proposition 8.14 which was used in section7.3 to prove Theorem 7.12, as well as some auxiliary results.



44 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)8.1. Congruences and weak congruences. Let E denote a �nite extension ofQ` containing all Hecke eigenvalues of all the elements of N . Let O be the valuationring of E with uniformizer �, and put F = O=�. Whenever we refer to a prime pbeing split or inert we will always mean split in K or inert in K. Let TZ, T0Z be asin De�nition 5.1. To ease notation in this section we set T := TO and T0 := T0O.Moreover, if a; b 2 O, we write a � b if � j (a� b).Let �f : T ! O be as in section 5.1 and as before set mf = ker�f . Moreover,set �0f := �f jT0 and denote by �0f the reduction of �0f modulo �. Put m0f := ker�0f .From now on let f =P1n=1 a(n)qn and g =P1n=1 b(n)qn denote two elements ofN . We denote by �f ; �g : GQ ! GL2(E) the `-adic Galois representations attachedto f and g, respectively and by �f and �g their mod � reductions with respect tosome lattice in E2. We write �ssf for the semi-simpli�cation of �f . The isomorphismclass of �ssf is independent of the choice of the lattice. (cf. section 2.3).De�nition 8.1. We will say that f and g are congruent (resp. weakly congruent),denoted by f � g (resp. f �w g) if mf = mg (resp. m0f = m0g). We will say thatf and g are congruent at p if a(p) � b(p). Let A be a set of �nite primes of Z ofdensity zero. We will say that f and g are A-congruent, denoted by f �A g if fand g are congruent at p for all primes p 62 A.We note that decompositions analogous to (5.1) and (5.2) hold for T0 and thatthe localizations Tm and T0m0 are Noetherian, local, complete O-algebras. For amaximal ideal m0 � T0, we denote byM(m0) the set of maximal ideals of T whichcontract to m0. Note that the inclusion T0 ,! T factors into a direct product (overall maximal ideals m0 of T0) of injections T0m0 ,! Q
m2M(m0)Tm. We will nowexamine the setsM(m0) a little closer.Lemma 8.2. Let f; g 2 N and let A be a density zero set of �nite primes of Z notcontaining `. Then f � g if and only if f �A g.Proof. One direction is a tautology, so assume f �A g. We have tr �f (Frobp) =a(p) (mod �), tr �g(Frobp) = b(p) (mod �) and det �f (Frobp) = ��4p � pk�2 =det �g(Frobp) for p 6= 2; `. Hence by the Tchebotarev Density Theorem togetherwith the Brauer-Nesbitt Theorem we get �ssf �= �ssg , and thus, a(p) � b(p) for allp 2 A; p 6= 2. Moreover, we have �f jD2 �= ��1f� �2f�, where D2 denotes thedecomposition group at 2, �1f and �2f are unrami�ed characters, with �2f (Frob2) =a(2), and � is the Galois character associated with the Dirichlet character ��4� �(cf. [27], Theorem 3.26 (3)). An analogous result holds for �g . Let � 2 D2 beany lift of Frob2, and let � 2 I2 be such that �(�) = �1, where I2 denotes theinertia group at 2. We want to show that �2f (�) � �2g(�) (mod �). We havetr �f (�) = �1f (�)�(�) + �2f (�) and tr �f (��) = �1f (�)�(�)�(�) + �2f (�). Then as�(�) = �1, we get �2f (�) = 12 (tr �f (�) + tr �f (��)). Similarly we get �2g(�) =12 (tr �g(�) + tr �g(��)). Since �ssf �= �ssg implies the equality of traces of �f and �g,�2f (�) � �2g(�) and the lemma is proved. ˜Proposition 8.3. If f �w g, then either f � g or f � g�.Proof. Assume f �w g. Using the Tchebotarev density Theorem and the Brauer-Nesbitt Theorem, we see that �ssf jGK �= �ssg jGK . By possibly changing a basis of,



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 45say, �g , we may assume that �ssf jGK = �ssg jGK . This implies that �ssf = ��ssg , where �is either as in the proof of Lemma 8.2 or trivial. Hence a(p) � ��4� �i b(p) for some iand all p 6= 2; `. Thus by Lemma 8.2 we are done if we show that a(`) � ��4̀�i b(`).If ` is split, then (since f �w g) we have a(`) � b(`), so assume ` is inert. Inthat case, a(`)2 � b(`)2 hence if a(`) � 0, we are done. Otherwise, f and g are`-ordinary, and in such case �f jD` �= ��1f ��2f� with �2f unrami�ed and �2f (Frob`) isthe unit root �f of X2�a(`)X+��4̀� `k�2 (cf. [27], Theorem 3.26 (2)). Analogousstatements hold for �g. Now, since �f �= �g 
 �i, we must have �f � ��4̀�i �g . As�f is the unique unit root of the polynomial X2�a(`)X+��4̀� `k�2, we must havea(`) � �f , and similarly b(`) � �g , hence the proposition is proved. ˜Corollary 8.4. If f � f�, then M(m0f ) = fmfg. If f 6� f�, then M(m0f ) =fmf ;mf�g. Hence, if f � f�, we have an injection T0m0f ,! Tmf , while if f 6� f�,we have T0m0f ,! Tmf �Tmf� .Proposition 8.5. If f 2 N , then the canonical O-algebra map �0 : T0m0f ! Tmfis injective.Proof. If f � f�, then T0m0f injects into Tmf by Corollary 8.4. Assume that f 6�f�. Note that in that case g �w f implies g 6� g�. By Proposition 8.3, g � for g � f�. Without loss of generality assume that f � g. Consider Tmf asa subalgebra of Qg2N ;g�f O via T 7! (�g(T ))g, and Tmf� as a subalgebra ofQg2N ;g�f� O via T 7! (�g� (T ))g. By Corollary 8.4 we have T0m0f ,! Tmf�Tmf� , sowe just need to prove that the composite T0
m0f ,! Tmf �Tmf� “ Tmf is injective,where the last arrow is projection. Identifying Tmf � Tmf� with a subalgebra ofR := Qg2N ;g�f O �Qg2N ;g�f� O by the embeddings speci�ed above, we see thatT 2 T0m0f maps to an element of R, whose g-entry in the �rst product is the same asthe corresponding g�-entry in the second product for every g 2 N , g � f (this is so,because Tg = ag implies Tg� = ag� for T 2 T0m0f ). Hence if T maps to zero underthe composite T0m0f ,! Tmf �Tmf� ! Tmf , it must be zero in Tmf �Tmf� . ˜8.2. Deformations of Galois representations. The goal of this section is toprove surjectivity of �0 : T0m0f ! Tmf . We will use the theory of deformations ofGalois representations. For an introduction to the subject see e.g. [40].8.2.1. Universal deformation ring. Let C denote the category of local, complete O-algebras with residue �eld F. A morphism between two objects in C is a continuousO-algebra homomorphism which induces the identity on the residue �elds. For anobject R of C we denote by mR its maximal ideal. Let G be a pro�nite group.Two continuous representations � : G ! GL2(R) and �0 : G ! GL2(R) are calledstrictly equivalent if �(g) = x�0(g)x�1 for every g 2 G with x 2 1 + M2(mR)independent of g. We will write � � �0 if � and �0 are strictly equivalent. Considera continuous representation � : G ! GL2(F). If R is an object of C, a continuousrepresentation � : G ! GL2(R) or, more precisely, a strict equivalence of such, iscalled a deformation of � if � = � mod mR. A pair (Runiv; �univ) consisting of anobject Runiv of C and a deformation �univ : G ! GL2(Runiv) is called a universal



46 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)couple if for every deformation � : G ! GL2(R), where R is an object in C, thereexists a unique O-algebra homomorphism � : Runiv ! R such that � � �univ � �in GL2(R). The ring Runiv is called the universal deformation ring of �. By theuniversal property stated above, it is unique if it exists. Note that any O-algebrahomomorphism between objects in C is automatically local, since all objects of Chave the same residue �elds.Theorem 8.6 (Mazur). Suppose that � : G ! GLn(F) is absolutely irreducible.Then there exists a universal deformation ring Runiv in C and a universal defor-mation �univ : G ! GLn(Runiv).Proof. [27], Theorem 2.26. ˜8.2.2. Hecke algebras as quotients of deformation rings. Consider f 2 N and let�f : GQ ! GL2(O) be the associated Galois representation (after �xing a lattice inE2). Let �f : GQ ! GL2(F) be its reduction modulo �. Since �f is unrami�ed awayfrom S = f2; `g, it factors through GQ;S , the Galois group of the maximal Galoisextension of Q unrami�ed away from S. Let GK;S be the image of GK under themapGK ,! GQ “ GQ;S . We will be considering deformations of the representation�f : GQ;S ! GL2(F) and of �f;K := �f jGK;S . From now on we assume that �f;Kis absolutely irreducible. Let (RQ; �Q) and (RK ; �K) denote the universal couplesof �f and �f;K , respectively, which exist by Theorem 8.6. We will denote mRQand mRK by mQ and mK , respectively. Let A be a density zero set of primes of Qand g 2 N , g �A f . Then after possibly changing the basis of �g we may assume(by the Tchebotarev Density Theorem together with the Brauer-Nesbitt Theorem)that �f = �g . Hence �g : GQ;S ! GL2(O) is a deformation of �f , and �gjGK is adeformation of �f;K . As in the proof of Proposition 8.5 we identify Tmf and T0
m0fwith appropriate subalgebras of Qg2N ; g�f O and of Qg2N ; g�wf O, respectively.Let ~T denote the O-subalgebra of T generated by the operators Tp for p 6= 2; ` andlet ~T0 denote the O-subalgebra of T0 generated by the set �0, where �0 is as inDe�nition 5.1. We put ~mf := ~T\mf and ~m0f := ~T0\mf . Let �f denote the subset ofN consisting of those eigenforms which are congruent to f except possibly at 2 or `.Similarly let �0f be the subset of N consisting of those eigenforms which are weaklycongruent to f except possibly at 2 or `. We have �f � �0f . We again identify~T~mf (resp. ~T0~m0f ) with a subalgebra of Qg2�f O (resp. Qg2�0f O) in an obviousway. Consider the representations � := Qg2�f �g : GQ;S ! GL2 �Qg2�f O�, and�0 := �jGK;S . Choose bases for each �g so that �g = �g0 for all g; g0 2 �f , and sothat �g(c) = � 1 �1 � for all g 2 �f , where c is the complex conjugation. We allowourselves to enlarge E, O and F if necessary.Lemma 8.7. The image of the representation � is contained in GL2( ~T~mf ).Proof. [11], Lemma 3.27. ˜We claim that �0(GK;S) is contained in the image of GL2( ~T0~m0f ) inside GL2( ~T~mf ).To prove it, let � denote the map ~T0~m0f ! ~T~mf induced by ~T0 ,! ~T. It is easyto see that �( ~T0~m0f ) is an object of C. Consider ~�0 : GK;S ! GL2 �Qg2�0f O�,~�0(�) = (�g(�))g2�0f . We have � � ~�0 = �0. For � 2 GK;S we denote by [� ] the



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 47conjugacy class of � in GK;S . Note that GK;S is topologically generated by the setS
p2SpecOK ;p\Z62S[Frobp]. For a split p = pp, we have tr �0(Frobp) = tr �0(Frobp) =tr �0(Frobp) = Tp 2 ~T0~m0f while for p inert, tr �0(Frob2p) = T 2p � pk�2 2 ~T0~m0f .Thus tr ~�0(GK;S) � ~T0~m0f , and hence tr �0(GK;S) � �( ~T0~m0f ). Since we know that�0(GK;S) � GL2( ~T~mf ), a theorem of Mazur ([40], Corollary 6, page 256)) impliesthat (after possibly changing the basis of �0), we have �0(GK;S) � GL2(�( ~T0~m0f )).Then � is a deformation of �f and �0 : GK;S ! GL2(�( ~T0~m0f )) is a deformationof �f;K . Hence there are unique O-algebra homomorphisms �Q : RQ ! ~T~mf and�K : RK ! �( ~T0~m0f ), such that �Q � �Q � �, and �K � �K � �0. In fact as �QjGK isa deformation of �f;K , there is a unique O-algebra homomorphism  : RK ! RQ,such that  � �K � �QjGK . Hence we get the following diagram(8.1) RK  

//�K
››

RQ�Q
››�( ~T0~m0f ) �

// ~T~mfwhere � denotes the embedding �( ~T0~m0f ) � ~T~mf . Note that diagram (8.1) commutes.[Indeed, as ���0 is a deformation of �f;K , there is a unique O-algebra homomorphism� : RK ! ~T~mf , such that ���K � ���0. Since �K��K � �0 we get ���K��K � ���0,and hence � � �K = � by uniqueness of �. On the other hand as stated in theparagraph before diagram (8.1),  � �K � �QjGK , thus �Q �  � �K � �Q � �QjGK .Since �Q � �Q � �, we have �Q � �QjGK � �jGK = � � �0. Hence �Q � � �K � � � �0,which implies as before that �Q �  = �. So, � � �K = �Q �  .] Furthermore, notethat �Q and �K are surjective. Our goal is to prove surjectivity of  which willimply surjectivity of �. From this we will deduce surjectivity of �0.The map  : RK ! RQ is local, hence induces an F-linear homomorphism onthe cotangent spaces mK=(m2K ; �RK) ! mQ=(m2Q; �RQ), which we will call  ct.We will show that  �ct : � 7! � �  ct in the exact sequence of dual maps0! HomF(C;F)! HomF(mQ=(m2Q; �RQ);F)  �ct��! HomF(mK=(m2K ; �RK);F)is injective, which will imply C := coker ct = 0.Let G be a pro�nite group and (Runiv; �univ) the universal couple of an absolutelyirreducible representation � : G ! GL2(F).Lemma 8.8. One has HomF(mRuniv=(m2Runiv ; �Runiv);F) �= H1(G; ad(�)); whereH1 stands for continuous group cohomology and ad(�) denotes the discrete G-moduleM2(F) with the G-action given by g �M := �(g)M�(g)�1.Proof. [27], Lemma 2.29. ˜When G = GQ;S (or G = GK;S) and Runiv = RQ (or Runiv = RK), we willdenote the isomorphism from Lemma 8.8 by tQ (or tK , respectively).



48 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Proposition 8.9. The following diagram is commutative:(8.2) HomF(mQ=(m2Q; �RQ);F)  �ct
//tQ o

››

HomF(mK=(m2K ; �RK);F)tKo
››H1(GQ;S ; ad(�)) res

// H1(GK;S ; ad(�))Proof. This follows from unraveling the de�nitions of the maps in diagram (8.2).We omit the details. ˜8.2.3. Isomorphism between T0
m0f and Tmf . Note that since #ad(�f ) is a power of`, and Gal(K=Q) has order 2, the �rst cohomology group in the in
ation-restrictionexact sequence0! H1(Gal(K=Q); ad(�f )GK;S )! H1(GQ;S ; ad(�f ))! H1(GK;S ; ad(�f ))is zero, hence the restriction map in diagram (8.2) is injective, and thus so is  �ct.Hence C = 0 and thus  ct is surjective. An application of the complete version ofNakayama's Lemma (cf. [18], exercise 7.2) now implies that  is surjective.Corollary 8.10. Let f 2 N and suppose that �f jGK is absolutely irreducible. Then� : ~T0~m0f ! ~T~mf is surjective.Proof. This is essentially a summary of the arguments we have carried out so far.̃Proposition 8.11. Assume that f 2 N is ordinary at ` and that �f jGK is abso-lutely irreducible. Then �0 : T0m0f ! Tmf is surjective.Proof. Consider the commutative diagram(8.3) ~T0~m0f �

//

››

~T~mf
››T0

m0f �0
// Tmfwhere ~mf , m0f and ~m0f are contractions of mf to ~T, T0 and ~T0 respectively. Sincef satis�es the assumptions of Corollary 8.10, � is surjective. For p 6= 2; `, it isclear that Tp 2 Tmf is inside the image of �0. If ` is split, then Tmf contains T`by de�nition, so assume ` is inert. Then T 2̀ 2 Tmf . Since f = P1n=1 a(n)qn isordinary at `, we must have a(`) 62 �, hence the image of T` in F is not zero, i.e.,T` 62 mf . Thus the equation X2�T 2̀ splits in Tmf =mf into relatively prime factorsX � T` and X + T`. Since T0m0f =m0f �= Tmf =mf , X2 � T 2̀ splits in T0m0f =m0f , andthen by Hensel's lemma it splits in T0m0f . This shows that T` is in the image of �0.It remains to show that T2 is in the image of �0.Let �g : GQ;S ! GL2(O) denote the Galois representation associated to g =P1n=1 b(n)qn, g � f . Arguing as in Lemma 8.2, we get �g jD2 �= ��1g� �2g� with�2g(�) = 12 (tr �g(�) + tr �g(��)) (for notation see the proof of Lemma 8.2). Let L



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 49be the �xed �eld of GQ;S , and L0 � L always denote a �nite Galois extension of Q.Using the Tchebotarev Density Theorem we can write� = lim �Q�L0�L �(L0) Frobp(L0) �(L0)�1;where p(L0) is a choice of p 2 S and �(L0) 2 GQ;S is such that�jL0 = �(L0)jL0 Frobp(L0) jL0�(L0)�1jL0 :Hence (tr �g(�))g = lim �Q�L0�L (tr (Frobp(L0)))g = lim �Q�L0�L Tp(L0), where eachTp is considered as an element of Qg2N ;g�f O. Since every Tp(L0) 2 Im(�0), andIm(�0) being the image of T0m0f is complete, (tr �g(�))g 2 Im(�0). Similarly oneshows that (tr �g(��))g 2 Im(�0), and hence T2 2 Im(�0). ˜Corollary 8.12. Assume f 2 N is ordinary at `. If �f jGK is absolutely irreduciblethen the canonical O-algebra map T0
m0f ! Tmf is an isomorphism.Proposition 8.13. If �f jGK is absolutely irreducible, then f 6� f�.Proof. Assume that �f : GQ ! GL2(F) is absolutely irreducible when restricted toGK . Suppose f =P1n=1 a(n)qn � f� =P1n=1 a(n)qn. Let p be a prime inert in K.By Fact 2.1, a(p) = �a(p), hence a(p) � �a(p), and thus tr �f (Frobp) � a(p) �0. Let L be the splitting �eld of �f and denote by c 2 Gal(L=Q) the complexconjugation. By possibly replacing F with a �nite extension, we can choose abasis of the space of �f such that with respect to that basis �f (c) = � 1 �1 �. Let� 2 Gal(L=K), and suppose that �f (�) = � a bc d �. By Tchebotarev Density Theoremthere exists a prime p and an element � 2 Gal(L=Q) such that c� = � Frobp ��1.Since � 2 Gal(L=K), we must have Frobp 62 Gal(L=K), and thus p is inert in K.Hence tr �f (Frobp) = a � d = 0. Let �0 2 Gal(L=K) and write �f (�0) = � a0 b0c0 d0 �.Then �f (��0) = h aa0+bc0 ab0+bd0ca0+dc0 cb0+dd0 i. Since the argument carried out for � may alsobe applied to �0 and ��0 2 Gal(L=K), we have a0 = d0 and bc0 = cb0, and thiscondition implies that ��0 = �0�. Hence Gal(L=K) is abelian, which contradictsthe absolute irreducibility of �f jGK . The proposition follows. ˜8.3. Hida's congruence modules. Fix f 2 N and setNf := fg 2 N j mg = mfg.Write Tmf 
E = E �BE , where BE = Qg2NfnffgE and let B denote the imageof Tm under the composite Tm ,! Tm
E �f��! BE , where �f is projection. Denoteby � : Tmf ,! O � B the map T 7! (�f (T ); �f (T )). If E is su�ciently large,there exists � 2 O such that coker � �= O=�O. This cokernel is usually called thecongruence module of f . Set N 0f := fg 2 N j m0g = m0fg.Proposition 8.14. Assume f 2 N is ordinary at ` and the associated Galoisrepresentation �f is such that �f jGK is absolutely irreducible. Then there existsT 2 T0m0f such that Tf = �f , Tf� = �f� and Tg = 0 for all g 2 N 0f n ff; f�g.Proof. First note thatT0m0f can be identi�ed with the image ofT0 inside EndC(Sk�1;f ),where Sk�1;f � Sk�1 �4; ��4� �� is the subspace spanned by N 0f . By Corollary 8.12,the natural O-algebra map T0m0f ! Tmf is an isomorphism. So, it is enough to�nd T 2 Tmf such that Tf = �f and Tg = 0 for every g 2 Nf n ffg. (Notethat by Proposition 8.13, f� 62 Nf .) It follows from the exactness of the sequence



50 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)0 ! Tmf ��! O � B ! O=�O ! 0, that (�; 0) 2 O � B is in the image ofTmf ,! O � B. Let T be the preimage of (�; 0) under this injection. Then T hasthe desired property. ˜Proposition 8.15 ([25], Theorem 2.5). Suppose ` > k. If f 2 N is ordinary at `,then � = (�) hf; fi
+f 
�f ;where 
+f ;
�f denote the \integral" periods de�ned in [56] and (�) is a �-adic unit.9. Galois representations and Selmer groupsIn this section we will give a lower bound on the order of (the Pontryagin dualof) the Selmer group ad0 �f jGK (�1) in terms of the CAP ideal (Theorem 9.10) aswell as in terms of the special L-value Lint(Symm2 f; k) (Corollary 9.11). We willalso discuss the relationship between Corollary 9.11 and the Bloch-Kato conjecturefor the \motives" ad0M0(�1) and ad0M0(2), where M0 is the motif (over Q)associated to f (section 9.3).9.1. Galois representations. It is well-known that one can attach an `-adic Ga-lois representation to every f 2 N (cf. section 2.3). In this section we gather somebasic facts concerning Galois representations attached to hermitian modular forms.Let F 2 Sk(�Z) be an eigenform. For every rational prime p, let �p;j(F ), j =1; : : : ; 4, denote the p-Satake parameters of F . (For the de�nition of p-Satakeparameters when p inerts or rami�es in K, see [29], and for the case when p splitsin K, see [24].) Let p be a prime of OK lying over p. Set~�p;j(F ) := (Np)�2+k=2!�(p)�p;j(F );where ! is the unique Hecke character of K unrami�ed at all �nite places within�nity type !1(x1) = � zz ��k=2.De�nition 9.1. The elements ~�p;j(F ) will be called the Galois-Satake parametersof F at p.By Theorem 5.9 there exists a �nite extension LF of Q containing the Heckeeigenvalues of F . In what follows for a number �eld L and a prime p of L wedenote by Frobp the arithmetic Frobenius at p.Theorem 9.2. There exists a �nite extension EF of Q` containing LF and a 4-dimensional semisimple Galois representation �F : GK ! GLEF (V ) unrami�edaway from the primes of K dividing 2` and such that(i) For any prime p of K such that p - 2`, the set of eigenvalues of �F (Frobp)coincides with the set of the Galois-Satake parameters of F at p (cf. De�-nition 9.1);(ii) If p is a place of K over `, the representation �F jDp
is crystalline (cf.section 9.2).(iii) If ` > m, and p is a place of K over `, the representation �F jDp

is short.(For a de�nition of short we refer the reader to [13], section 1.1.2.)



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 51Remark 9.3. We know of no reference in the existing literature for the proof ofthis theorem, although it is widely regarded as a known result. For some discussionregarding Galois representations attached to hermitian modular forms, see [4] or[2]. We assume Theorem 9.2 in what follows.Remark 9.4. It is not known if the representation �F is also unrami�ed at theprime i+ 1. See [1] for a discussion of this issue.As before, we assume that E is a su�ciently large �nite extension of Q` withvaluation ring O, uniformizer � and residue �eld F = O=�. Let f =P1n=1 a(n)qn 2N be such that �f jGK is absolutely irreducible. Then by Proposition 8.13, Ff 6= 0.From now on we also assume that ad0 �f jGK , the trace-0-endomorphisms of therepresentation space of �f jGK with the usual GK -action, is absolutely irreducible.Let � denote the `-adic cyclotomic character. It follows from Proposition 6.4 thatthe Galois representation �Ff �= �f;K � (�f;K 
 �): From now on we assume inaddition that 2k 6� a(2) 6� 2k�4 (mod �).9.2. Selmer group. Set NNM := fF 2 N h j F 2 SNMk (�Z)g: LetMh denote theset of maximal ideals of ThO andMNM the set of maximal ideals of TNMO . We haveTNMO = Q
m2MNM TNM

m ; where TNM
m denotes the localization of TNMO at m. Let� : ThO ! TNMO be the natural projection. We haveMh =Mc tMnc, whereMcconsists of those m 2 Mh which are preimages (under �) of elements ofMNM andMnc :=MhnMc. Note that � factors into a product � =Qm2Mc �m�Qm2Mnc 0m,where �m : Th

m ! Th
m0 is the projection, with m0 2MNM being the unique maximalideal such that ��1(m0) = m and 0m is the zero map. For F 2 N h we denote by

mF (respectively mNMF ) the element ofMh (resp. ofMNM) corresponding to F . Inparticular, mNMFf 2MNM is such that ��1(mNMFf ) = mFf .We now de�ne the Selmer group relevant for our purposes. For a pro�nite groupG and a G-module M (where we assume the action of G onM to be continuous) wewill consider the group H1cont(G;M) of cohomology classes of continuous cocyclesG !M . To shorten notation we will suppress the subscript `cont' and simply writeH1(G;M). For a �eld L, and a Gal(L=L)-module M (with a continuous action ofGal(L=L)) we sometimes write H1(L;M) instead of H1cont(Gal(L=L);M). We alsowrite H0(L;M) for the submoduleMGal(L=L) consisting of the elements ofM �xedby Gal(L=L).Let L be a number �eld. For a rational prime p denote by �p the set of primesof L lying over p. Let � � �` be a �nite set of primes of L and denote by G� theGalois group of the maximal Galois extension L� of L unrami�ed outside of �. LetV be a �nite dimensional E-vector space with a continuous G�-action. Let T � Vbe a G�-stable O-lattice. Set W := V=T .We begin by de�ning local Selmer groups. For every p 2 � setH1un(Lp;M) := kerfH1(Lp;M) res��! H1(Ip;M)g:De�ne the local p-Selmer group (for V ) byH1f (Lp; V ) := (H1un(Lp; V ) p 2 � n�`kerfH1(Lp; V )! H1(Lp; V 
Bcrys)g p 2 �`:Here Bcrys denotes Fontaine's ring of `-adic periods (cf. [19]).



52 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)For p 2 �`, we call the Dp-module V crystalline (or the GL-module V crys-talline at p) if dimQ` V = dimQ` H0(Lp; V 
 Bcrys). When we refer to a Galoisrepresentation � : GL ! GL(V ) as being crystalline at p, we mean that V with theGL-module structure de�ned by � is crystalline at p.For every p, de�ne H1f (Lp;W ) to be the image of H1f (Lp; V ) under the naturalmap H1(Lp; V ) ! H1(Lp;W ). Using the fact that Gal(�p : �p) = Ẑ has cohomo-logical dimension 1, one easily sees that if W is unrami�ed at p and p 62 �`, thenH1f (Lp;W ) = H1un(Lp;W ). Here �p denotes the residue �eld of Lp.For a Z`-module M , we write M_ for its Pontryagin dual de�ned asM_ = Homcont(M;Q`=Z`):Moreover, if M is a Galois module, we denote by M(n) := M 
 �n its n-th Tatetwist.De�nition 9.5. For each �nite set �0 � � n�`, the groupSel�(�0;W ) := ker8<:H1(G�;W ) res��! M
p2�0[�` H1(Lp;W )H1f (Lp;W )9=;is called the (global) Selmer group of the triple (�;�0;W ). We also set S�(�0;W ) :=Sel�(�0;W )_, Sel�(W ) := Sel�(;;W ) and S�(W ) = S�(;;W ). De�ne Sel�(�0; V )in the same way with V instead of W .For L = Q, the group Sel�(� n�`;W ) is the standard Selmer group H1f (Q;W )de�ned by Bloch and Kato [5], section 5.Let �;�0 be as above. Let � : G� ! GLE(V ) denote the representation givingthe action of G� on V . The following two lemmas are easy (cf. [46], Lemma 1.5.7and [52]).Lemma 9.6. S�(�0;W ) is a �nitely generated O-module.Lemma 9.7. If the mod � reduction � of � is absolutely irreducible, then the lengthof S�(�0;W ) as an O-module is independent of the choice of the lattice T .Remark 9.8. For an O-module M , ord`(#M) = [O=� : F`] lengthO(M).Example 9.9. Let L = K, � = �`, �f;K := �f jGK and let V denote the represen-tation space ofad0 �f;K(�1) = ad0 �f;K 
 ��1 � HomE(�f;K 
 �; �f;K)of GK . Let T � V be some choice of a GK -stable lattice. Set W = V=T . Notethat the action of GK on V factors through G�. Since the mod � reduction ofad0 �f;K
��1 is absolutely irreducible by assumption, ord`(S�(W )) is independentof the choice of T .Our goal is to prove the following theorem.Theorem 9.10. Let L, � and W be as in Example 9.9. Suppose that for eachF 2 NNMFf , the representation �F : GK ! GL4(E) is absolutely irreducible. Thenord`(#S�(W )) � ord`(#TNM

mFf =�mFf (Ann(Ff ))):



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 53Corollary 9.11. With the same assumptions and notation as in Theorem 7.12 andTheorem 9.10 we have ord`(#S�(W )) � n:If in addition the character � in Theorem 7.12 can be taken as in Corollary 7.14,then ord`(#S�(W )) � ord`(#O=Lint(Symm2 f; k)):Proof. The corollary follows immediately from Theorem 9.10 and Corollary 7.19.̃9.3. Relations to the Bloch-Kato Conjecture. In this section we discuss howour results (Theorem 9.10 and Corollary 9.11) are related to the Bloch-Kato con-jecture. We begin by recalling the statement of the conjecture in our particularcase. We follow closely the exposition in [13]. For more details as well as precisede�nitions the reader is encouraged to consult [13], section 2.4 and [20].Let E0 be a number �eld, which we will assume to be \su�ciently large" (inparticular we assume that E0 contains all the Hecke eigenvalues of f) and writeE for its completion at a prime � lying over ` determined by our choice of theembedding Q ,! Q`. This is consistent with our previous de�nition of E as asu�ciently large �nite extension of Q`. Let M0 be the \premotivic structure"attached to f over Q with coe�cients in E0. WriteM := fMB;MdR; fMvgv; I1; fIvBgv; fIvgv; fW igig;for the premotivic structure ad0M0(�1). Here v runs over the set of �nite placesof E0, MB (resp. MdR; Mv) is a �nite dimensional vector space over E0 (resp.E0; E0;v), with an action of Gal(C=R) (resp. with a decreasing �ltration Fili;with a pseudo-geometric action of GQ), I1 : C 
MdR ! C 
MB (resp. IvB :E0;v 
E0 MB !Mv; Iv : BdR;p 
Qp E0;v 
E0 MdR ! BdR;p 
Qp Mv) is a C
E0-linear (resp. E0;v-linear; BdR;p 
Qp E0;v-linear with v j p) isomorphism respectingthe Gal(C=R)-action (resp. the Gal(C=R)-action; the GQp -action and �ltrations),where BdR;p is the ring de�ned by Fontaine, and W i are the so called weight�ltrations, whose de�nition we omit. Similarly one de�nes the premotivic structuread0M0(2), which we denote by M�. We have M� = VQ and M�� = V �Q := VQ(3),where VQ is the E[GQ]-module ad0 �f (�1).From now on letM 2 fM;M�g. We adopt similar notation for other symbols,e.g., VQ 2 fVQ; V �Qg, where the choice ofM determines the choice of V and othersymbols related toM in an obvious way.Let �f(M) = HomE0(detE0 M+B ; detE0 (MdR=Fil0MdR))be the fundamental line forM and write �f(M) for the O-lattice in E 
E0 �f(M)de�ned by Fontaine and Perrin-Riou (see [20], section II.4 or [13], p. 700 or [33] fordetails). Here + indicates the subspace �xed by Gal(C=R).The Bloch-Kato conjecture relates the lattice �f(M) to the value at 0 of anL-function ofM normalized by a certain period, both of which we now de�ne.The isomorphism I1 gives rise to an R
 E0-linear isomorphismR
M+B ! (C
MB)+ (I1)�1�����! R
MdR ! R
MdR=Fil0MdR;



54 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)whose determinant over R
 E0 is c+(M) 2 R
�f(M) which we will refer to asthe Deligne period ofM. Note that c+(M) is canonically de�ned, i.e., not just upto a multiplication by an element of E�0 as in [12].Let �p;1 and �p;2 be the p-Satake parameters of f as de�ned in section 4.2. Foran odd prime p, setLp(ad0M0; s) := (1� �p;1��1p;2p�s)�1(1� p�s)�1(1� ��1p;1�p;2p�s)�1and put L2(ad0M0; s) := (1� 2�s)�1:Then the L-function of ad0M0(n) is de�ned as(9.1) L(ad0M0(n); s) :=Yp Lp(ad0M0; s+ n):In particular we have L(M; s) = L(ad0M0; s� 1)and L(M�; s) = L(ad0M0; s+ 2):The properties of L(ad0M0; s) are summarized in [13], p. 686. In particularL(ad0M0; s) is entire as a function of s and satis�es a functional equation withrespect to s 7! 1� s.Remark 9.12 (Geometric vs. arithmetic Frobenius). In general one de�nes theL-function of a motive N as Qp det(1� fpp�s), where fp denotes the action of theFrobenius element at p on the inertia invariants of the space of N� (or on Crys(N�)if p = `) - see [5], p. 361 for more details. However, this de�nition depends ingeneral on whether one uses the geometric or arithmetic Frobenius. In [5] Blochand Kato use the geometric Frobenius and then their conjecture relates L(N ; 0) tothe Selmer group of N . Moreover, in that case one has L(N (n); s) = L(N ; s+ n).Also note that L(ad0M0; s) is independent of the choice of geometric or arithmeticFrobenius, since the set of eigenvalues of ad0 �f is of the form f�; 1; ��1g henceis invariant under taking the inverse. To be able to keep with the spirit of theoriginal paper of Bloch and Kato, we de�ned our L-function in (9.1) so that itagrees with the L-function de�ned in [5], i.e., L(ad0M0(n); s) := Qp(1 � fpp�s),where fp denotes the action of Frob�1p on the appropriate space (see above) andFrobp is the arithmetic Frobenius at p as before.It follows from a result of Sturm [53] that there exists a basis b(M) of �f(M)such that L(M; 0)(1
 b(M)) = c+(M):The �rst version of (the �-part of) the Bloch-Kato conjecture can be formulatedas follows.Conjecture 9.13 (Bloch-Kato, cf. [13], Conjecture 2.14). One has(9.2) �f(M) = (1
 b(M))Oas lattices in E 
�f(M).



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 55In [20], Diamond, Flach and Guo give an alternative description of the lattice�f(M) in terms of Tate-Shafarevich groups. This description will allow us to statea di�erent version of Conjecture 9.13 and relate it to Theorem 9.10 and Corollary9.11.Set � := �` [ �2. Note that the representation VQ is unrami�ed outside �.To formulate the second version of the Bloch-Kato conjecture one needs to choose\integral structures" on the one-dimensional E-vector spaces E 
 detE0M+B andE 
 detE0(MdR=Fil0MdR). One does this by choosing a free rank one O-module!(M) 2 E 
 detE0(MdR=Fil0MdR)), which in the following we abbreviate as !,and a Galois stable O-lattice TQ � VQ which gives rise to a free rank one O-modulein E 
 detE0M+B via the isomorphism I�B. Set WQ := VQ=TQ. LetX(TQ) := Sel�(�2;WQ)Sel�(�2;VQ)
 (E=O)be the Tate-Shafarevich group of TQ. The groupX(TQ) is �nite ([20], PropositionII.5.3.5). Put T DQ := HomO(TQ;O(1)) and set VDQ := T DQ 
O E and WDQ :=VDQ=T DQ . Note that V DQ �= V �Q and (V �Q)D �= VQ.Assume that(9.3) Sel�(�2; VQ) = Sel�(�2; V DQ ) = 0:This follows from a conjecture on the order of vanishing of L(M; 0) (cf. [20], sectionIII.4.2.2) and the fact that in our case(9.4) H0(Q; VQ) = H0(Q; V DQ ) = 0:For a commutative ring R and a �nitely generated R-module N , denote byFittR(N) the Fitting ideal of N in R. For the de�nition and basic properties ofFitting ideals see for example the Appendix of [41]. Using Theorem II.5.3.6 in [20],Diamond, Flach and Guo show that(9.5) �f(M) = FittOH0(Q;WQ) � FittOH0(Q;WDQ )FittOX(T DQ ) �Tam0!(TQ) L!(TQ);where L!(TQ) is a lattice in E 
�f(M) depending on the choice of the \integralstructures" TQ and ! = !(M), andTam0!(TQ) = Tam0̀;!(TQ) �Tam01(TQ) � Yp 6=`;1Tam0p(TQ)is the Tamagawa ideal of TQ relative to ! (cf. [20], section II.5.3). It follows fromProposition II.4.2.2 in [20] that Tam0p(TQ) = Tam01(TQ) = O for all p 6= `.The integral structures TQ and ! give an identi�cation of E 
�f(M) with E.Then the quotient L!(TQ)=Tam0̀;!(TQ) is identi�ed with a fractional ideal of Ewhose inverse we denote by Tam!(TQ). Similarly, (1
 b(M))O is identi�ed with afractional ideal (
!(TQ)=L(M; 0)) � O of E for some 
!(TQ) 2 E=O�. Using ourassumption (9.3), we get X(TQ) = Sel�(�2;WQ). Moreover, as explained in [13],p. 708, one also has an O-linear isomorphism X(T DQ ) �= HomZ`(X(TQ);Q`=Z`)and the latter group is just S�(�2;WQ):Using the above arguments and (9.4), Conjecture 9.13 can be rephrased in thefollowing way.



56 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Conjecture 9.14 (Bloch-Kato conjecture, second version). For M 2 fM;M�gone has(9.6) #S�(�2;WQ) �Tam!(TQ) = L(M; 0)
!(TQ) Oas fractional ideals of E.Let TK be TQ considered as an O[GK ]-module. Set VK := TK 
 E and WK :=VK=TK . Then VK is unrami�ed away from primes of K lying over `.The following is just a restatement of Corollary 9.11.Theorem 9.15. With the same assumptions as in Theorem 7.12 and in Corollary9.11 we have the following containment of fractional ideals of E:(9.7) #S�`(WK) � O � Lint(Symm2 f; k) � O:We will now discuss the relation between Theorem 9.15 and Conjecture 9.14. Asbefore, letM2 fM;M�g. Write s(M) = k � 3 and s(M�) = k.Theorem 9.15 falls short of proving that the left-hand side of (9.6) contains theright-hand side of (9.6), but gives some evidence for this containment. First notethat L(M; 0) = L(ad0M0; s(M)� (k � 2)) = �(M)L(Symm2 f; s(M));where �(M) comes from the discrepancy in the de�nitions of the Euler factors at2 of L(M; s) and L(Symm2 f; s) and �(M) 2 O since � - 2. Moreover, using thefunctional equation for L(Symm2 f; s) (cf. [47]) one concludes thatord`(Lint(Symm2 f; k � 3)) = ord`(Lint(Symm2 f; k)):Recall that the order of the Selmer group is independent of the choice of the latticeTQ, hence we can �x TQ as in [13], section 1.6.2 and !(M) as in [13], p. 709. Ithas been shown by Dummigan [17], p.11 using Proposition 7.7 in [12] and somearguments in [13] that with these choices of TQ and !(M), one has 
!(TQ) =u��s(M)�2
+f 
�f for u an `-adic unit. Thus the right-hand side of (9.6) is the samefor M and M� and is contained in the right-hand side of (9.7). This containmentis an equality if �(M) is a �-adic unit.Similarly, using the fact that X(T DQ ) �=X(TQ)_ one sees that #S�(�2;WQ) =#S�(�2;W �Q). On the other hand Theorem 9.15 concerns the group S�`(WK) =S�(�2;WK), which can be potentially larger than S�(�2;WQ) (this follows fromthe in
ation-restriction sequence), so (9.7) does not imply an analogous contain-ment for S�(WQ) or S�(W �Q) - see also Remark 9.16 below. Finally, we are notable to show that with the choice of TQ and ! as above, one has Tam!(TQ) � O.Dummigan in [15], section 7 and [16], section 6 showed that Tam!(TQ) = O if fis a modular form of level 1. See [15], section 10 for a discussion of the di�cultiesinvolved, when the level of f is larger than one. Diamond, Flach and Guo in [13]have computed the Tamagawa ideal for the motives ad0M0 and ad0M0(1) (cf. theproof of Theorem 2.15 and Proposition 2.16 in [13]). However, their calculationscannot be extended to our case.To summarize, if f is such that #S�(�2;WK) = #S�(�2;WQ) and Tam!(TQ) =O, Theorem 9.15 implies that the right-hand side of (9.6) is contained in the left-hand side of (9.6).



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 57Remark 9.16. One can state a conjecture similar to Conjecture 9.14 for the restric-tion M jK of the premotivic structure M to GK . Then the L-function L(M jK ; 0)factors asL(M; 0)L�M; 0;��4� �� = �(M)L(Symm2 f; k � 3)L�Symm2 f; k � 3;��4� ��and the Selmer group on the left-hand-side of (9.6) is replaced by S�`(WK). So,this version of the Bloch-Kato conjecture gives us the same Selmer group as the onein Theorem 9.15, but an extra L-value L �Symm2 f; k � 3; ��4� ��. Unfortunately weare unaware of any rationality results for that special value. One needs a statementthat would involve the period c+(M jK) used in the formulation of the Bloch-Katoconjecture. For the value L(Symm2 f; k) we have used a rationality result due toSturm [53], who uses a period related to the Petersson inner product hf; fi, but histheorem (cf. [53], p. 220) speci�cally excludes the value L �Symm2 f; k � 3; ��4� ��.Remark 9.17. In [13] Diamond, Flach and Guo proved the �-part of the Bloch-Kato conjecture for the motives ad0M0 and ad0M0(1) using an extension of themethods of Taylor and Wiles [61, 54]. The latter two motives are in duality andthe two L-values L(ad0M0; 0) and L(ad0M0(1); 0) are related by the functionalequation. Hence our result provides evidence for an extension of their theorem tothe motives ad0M0(�1) and ad0M0(2).9.4. Degree n Selmer groups. In this section we collect some technical resultsregarding Selmer groups which will be used in the proof of Theorem 9.10. Let Gbe a group, R a commutative ring with identity, M a �nitely generated R-modulewith an R-linear action of G given by a homomorphism � : G ! AutR(M). Forany two such pairs (M 0; �0), (M 00; �00), the R-module HomR(M 00;M 0) is naturally aG-module with the G-action given by(g � �)(m00) = �0(g)�(�00(g�1)m00):Suppose there exists (M;�) which �ts into an exact sequence of R[G]-modulesX : 0!M 0 !M !M 00 ! 0;that splits as a sequence of R-modules. Choose sX :M 00 !M , an R-section of X .De�ne �X : G ! HomR(M 00;M 0) to be the map sending g to the homomorphismm00 7! �(g)sX(�00(g)�1m00)� sX(m00).Lemma 9.18. Let ExtR[G](M 00;M 0) denote the set of equivalence classes of R[G]-extensions of M 00 by M 0 which split as extensions of R-modules. The map X 7! �Xde�nes a bijection between ExtR[G](M 00;M 0) and H1(G;HomR(M 00;M 0)).Proof. The proof is a simple modi�cation of the proof of Proposition 4 in [58]. ˜Let E, O and � be as before. Let L be a number �eld and � a �nite set ofplaces of L containing �`. Let �0 : G� ! GLE(V 0), �00 : G� ! GLE(V 00) betwo Galois representations. Choose G�-stable O-lattices T 0 � V 0, T 00 � V 00, anddenote the corresponding representations by (T 0; �0T 0) and (T 00; �00T 00) respectively.De�ne W 0 := V 0=T 0, and W 00 := V 00=T 00. Set V = HomE(V 00; V 0). Let T � V be aG�-stable O-lattice, and set W = V=T . For an O-module M , let M [n] denote thesubmodule consisting of elements killed by �n. For p 2 �, Lemma 9.18 provides a



58 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)natural bijection between H1(Lp;W [n]) and ExtO=�n[Dp](W 00[n];W 0[n]). We nowde�ne degree n local Selmer groups. If p 2 � n�`, setH1f (Lp;W [n]) := H1un(Lp;W [n]); where W is as above.If p 2 �`, de�ne H1f (Lp;W [n]) � H1(Lp;W [n]) to be the subset consisting of thosecohomology classes which correspond to extensions0!W 0[n]! ~W [n]!W 00[n]! 0 2 ExtO=�n[Dp](W 00[n];W 0[n])such that ~W [n] is in the essential image of the functor V de�ned in [13], sec-tion 1.1.2. We will not need the precise de�nition of V. It is shown in [13]that H1f (Lp;W [n]) is an O-submodule of H1(Lp;W [n]) and that H1f (Lp;W [n])is the preimage of H1f (Lp;W [n + 1]) under the natural map H1(Lp;W [n]) !H1(Lp;W [n+ 1]) (cf. Section 2.1, loc. cit.).Lemma 9.19. Fix p 2 �`. Let ~� : GL ! GLE( ~V ) be a Galois representation shortat p, ~T � ~V an O[Dp]-stable lattice and ~W := ~V = ~T . If ~W [n] �ts into an exactsequence0!W 0[n]! ~W [n]!W 00[n]! 0 2 ExtO=�n[Dp](W 00[n];W 0[n]);then such an extension gives rise to an element of H1f (Lp;W [n]).Proof. See [13], Section 1.1.2. ˜Proposition 9.20. The natural isomorphismlim�!n H1(Lp;W [n]) �= H1(Lp;W )induces a natural isomorphismlim�!n H1f (Lp;W [n]) �= H1f (Lp;W ):Proof. See [13], Proposition 2.2. ˜9.5. Proof of Theorem 9.10. The key ingredient in the proof of Theorem 9.10is Lemma 9.21 below. Before we state it, we need some notation. Let L be anynumber �eld, � � �` a �nite set of primes of L. Let n0; n00 2 Z�0 and n :=n0+n00. Let V 0 (respectively V 00) be an E-vector space of dimension n0 (resp. n00),a�ording a continuous absolutely irreducible representation �0 : G� ! AutE(V 0)(resp. �00 : G� ! AutE(V 00)). Assume that the residual representations �0 and�00 are also absolutely irreducible (hence well-de�ned) and non-isomorphic. LetV1; : : : ; Vm be n-dimensional E-vector spaces each of them a�ording an absolutelyirreducible continuous representation �i : G� ! AutE(Vi), i = 1; : : : ;m. Moreoverassume that the mod � reductions �i (with respect to some G�-stable lattice in Viand hence with respect to all such lattices) satisfy�ssi �= �0 � �00:For � 2 G�, let Pnj=0 aj(�)Xj 2 O[X ] be the characteristic polynomial of(�0 � �00)(�) and let Pnj=0 cj(i; �)Xj 2 O[X ] be the characteristic polynomial of�i(�). Put cj(�) := 24 cj(1; �): : :cj(m;�)35 2 Om for j = 0; 1; : : : ; n � 1. Let T � Om bethe O-subalgebra generated by the set fcj(�) j 0 � j � n � 1; � 2 G�g. By



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 59continuity of the �i this is the same as the O-subalgebra of Om generated byfcj(Frobp) j 0 � j � n� 1; p 62 �g. Note that T is a �nite O-algebra. Let I � Tbe the ideal generated by the set fcj(Frobp) � aj(Frobp) j 0 � j � n � 1; p 62 �g.From the de�nition of I it follows that the O-algebra structure map O ! T=I issurjective. Let J be the kernel of this map, so we have O=J = T=I . The followinglemma is due to Urban.Lemma 9.21. Suppose F� contains n distinct elements. Then there exists a G�-stable T-submodule L � Lmi=1 Vi, T-submodules L0;L00 � L (not necessarily G�-stable) and a �nitely generated T-module T such that(1) as T-modules we have L = L0 �L00 and L00 �= Tn00 ;(2) L has no T[G�]-quotient isomorphic to �0;(3) L0=IL0 is G�-stable and there exists a T[G�]-isomorphismL=(IL+ L0) �=M 00 
O T=Ifor any G�-stable O-lattice M 00 � V 00.(4) FittT(T ) = 0 and there exists a T[G�]-isomorphismL0=IL0 �=M 0 
O T =ITfor any G�-stable O-lattice M 0 � V 0.Proof. Lemma 9.21 follows from Theorem 1.1 of [55]. We only indicate how oneproves that FittT(T ) = 0, which is not directly stated in [55]. By Lemma 1.5 (i)in [loc. cit.], L0 �= T n0 , hence it is enough to show that a := FittT(L0) = 0. Since
a � AnnT(L0), if a 6= 0, there exists a non-zero t 2 T such that tL0 = 0. Let1 � i � m be such that the projection ti of t onto the ith component of T � Om isnon-zero. Then ti annihilates the image of L0 under the projection ofLmj=1 Vj “ Vi.Since 0 6= ti 2 O and O is a domain, we must have that the image of L0 in Vi iszero. Thus the composite L ,! Lmj=1 Vj “ Vi factors through L=L0 �= L00 �= Tn00by part (1) of the Lemma. Hence the image of L in Vi is a G�-stable, rank n00O-module which contradicts the assumption that �i is absolutely irreducible. Weconclude that FittT(L0) = 0. ˜We will now show how Lemma 9.21 implies Theorem 9.10. For this we set� n0 = n00 = 2;� L = K, � = �` [ f(i+ 1)g, �0 := f(i+ 1)g;� �0 = �f;K , �00 = �f;K 
 �, V 0; V 00 = representation spaces of �0; �00 respec-tively;� T = TNM

mFf ;� NNMFf = fF 2 NNM j ��1(mNMF ) = mFf g (we denote the elements of NNMFfby F1; : : : ; Fm);� I = the ideal of T generated by �mFf (AnnFf )� (Vi; �i) = the representation �Fi , i = 1; : : : ;m.Remark 9.22. As mentioned in section 9.2, �0 and �00 factor not only through G�,but also through G�` , however, the �i do not necessarily factor through G�` (cf.Theorem 9.2), and hence we have to work with � as de�ned above. Nevertheless,for any G� module M which is unrami�ed at (i+1) we have an exact sequence (cf.[58], Proposition 6)0! H1(G�` ;M)! H1(G�;M)! H1(I(i+1);M):



60 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)Hence in particular the group S�(W ) from Theorem 9.10 is isomorphic to S�(f(i+1)g;W ), which we study below.Lemma 9.21 guarantees the existence of L, L0, L00 and T with properties (1)-(4)as in the statement of the lemma. Let M 0 (resp. M 00) be a G�-stable O-latticeinside V 0 (resp. V 00). The split short exact sequence of T-modules (cf. Lemma9.21, (1))(9.8) 0! L0 ! L ! L=L0 ! 0gives rise to a short exact sequence of (T=I)[G�]-modules, which splits as a sequenceof T=I-modules (cf. Lemma 9.21, (3) and (4))(9.9) 0!M 0 
O T =IT ! L=IL !M 00 
O T=I ! 0:(Note that L=IL �= L
TT=I �= L
O T=I , hence (9.9) recovers the sequence fromTheorem 1.1 of [55].) Let s : M 00 
O T=I ! L=IL be a section of T=I-modules.De�ne a class c 2 H1(G�;HomT=I(M 00 
O T=I;M 0 
O T =IT )) byg 7! (m00 
 t 7! s(m00 
 t)� g � s(g�1 �m00 
 t)):The following lemma will be used in the proof of Lemma 9.25.Lemma 9.23. Let I(i+1) denote the inertia group of the prime ideal (i + 1). Wehave cjI(i+1) = 0.Proof. For simplicity set J := I(i+1) and D := D(i+1). We identify D withGal(K(i+1)=K(i+1)). It is enough to show that J acts trivially on L=IL. Let� : D ! AutT=I(L=IL) be the homomorphism giving the action of D on L=ILand denote by Ks the splitting �eld of �. Set G := Gal(Ks=K(i+1)). Note that forg 2 D we can write �(g) = h �11(g) �12(g)�22(g) i, where �11(g) 2 AutT=I (M 0 
O T =IT ),�22(g) 2 AutT=I(M 00 
O T=I) and �12(g) 2 HomT=I(M 00 
O T=I;M 0 
O T =IT ).Also note that �11 and �22 are group homomorphisms from G into the appropriategroups of automorphisms. Let Kun=K(i+1) be the maximal unrami�ed subexten-sion of Ks=K(i+1) and let � 2 Gal(Kun=K(i+1)) be the Frobenius generator. Let� be a topological generator of the totally tamely rami�ed extension Ks=Kun. Onthe one hand �(�) = � 1 �12(�)1 � since M 0 and M 00 are unrami�ed at (i+ 1), and onthe other hand, �(����1) = �(�)�(�). This implies that(9.10) �11(�)�12(�)�22(�)�1 = �(�)�12(�):Writing f = P1n=1 a(n)qn and using Theorem 3.26(ii) from [27], we get �f;K jD �=[ �1 �2 ], where �j are unrami�ed characters with �2(�) = a(2). Assume M 0 =M 00as O-submodules of V 0 (= V 00 as an E-vector space) and choose an O-basis fe1; e2gof M 0 so that in that basis �f;K jD = [ �1 �2 ]. Since M 0 
O T =IT �= (T =IT )2, itfollows that every element x 2 M 0 
O T =IT can be written as e1 
 t1 + e2 
 t2,where t1; t2 2 T =IT are uniquely determined by x. Hence �0(�)(ej) = �j(�)ej and�00(�)(ej) = �j(�)�(�)ej . Write �12(�)(ej 
 1) = e1 
 tj1 + e2 
 tj2. Then (9.10)implies that t11 = t22 = 0. Moreover, if t12 6= 0, we must have �1(�)�2(�)�1 ��(�)�2 (mod �), while if t21 6= 0, we must have �1(�)�2(�)�1 � �(�)2 (mod �).Since det �0(�) � �1(�)�2(�) � �k�2(�) (mod �) by the Tchebotarev DensityTheorem, we get �2(�) � �(�)k � 2k (mod �) if t12 6= 0 and �2(�) � �(�)k�4 � 2k�4(mod �) if t21 6= 0. Since none of these congruences can hold due to our assumptionon f , we get �12(�) = 0 and the lemma follows. ˜



CONGRUENCES AMONG MODULAR FORMS ON U(2; 2) 61Note that HomT=I(M 00 
O T=I;M 0 
O T =IT ) �= HomO(M 00;M 0)
O T =IT , soc can be regarded as an element ofH1(G�;HomO(M 00;M 0)
O T =IT ):De�ne a map � : HomO(T =IT ; E=O)!H1(G�;HomO(M 00;M 0)
O E=O)f 7!(1
 f)(c):(9.11)Note that ~T := HomO(M 00;M 0) is a G�-stable O-lattice inside ~V = ad �f;K
��1 =HomE(V 00; V 0). Then ~W = HomO(M 00;M 0) 
O E=O = W � E=O(�1), where Wis as in Theorem 9.10.Lemma 9.24. We have S�(W ) = S�( ~W ).Proof. Let O� be a free rank-oneO-module on which G� operates by a (non-trivial)character �, and set W� = E=O
O�. Since every element in Sel�(W�) is killed bya power of `, we have Sel�(W�) = 0 if and only if the �-torsion part Sel�(W�)[1] ofSel�(W�) is zero. Hence it is enough to show that Sel�(W��1)[1] = 0: Note that thenatural map H1(G�;W�[1]) ! H1(G�;W�) is an injection since H0(G�;W�) = 0for a non-trivial �. Hence Sel�(W�)[1] = Sel�(W�)\H1(G�;W�[1]). Thus, we haveSel�(W��1)[1] = Sel�(W��1) \ H1(G�;W��1 [1]). Since W��1 [1] = W!�1 [1], where! : G� ! Z�̀ is the Teichmuller lift of the mod ` cyclotomic character, we concludethat Sel�(W��1)[1] = Sel�(W!�1)[1]. So it su�ces to show that Sel�(W!�1)[1] = 0.Its Pontryagin dual S�(W!�1) is isomorphic to Cl!�1K(�`), the !�1-isotypical part ofthe `-primary part of the class group ofK(�`). This in turn is isomorphic to Cl!�1Q(�`),since ` is odd ([41], Remark (3), p. 216). By [41], Theorem 2, p. 216, the `-adicvaluation of the order of Cl!�1Q(�`) is equal to the `-adic valuation of B1(!)[E:Q`],where B1(�) is the �rst generalized Bernoulli number of �. Since B1(!) � 16 (mod`), and ` > 3, we obtain our claim. ˜By Lemma 9.24 it is enough to work with S�( ~W ) instead of S�(W ). Since themod � reduction of the representation ad0(�f;K) 
 ��1 is absolutely irreducible,Lemma 9.7 implies that our conclusion is independent of the choice of T . Hence wecan work with ~T chosen as above.Lemma 9.25. The image of � is contained inside Sel�(f(i+ 1)g;W ).Lemma 9.26. ker(�)_ = 0.We �rst prove that Lemma 9.25 and Lemma 9.26 imply Theorem 9.10.Proof of Theorem 9.10. By Remark 9.22, S�`( ~W ) �= S�(f(i + 1)g; ~W ), so it isenough to bound the size of the latter group. It follows from Lemma 9.25 thatord`(#S�( ~W )) � ord`(# Im(�)_);and from Lemma 9.26 that(9.12) ord`(# Im(�)_) = ord`(#HomO(T =IT ; E=O)_):Since HomO(T =IT ; E=O)_ �= (T =IT )__ = T =IT (cf. [27], page 98), we haveord`(# Im(�)_) = ord`(#T =IT ):



62 CONGRUENCES AMONG MODULAR FORMS ON U(2; 2)So, it remains to show that ord`(#T =IT ) � ord`(#T=I): Since FittT(T ) = 0(Lemma 9.21 (4)), we have FittT(T 
T T=I) � I and thus ord`(#(T 
T T=I)) �ord`(#T=I): As ord`(#T =IT ) = ord`(#(T 
T T=I)); the claim follows. ˜Proof of Lemma 9.25. Consider f 2 HomO(T =IT ; E=O). Since cjI(i+1) = 0 byLemma 9.23, we only need to show that (1 
 f)(c)jDp
2 H1f (Lp; ~W ) for p 2 �`.Fix such a p. Note that since T =IT is a �nitely generated T-module, it is alsoa �nitely generated O-module (since T=I = O=J). In fact it is even of �nitecardinality for the same reason. In any case, there exists a positive integer n suchthat HomO(T =IT ; E=O) = HomO(T =IT ; E=O[n]). ThusIm(�) � H1(G�;HomO(M 00;M 0)
O E=O[n]) = H1(G�; ~W [n]):By Lemma 9.20, we have lim�!j H1f (Lp; ~Wj) �= H1f (Lp; ~W ), hence it is enough to showthat Im(�) � H1f (Lp; ~W [n]). However, this is clear by Lemma 9.19 since by Theorem9.2, each �i is short at p (note that we are assuming that ` > k). ˜Proof of Lemma 9.26. We follow [52], but see also [55], Fact 1 on page 520. Firstnote that if f 2 HomO(T =IT ; E=O), then kerf has �nite index in T =IT . Supposethat f 2 ker �. We will show that the image of c under the map� : H1(G�;HomO(M 00;M 0)
O T =IT )! H1(G�;HomO(M 00;M 0)
O Kf )is zero. HereKf := (T =IT )= kerf . Assuming f 6= 0, we will use this fact to producea T[G�]-quotient of L isomorphic to �0 and thus arrive at a contradiction. SetIf := (E=O)= Im f and ~T := HomO(M 00;M 0). Tensoring the short exact sequenceof O[G�]-modules 0! Kf f�! E=O ! If ! 0;with
O ~T and considering a piece of the long exact sequence in cohomology togetherwith the map � we obtain commutative diagram with the bottom row being exact(9.13) H1(G�; ~T 
O T =IT )�

››

H1(1
f)
))T

T

T

T

T

T

T

T

T

T

T

T

T

T

TH0(G�; ~T 
O If ) // H1(G�; ~T 
O Kf ) H1(1
f)
// H1(G�; ~T 
O E=O):Since f 2 ker �, we get H1(1 
 f) � �(c) = 0. As the action of G� on M 0 andM 00 respectively gives rise to absolutely irreducible non-isomorphic representations,H0(G�; ~T 
O If ) = 0. So, exactness of the bottom row of (9.13) implies that�(c) = 0. From now on assume that 0 6= f 2 ker �. Since ker f 6= 0, there exists anO-module A with kerf � A � T =IT such that (T =IT )=A �= O=� = F. Since theimage of c in H1(G�; ~T 
O ((T =IT )=A)) under the composite(9.14) H1(G�; ~T 
O T =IT ) ��! H1(G�; ~T 
O ((T =IT )= ker f))!! H1(G�; ~T 
O ((T =IT )=A)):is zero, the sequence(9.15) 0!M 0 
O F! (L=IL)=(�L +M 0 
O A)!M 00 
O F! 0
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