CONGRUENCES AMONG MODULAR FORMS ON U(2,2) AND
THE BLOCH-KATO CONJECTURE

KRZYSZTOF KLOSIN!

ABSTRACT. Let k be a positive integer divisible by 4, £ > k a prime, and
f an elliptic cuspidal eigenform (ordinary at ¢) of weight k — 1, level 4, and
non-trivial character. Let p; be the f-adic Galois representation attached
to f. In this paper we provide evidence for the Bloch-Kato conjecture for
the motives ad® Mo(—1) and ad® My (2), where My is the motif attached to f.
More precisely, let L(Symm? f, s) denote the symmetric square L-function of f.
We prove that (under certain conditions) ord,(L*8(Symm? f, k)) < ordy(#5),
where S is the (Pontryagin dual of the) Selmer group attached to the Galois
module ad® ps|g, (—1), and K = Q(v/—1). Our method uses an idea of
Ribet [45] in that we introduce an intermediate step and produce congruences
between CAP and non-CAP modular forms on the unitary group U(2,2).

1. INTRODUCTION

Let £ > 2 be a prime and let A be a prime of Q lying over £. The idea of linking
up A-divisibility of an L-value with the existence of congruences among modular
forms and using these congruences to construct elements in a Selmer group goes
back to Ribet and his proof of the converse to Herbrand’s theorem [45]. In that
paper a special value L(x,—1) of an even Dirichlet character x is realized as a
constant term of an Eisenstein series E, . If L(x,—1) = 0 (mod \A), one shows there
exists a cuspidal Hecke eigenform f whose Hecke eigenvalues are congruent to those
of By (mod A) and as a result of that the mod A Galois representation p, attached
to f is reducible (a consequence of the congruence) but can be chosen to be non-
semisimple (a consequence of the irreducibility of the A-adic Galois representation
py), thus giving rise to a non-split extension of one-dimensional Galois modules
over Fy. This extension can be interpreted as a non-zero element in a certain piece
(determined by x) of the class group of Q(u).

This strategy can be phrased in the language of automorphic representations
suggesting ways to generalize it to other situations. Let m be an automorphic
representation of an algebraic group M over Q. Realize M as a Levi subgroup in a
maximal parabolic subgroup of a larger algebraic group G over Q and lift 7 (e.g., by
inducing) to an automorphic representation II of G(A). Assuming one knows how
to attach A-adic Galois representations to automorphic representations of G(A), the
one attached to II will be reducible and semisimple. If A divides a certain L-value
L(7), construct a representation II' of G(A), whose Hecke eigenvalues are congruent
to those of IT mod A and whose A-adic Galois representation is irreducible. These
two conditions (respectively) ensure that the mod A Galois representation attached
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to II' is reducible and non-semisimple, thus giving rise to some non-split extension
of Galois modules which one interprets as lying in an appropriate Selmer group
related to 7. In Ribet’s case, M = GL; X GLy, G = GLy, 7 = x ® 1, II (resp. II')
is the automorphic representation of GLy(A) attached to E, (resp. f).

Some versions of this approach have been applied by several authors: Mazur,
Wiles, Bellaiche-Chenevier, Skinner-Urban, Brown, Berger ([41, 60, 1, 9, 3])) to
give lower bounds in terms of L-values on the orders of Selmer groups. The difficult
point is the construction of II' and different cases require different methods to tackle
that point.

Let K = Q(i), f € Sk—1 (4, (_—4)), a normalized cuspidal Hecke eigenform, £ > k
a prime such that f is ordinary at £. Write L™ (Symm? f, k) for the value at k of the
symmetric square L-function of f divided by a suitable “integral” period. In this
article we implement the above strategy with M = Resg/q(GLy/k), G = U(2,2) -
a quasi-split unitary group associated with the extension K/Q, = = base change to
K of the automorphic representation associated to f, and L(r) = Li"*(Symm? f, k).
This will allow us to construct elements in the Selmer group of V := ad’ ps|g (—1),
where py is the A-adic Galois representation attached to f, Gx = Gal(K/K), and
—1 denotes a Tate twist. We will now describe the construction of II = the lift of
7 to G(A) and of the representation II'.

The representation II is obtained by lifting f to a Hecke eigenform Fy € Sk,
where Sy, is the space of (weight k and level 1) hermitian modular forms as defined
by Braun [6, 7, 8], using the Maass lifting constructed by Kojima, Gritsenko and
Krieg [36, 23, 37]. Denote by SY! C Sj the image of the Maass lift. It is known that
the eigenvalues of eigenforms in Si lie in a number field. In fact we always choose
a sufficiently large finite extension E of Q and fix embeddings Q — Q, — C,
so we can view all the algebraic numbers of our interest as lying inside the same
field E. From now on A will denote a uniformizer of E and O its valuation ring.
Assuming L**(Symm? f, k) = 0 (mod A), we need to construct a hermitian modular
eigenform F’ € Sj, orthogonal to the Maass space Sf! whose Hecke eigenvalues are
congruent to those of Fy (mod A). The form F’ will give rise to the representation II’
as above. Indeed, the A-adic Galois representation attached to F is reducible and
semisimple of the form p; & (py®e€), where € is the ¢-adic cyclotomic character, while
it is conjectured that the A-adic Galois representation attached to an eigenform
orthogonal to the Maass space is irreducible. In proving a bound on the Selmer
group we will need to assume this conjecture (see Theorem 1.2).

The construction of F' is carried out in several steps. Note that, unlike in
Ribet’s case, our lift F is a cusp form, so there is no “constant term” which would
“naturally” contain the L-value L**(Symm? f,k). Let x be a Hecke character of
K of infinity type (z/]z])~¢ with —k <t < —6. We first define a “nice” hermitian
modular form = which is essentially a product of a hermitian Siegel Eisenstein series
D and a hermitian theta series 8, depending on the character x. Using some results
of Shimura [49, 50, 51] on algebraicity of Fourier coefficients of hermitian Eisenstein
series we show that = has A-integral Fourier coefficients. We write

<D0X>Ff>

(1.1) E=Cp Ff+F with Cp, = (x)77° ,
s f ! <Ff;Ff>

where (x) is a A-adic unit, F' is orthogonal to Fy, i.e., (Fy, F) = 0, and the inner
products are the Petersson inner products on Sy. Using results of Shimura [51] and
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some formulae due to Raghavan and Sengupta [44] we are able to express the inner
products by L-functions related to f. More precisely, we get

(DO, Fy) . _; L™(BC(f),1+ 5 x@)L"(BC(f),2 + 5+, x@)

12) (Fy,Fy) ¥ Lint(Symm? f, k) ’

where (x) € E with ordy((x)) < 0, n is the Hida congruence ideal of f, w is the
unramified Hecke character of K of infinity type (z/|z|) ¥, and L"*(BC(f), s, )
is the L-function of the base change of f to K twisted by the Hecke character
. Note that (ignoring the factor 5! for the moment) if one can find xy which
makes the numerator of the right-hand side of (1.2) a A-adic unit, then using (1.1)
and A-integrality of the Fourier coefficients of E and of Fy we see that if A" |
L™(Symm? f, k) then we can write Cp, = aA™" with a a A-adic unit and hence
Ff = —a7'A\"F (mod A" ). However F"' := —a~'A"F need not be orthogonal
to the Maass space. To achieve this last property we modify F"' appropriately
(to obtain F') using some results of Hida as well as deformation theory of Galois
representations.

This way we obtain the first main result of the paper. To simplify the exposi-
tion here we omit a certain technical hypothesis on the character x. For the full
statement see Theorem 7.12.

Theorem 1.1. With notation as before, assume that k € Zy, 4 | k, £ > k, f
is ordinary at { and the mod X\ representation p, restricted to Gy is absolutely
irreducible. Assume there exists a Hecke character x of K of conductor prime to
¢, infinity type (2/|z])t, —k < t < —6, such that the numerator of the right-hand
side of (1.2) is a A-adic unit. If ordy (L™ Symm? f, k) = n > 0, then there ewists
F' € S, orthogonal to the Maass space, such that F' = Fy (mod A™).

To be precise, the form F’ in Theorem 1.1 need not be a Hecke eigenform. To
measure congruences between Fy and eigenforms orthogonal to the Maass space we
introduce the notion of a CAP ideal, which is a simple modification of the Eisenstein
ideal introduced by Mazur [39]. Theorem 1.1 implies that

(1.3) Ol“d(([f) > ord (#0O/\"),

where Iy is the index of the CAP ideal of F inside the hermitian Hecke O-algebra
acting on the orthogonal complement of S}CVI localized at the maximal ideal corre-
sponding to F.

We emphasize that the ordinarity assumption on f is essential to our method.
It is used to ensure that F' is orthogonal to the Maass space (see section 8). For a
given f it is unknown for how many primes f is ordinary, although one conjectures
that for a non-CM form (which is the case here) this set of primes has Dirichlet
density one. An analogous statement for elliptic curves is due to Serre [48].

Let Vq be the E[Gql-module ad’ p;(—1). Fix a Gq-stable O-lattice Tq C Vg
and set Wq :=Vq/Tq. For A =V, T, W, write Ax for Aq regarded as an E[Gk]-
module. Write ¥, for the set of primes of K lying over £. Let Sely,(Wk) be
the Selmer group of Wi in the sense of Bloch-Kato (for definition see section 9)
and write Sy, (Wg) for the Pontryagin dual of Sels, (Wgk). Then our second main
theorem (which uses a result of Urban [55]) is the following (again we omit some
mild hypotheses on f - see section 9):
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Theorem 1.2. Assume that for every eigenform F € Sy orthogonal to S}CVI the
A-adic Galois attached to F' is absolutely irreducible. Then

ordy(#Ss,(Wk)) > orde(Iy).

The existence of A-adic Galois representations attached to general automorphic
forms on G is at this point only conjectural, so Theorem 1.2 is conditional upon that
conjecture. In fact once this conjecture is known in full strength, one should be able
to remove the irreducibility assumption from Theorem 1.2, as it is expected that
Galois representations attached to non-Maass cuspidal eigenforms are irreducible.

Combining Theorem 1.2 with (1.3) which is a consequence of Theorem 1.1, we
obtain the following corollary.

Corollary 1.3. With the same assumptions as in Theorems 1.1 and 1.2 one has
ordy(#5s, (Wi)) > orde(#O/L™ (Symm® f, k).

Let us briefly explain the relation of Corollary 1.3 to the Bloch-Kato conjecture
for M = ad’ My(—1), where M is the motif attached to f. Let ¥ = {2, ¢} and write
Sy, (Wq) for the Pontryagin dual of Sely;(Wgq) (where we require that the classes
be unramified away from ¢ and crystalline at £). Let L(M,s) =[], Ly(s — 1) be
the L-function of M defined by

(14)  Ly(s) == (L= 0pa0,,p~*) (1 =p*) (1 —opiopop )t p#2

(1 _pis)il p=2,
where a1, o 2 are the p-Satake parameters of f. Then the Bloch-Kato conjecture
for M can be phrased in the following way:

Conjecture 1.4 (Bloch-Kato). One has

L(M,0)
1.5 Sy (Wgq) - T Tq)= —"~+—0
as fractional ideals of E, where Tam, (Tq) is the {-Tamagawa factor and Q,(VgQ)
is a certain period defined with respect to the “integral structures” Tq and w (for

precise definitions see section 9.3).

Given our assumptions (which in particular include the ordinarity assumption
on f) Corollary 1.3 falls short of proving that the left-hand side of (1.5) contains
the right-hand side of (1.5), but provides some evidence for it. In fact (for an
appropriate choice of Tq and w) the right-hand side of (1.5) equals L™ (Symm? f, k)-
O. However, the Selmer group on the left-hand side of (1.5) could potentially
be smaller than Sy, (Wgk) and we do not know if Tam(Tq) = O. For a more
detailed discussion see section 9.3. In that section we also explain the relation of
Corollary 1.3 to the Bloch-Kato conjecture for the motif ad® My(2) which is “dual”
to ad” My(—1).

The Bloch-Kato conjecture is currently known only for a few motives - see [33] for
a survey of known cases. The most recent result is due to Diamond, Flach and Guo
[13] and it concerns the motives ad” My and ad® My(1), while our result concerns
the motives ad® My(—1) and ad® My(2). The method used in [13] is related to the
method employed by Wiles and Taylor to prove the Taniyama-Shimura conjecture
[61, 54] and so is different from ours.

Let us briefly discuss the organization of the paper. In section 2 we introduce
notation which is used throughout the paper. In section 4 we summarize the basic
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facts concerning the Maass lifting f — Fy and compute the Petersson inner product
(F¢,Fy) in terms of L(Symm? f,k). To carry out the calculations we need to
first compute the residue of the hermitian Klingen Eisenstein series and this is
done in section 3. The inner product (D6, Fy) is computed in section 6. In
section 5 we gather the necessary facts concerning the hermitian Hecke algebra
which are later used in section 7, where the first main theorem (Theorem 1.1) is
proved assuming existence of a certain Hecke operator which allows one to “kill”
the “Maass part” of the form F"' as above, i.e., obtain a form F’ that would be
orthogonal to S}CVI. The existence of such a Hecke operator is proved in section 8
using methods of deformation theory of Galois representations. Finally in section
9 we prove Theorem 1.2 and Corollary 1.3 and discuss the relation of the latter to
the Bloch-Kato conjecture.

We also want to mention that it seems possible to extend our result to an arbi-
trary imaginary quadratic field K provided one knows how to construct a Hecke-
equivariant Maass lifting in that setting. Such a construction has recently been
carried out by the author [35] for K with prime discriminant (see also [30]). We
hope to use that construction to prove Theorems 1.1 and 1.2 for such a K in a
subsequent paper.

The author would like to thank Joel Bellaiche, Tobias Berger, Jim Brown, and
Chris Skinner for many useful and inspiring conversations. We would also like to
thank the anonymous referee for suggesting various improvements to the Introduc-
tion and section 9.

2. NOTATION AND TERMINOLOGY

In this section we introduce some basic concepts and establish notation which
will be used throughout this paper unless explicitly indicated otherwise.

2.1. Number fields and Hecke characters. Throughout this paper ¢ will always
denote an odd prime. Let i = /=1, K = Q(i) and let O be the ring of integers
of K. For a € K, denote by @ the image of a under the non-trivial automorphism
of K. Set Na := N(a) := a@, and for an ideal n of Ok, set Nn := #(Ox /n). As
remarked below we will always view K as a subfield of C. For a € C, & will denote
the complex conjugate of a and we set |a| := vaa.

Let L be a number field with ring of integers Op. For a place v of L, denote by
L, the completion of L at v and by Op, , the valuation ring of L,. If p is a place of
Q, weset L, :=Q,®qL and Of ), :=Z,®7 0. The letter v will be used to denote
places of number fields (including Q and K), while the letter p will be reserved for
a (finite or infinite) place of Q. For a finite p, let ord, denote the p-adic valuation
on Q,. For notational convenience we also define ord,(c0) := co. If a € Q,, then
la|q, = p~°rd*(®) denotes the p-adic norm of . For p =00, | |q. = | |r =]"|
is the usual absolute value on Q., = R.

In this paper we fix once and for all an algebraic closure Q of the rationals and
algebraic closures Q,, of Qy, as well as compatible embeddings Q < Q, < C for
all finite places p of Q. We extend ord, to a function from Qp into Q. Let L be
a number field. We write G, for Gal(L/L). If p is a prime of L, we also write
D, C Gy, for the decomposition group of p and I, C D, for the inertia group of p.
The chosen embeddings allow us to identify D, with Gal(L,/Ly).



6 CONGRUENCES AMONG MODULAR FORMS ON U(2,2)

For a number field L let A; denote the ring of adeles of L and put A := Aq.
Write Ar o and Ay ¢ for the infinite part and the finite part of Ay respectively.
For a = (@) € A set |a|a =[], |alq,. By a Hecke character of A} (or of L, for
short) we mean a continuous homomorphism

¢Y:L*\Af - C*

whose image is contained inside {z € C | |z| = 1}. The trivial Hecke character
will be denoted by 1. The character ¢ factors into a product of local characters
tp =[], ¥, where v runs over all places of L. If n is the ideal of the ring of integers
Oy, of L such that

e ,(z,) = Llif v is a finite place of L, z, € O] , and z — 1 € nOf,

e no ideal m strictly containing n has the above property,
then n will be called the conductor of ¢». If m is an ideal of Op, then we set
Ym = [[ ¥y, where the product runs over all the finite places of L such that v | m.
For a Hecke character ¢ of A}, denote by ¢* the associated ideal character. Let
¢ be a Hecke character of Aj. We will sometimes think of ¢ as a character
of (Resg/q GL1)(A). We have a factorization ¢ = [[ ¢, into local characters

Yp : (ResK/Q GLl) (Qp) = C*. For M € Z, we set iy = Hp;éoo,le Yp. I is
a Hecke character of Aj, we set g = ¥|ax.

2.2. The unitary group. To the imaginary quadratic extension K/Q one asso-
ciates the unitary similitude group

GU(n,n) = {A € Resk/q GL,, | AJA" = u(A)J},

—I,

where J = , with I,, denoting the n x n identity matrix, the bar over A

I,
standing for the action of the non-trivial automorphism of K/Q and p(A) € GL;.
For a matrix (or scalar) A with entries in a ring affording an action of Gal(K/Q),
we will sometimes write A* for A* and A for (4*)~!. We will also make use of the
groups

U(n,n) = {A € GU(n,n) | p(4) =1},
and
SU(n,n) = {A € U(n,n) | det A =1}.
Since the case n = 2 will be of particular interest to us we set G = U(2,2),
G1 =SU(2,2) and G, = GU(2,2).
For a Q-subgroup H of G write H; for H N G;. Denote by G, the additive
group. In G’ we choose a maximal torus

a
T = aQ | a,be ReSK/Q GL; p,
b
and a Borel subgroup B = T'Up with unipotent radical

1 « B Y
1 ~—a
Up = 0 1Oé¢ o) |a7577 c ReSK/Q Gy, 0 €G,, B+va€ Gy

—& 1
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Let

Tq = 1 | a,be GLy
b71

denote the maximal Q-split torus contained in 7. Let R(G) be the set of roots of
Tq, and denote by e;, j = 1,2, the root defined by

ai

€j: -1 = aj.

The choice of B determines a subset RT(G) C R(G) of positive roots. We have
RT(Q) = {e1 +ez,e1 —e3,2e1,2e5}.
We fix a set A(G) C RT(G) of simple roots
A(G) :={e1 — ez, 2e2}.

If & C A(G), denote the parabolic subgroup corresponding to § by Py. We have
Pa(ay = G and Py = B. The other two possible subsets of A(G) correspond to
maximal Q-parabolics of G:

e the Siegel parabolic P := Py, _.,; = MpUp with Levi subgroup

A
Mp={|: A:| |A€RESK/Q GLQ},

and (abelian) unipotent radical

1 bi b
1 by b

Up: 12 4 |b1,b4€Ga, bQEReSK/Q Ga
1

e the Klingen parabolic @ := Pys.,) = MqUq with Levi subgroup

z
Mg = “ ’|'| € Resg/q GLy, [‘CL Z] UL,
¢ d
and (non-abelian) unipotent radical
I a B 7~
Ug = 1 ? | a, 8,7 € Resg/q G, B+7a€ G,
—a 1

For an associative ring R with identity and an R-module N we write N} to denote
the R-module of n x m matrices with entries in N. We also set N™ := N7*, and
Mp(N) := NP. Let x = [A 8] € My,(N) with A,B,C,D € M,(N). Define
a, =A, b,=B,c, =C,d, =D.
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For M € Q, N € Z such that MN € Z we will denote by D(M, N) the group
G(R) Il Ko,p(M,N) C G(A), where

(2.1) Kop(M,N)={z € G(Q,) | as,d, € M2(Of,p) ,
by € Mo(M Ok p), co € Moa(MNOk )} .

If M =1, denote D(M,N) simply by D(N) and Ky p(M,N) by Koy ,(N). For
any finite p, the group Ko, := Ky p(1) = G(Zp) is a maximal (open) compact
subgroup of G(Q,). Note that if pt N, then Ky, = Ko ,(N). We write Ko ¢(N) :=
[L100 Kop(IN) and Ko := Ko(1). Note that Koy is a maximal (open) compact
subgroup of G(Ag). Set

Koo 1= { {_AB ﬂ € G(R) | A, B € GLy(C), AA* + BB* = I, AB* = BA*} .

Then Ky o is a maximal compact subgroup of G(R). Let
U(m) :={A € GL,(C) | AA* =1, }.
We have
Koo =GR)NUM@) S U(2) xU(2),
where the last isomorphism is given by
{ A B

B A] — (A+iB,A—iB) € U(2) x U(2).

Finally, set Ko(N) := Ko 00K ¢(N) and Kg := Ky(1). The last group is a maximal
compact subgroup of G(A). Let M € Q, N € Z be such that M N € Z. We define
the following congruence subgroups of G(Q):

L§(M,N) :=G(Q) N D(M,N),
(2.2) I'YM,N):={a € T8(M,N) | aq — 1 € Ma(NOk)},,
I"(M,N):={a e TN(M,N) | by € My(M~'NOg)}

and set TB(N) := [3(1,N), I¥(N) := ['}(1,N) and TB(N) := I'*(1, N). Because
we will frequently use the group I'} (1) = {4 € GL4(Ok) | AJA* = J}, we reserve a
special notation for it and denote it by I'z. Note that the groups I'} (N), T (N) and
I'"(N) are U(2,2)-analogues of the standard congruence subgroups ['o(N), I'; (N)
and I'(N) of SLa(Z). In general the superscript ‘h’ will indicate that an object is
in some way related to the group U(2,2). The letter ‘h’ stands for ‘hermitian’, as
this is the standard name of modular forms on U(2,2).

2.3. Modular forms. In this paper we will make use of the theory of modular
forms on congruence subgroups of two different groups: SL2(Z) and I'z. We will
use both the classical and the adelic formulation of the theories. In the adelic
framework one usually speaks of automorphic forms rather than modular forms
and in this case SLo is usually replaced with GL,. For more details see e.g. [22],
chapter 3. In the classical setting the modular forms on congruence subgroups
of SL2(Z) will be referred to as elliptic modular forms, and those on congruence
subgroups of I'z as hermitian modular forms.
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2.3.1. Elliptic modular forms. The theory of elliptic modular forms is well-known,
so we omit most of the definitions and refer the reader to standard sources, e.g.
[42]. Let
H:={z€C|Im(z) >0}

denote the complex upper half-plane. In the case of elliptic modular forms we
will denote by [o(NN) the subgroup of SL2(Z) consisting of matrices whose lower-
left entries are divisible by N, and by I'y (V) the subgroup of [y(N) consisting of
matrices whose upper left entries are congruent to 1 modulo N. Let I' C SLy(Z) be
a congruence subgroup. Set M,,(T') (resp. S, (') to denote the C-space of elliptic
modular forms (resp. cusp forms) of weight m and level I'. We also denote by
M, (N, ) (resp. Sm (N, 1)) the space of elliptic modular forms (resp. cusp forms)
of weight m, level N and character ¢. For f,g € M,,(I") with either f or g a cusp
form, and I'' C I a finite index subgroup, we define the Petersson inner product

(f, 9 = /F’\H f(z)@(lm 2)"™ 2 dx dy,

and set )

(f.9) L@ T
where SLy(Z) := SL2(Z)/ (—1I2) and T is the image of I'" in SL2(Z). The value
(f,g) is independent of T".

Every elliptic modular form f € M, (N, ) possesses a Fourier expansion f(z) =
> s a(n)g™, where throughout this paper in such series ¢ will denote e(z) := e*™%*.
For v = [2}] € GL] (R), set j(y,2) = cz +d.

In this paper we will be particularly interested in the space S, (4, (_—4)), where
(=%) is the non-trivial character of (Z/4Z)*. Regarded as a function Z — {1, -1},
it assigns the value 1 to all prime numbers p such that (p) splits in K and the
value —1 to all prime numbers p such that (p) is inert in K. Note that since
the character (=%) is primitive, the space Sy, (4, (=%)) has a basis consisting of
primitive normalized eigenforms. We will denote this (unique) basis by M. For

F=>0"1a(n)g" € N, set fP:=3 > a(n)g" € N.

(f: g>F’ )

Fact 2.1. ([42], section 4.6) One has a(p) = (_74) a(p) for any rational prime p { 2.

This implies that a(p) = a(p) if (p) splits in K and a(p) = —a(p) if (p) is inert in
K.

For f € N and E a finite extension of Q, containing the eigenvalues of T}, n =
1,2,... we will denote by p; : Gq — GL2(E) the Galois representation attached
to f by Deligne (cf. e.g., [11], section 3.1). We will write p, for the reduction of
ps modulo a uniformizer of E with respect to some lattice A in E?. In general Py
depends on the lattice A, however the isomorphism class of its semisimplification
p¥ is independent of A. Thus, if p, is irreducible (which we will assume), it is
well-defined.

2.3.2. Hermitian modular forms. For a systematic treatment of the theory of her-
mitian modular forms see [6, 7, 8] as well as [23, 37, 36]. We begin by defining the
hermitian upper half-plane

H={Z e MC)| —i(Z-2%) >0},
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where i=[?,]. Set ReZ = 1(Z+ Z*) and Im Z = —3i(Z — Z*). Let
G (R) = {g € Gu(R) | u(g) > 0}.

The group G} (R) acts on H by vZ = (ayZ + by)(c, Z +d,)~", with v € G} (R).
For a holomorphic function ¥ on #, an integer m and v € G} (R) put

Flmy = p(y)*™ (v, 2) " F(y2),
with the automorphy factor j(vy, Z) = det(c,Z + d).

Let I'" be a congruence subgroup of I'z. We say that a holomorphic function F
on H is a hermitian modular form of weight m and level I'? if

F|py=F forallyeT".

The group I' is called the level of F. If " = TR(N) for some N € Z, then we
say that F' is of level N. Forms of level 1 will sometimes be referred to as forms
of full level. One can also define hermitian modular forms with a character. Let
I'" =TB(N) and let ¢ : A — C* be a Hecke character such that for all finite p,
Yp(a) =1 for every a € leﬂp witha—1¢€ NOg . We say that F'is of level N and
character ¢ if

F|,y = ¢n(deta,)F for everyy € T(N).

A hermitian modular form of level I'"(M, N) possesses a Fourier expansion

F(Z)y= Y c(reltrr2),
TES(M)
where S(M) = {z € S|traL(M) C Z} with S = {h € M>(K) | h* = h} and
L(M) = SN My(MOkg). As we will be particularly interested in the case when
M =1, we set

) 1

S:ZS(].): t—l t2 EMQ(K)|t1,t3€Z,t2€—OK .
ty t3 2

Denote by M, (I'™) the C-space of hermitian modular forms of weight m and

level ') and by M., (N,) the C-space of hermitian modular forms of weight m,

level N and character ). For F € M,,(I'™) and @ € G} (R) one has F|,a €

M (@' a) and there is an expansion

Flpa = Z ca(T)e(tr 772).
TES
We call F a cusp form if for all @ € G}f (R), ca(7) = 0 for every 7 such that det 7 =
0. Denote by S,,(T'") (resp. S (IV,v)) the subspace of cusp forms inside M, (T®)
(resp. My (N,9)). If p =1, set My (N) := M, (N, 1) and Sp,(N) := S (N, 1).

Theorem 2.2 (g-expansion principle, [28], section 8.4). Let £ be a rational prime
and N a positive integer with £ ¥ N. Suppose all Fourier coefficients of F €
M (N, ) lie inside the valuation ring O of a finite extension E of Qq. If v € T'z,
then all Fourier coefficients of F|y7y also lie in O.

If F and F' are two hermitian modular forms of weight 1, level I'® and character
1, and either F or F' is a cusp form, we define for any finite index subgroup 't of
'™, the Petersson inner product

(B, F')py = / F(Z)F'(Z)(detY)™ *dXdY,
IB\H
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where X = ReZ and Y =Im Z, and
(F,F') = [Tz : To] ™ (F, F')yu,

where I'z := I'z/ (i) and fg is the image of I'} in I'z. The value (F, F") is indepen-
dent of T'l.

There exist adelic analogues of hermitian modular forms. For F' € M,, (N, ),
the function pp : G(A) — C defined by

PF (g) = j(gooa i)_mF(goo; i)@b_l(det dk),
where g = gQgock € G(Q)G(R) Ko ¢(N), is an automorphic form on G(A).

3. EISENSTEIN SERIES

The goal of this section is to compute the residue of the hermitian Klingen
Eisenstein series (cf. Definition 3.1 and Theorem 3.10). This computation will be
used in the next section.

3.1. Siegel, Klingen and Borel Eisenstein series. Siegel and Klingen Eisen-
stein series are induced from the maximal parabolic subgroups P and @ of G =
U(2,2) respectively. (For the definitions of P and @ see section 2.2.) Let

dp: P(A) - Ry
be the modulus character of P(A),

(3.1 op ({A A] u) = |det Adet A},

with A € ReSK/Q GLz(A), u e UP(A), and
do: Q(A) - Ry
the modulus character of Q(A),

T

(3.2) so| | @ . Pul=eaf,

c d
with 2 € Resg;q GL1(A), [24] € U(1,1)(A) and u € Ug(A). As before, Ky =
Ky, 00 Ko ¢ will denote the maximal compact subgroup of G(A). Using the Iwasawa

decomposition G(A) = P(A)K, we extend both characters dp and ¢ to functions
on G(A) and denote these extensions again by dp and d¢.

Definition 3.1. For g € G(A), the series
Ep(g,s):= Y dp(19)°
P(Q\G(Q)
is called the (hermitian) Siegel Eisenstein series, while the series
Eg(g,s):= Y, dqlyg)’
RIQ\G(Q)

is called the (hermitian) Klingen Eisenstein series.

Properties of Ep(g, s) were investigated by Shimura in [50]. We summarize them
in the following proposition.
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Proposition 3.2 (Shimura). The series Ep(g, s) is absolutely convergent for Re (s) >
1 and can be meromorphically continued to the entire s-plane with only a simple
pole at s = 1. One has

(3.3) res,—1 Ep(g,s) = %,

where L(-,-) denotes the Dirichlet L-function.

Properties of the Klingen Eisenstein series were investigated by Raghavan and
Sengupta in [44]. The only difference is that instead of E¢(g,s), [44] uses an
Eisenstein series that we will denote by Es(Z). The connection between Eg(g,s)
and Eg(Z) is provided by Lemma 4.6. After the connection has been established
the following proposition follows from Lemma 1 in [44].

Proposition 3.3 (Raghavan-Sengupta). The series Eg(g,s) converges absolutely
for Re (s) > 1 and can be meromorphically continued to the entire s-plane. The pos-
sible poles of Eq(yg, s) are at most simple and are contained in the set {0,1/3,2/3,1}.

In section 3.4 we will show that Eq (g, s) has a simple pole at s = 1 and calculate
the residue.
Both Ep(g,s) and Eg(g,s) have their classical analogues, i.e., series in which g
is replaced by a variable Z in the hermitian upper half-plane #. Let g, € G(R)
be such that Z = gl and set ¢ = (90, 1) € G(R) x G(Af). Define
Ep(Z,s) := Ep(g,s)
and
EqQ(Z,s) = Eq(g, s)-
We will show in Lemma 4.6 that

) detln (72) |
Fol#e) = VGQ%\FZ ((Im (7Z))272> ,

where for any matrix M we denote its (i, j)-th entry by M, ;.

Remark 3.4. Note that we use the same symbols Ep(-,s) and Eg(-,s) to denote
both the adelic and the classical Eisenstein series. We distinguish them by inserting
g € G(A) or Z € H in the place of the dot. We will continue this abuse of notation
for other Eisenstein series we study.

We now turn to the Eisenstein series which is induced from the Borel subgroup
B of GG, which we call the Borel Eisenstein series. It is a function of two complex
variables s and z, defined by

Ep(g,s,2):= Y, 0q(v9)°p(19)°.
1eBQ\G(Q)

Note that as the Levi subgroup of B is abelian (it is the torus T'), the character
660p is a cuspidal automorphic form on T'(A). Thus the following proposition
follows from [43], Proposition II.1.5.

Proposition 3.5. The series Eg(g,s, z) is absolutely convergent for
(s,2) € {(s',2") e Cx C|Re(s") >2/3,Re(z') > 1/2}.

It can be meromorphically continued to all of C x C.
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Remark 3.6. It follows from the general theory (cf. [38], chapter 7) that by taking
iterated residues of Eisenstein series induced from minimal parabolics one obtains
Eisenstein series on other parabolics. These series are usually referred to as residual
FEisenstein series. In fact Ep and Eg are residues of Ep taken with respect to the
variable s and z respectively. We will prove this fact in section 3.5, but see also
[32], Remark 5.6.

3.2. Siegel Eisenstein series with positive weight. In this section we define
an Eisenstein series induced from the Siegel parabolic, having positive weight, level
and non-trivial character. For notation refer to section 2. Let m, N be integers
with m > 0 and N > 0. Note that Ky is the stabilizer of i in G(R). Let ¢ :
K*\ A — C* be a Hecke character of A ;- with local decomposition ¢ =[] ¢y,
where p runs over all the places of Q. Assume that

T m
_ o0
vete) = ()
and
Yp(xp) =1 if p# oo,z € Ok, and z, — 1 € NOkg .

As before we set Yn = Hp‘pr' Let dp denote the modulus character of P. We
define

up : Mp(QUp(A) \ G(A) = C
by setting

2 {0 4 POAYE()
(detdy) 1y (det dy) L j(Koo,1)™™ g = gk € P(A)Ky(N).

Note that up has a local decomposition pup = Hp [p,p, where

Yp(detd,, )t if pt Noo,
(3.4) 1ep(@pkp) = § Yp(detdy, )~ by (detd,,) if p| N,p # oo,
VYoo(detdy ) j(Koo,1)™™ if p= o0

and dp has a local decomposition dp = Hp dpp, where

(3.5) dpp <[A A] um) = |det Adet A|q, .
Definition 3.7. The series
E(g;S;N;m;¢) = Z HP(79)6P(79)8/2
YEP(Q\G(Q)

is called the (hermitian) Siegel Eisenstein series of weight m, level N and character

.

The series E(g,s, N,m,1) converges for Re (s) sufficiently large, and can be
continued to a meromorphic function on all of C (cf. [50], Proposition 19.1). It
also has a complex analogue E(Z, s, m, 1, N) defined by

E(Z,s,m,¥,N) := j(goo,1)™ E(g,s, N, m,1))
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for Z = gool, 9 = 9Qgokt € G(Q)G(R)Kp ¢(N). It follows from Lemma 18.7(3)
of [50] and formulas (16.40) and (16.48) of [51], together with the fact that K has
class number one that

(3.6)
E(Z,s,m, 4, N) = > Y (det d,) "t (det Im Z)5~™/2|,,y =
YE(P(Q)NTE(N))\I'5(N)
= > Y (det dy) ™" det(cy Z + dy) "™ x

YEP(QNIG(N)\IG(N)
x |det(c, Z + d,)| 72+ (det Im Z)*~™/2.

3.3. The Eisenstein series on U(1,1). Let B; denote the upper-triangular Borel
subgroup of U(1,1) with Levi decomposition B; = T1U;, where

Tﬂ:{r 4|GER%MQGM}

a-{[ el

Let d; : B1(A) — Ry be the modulus character given by

s ([ ) =1

for u € Uj(A). Let K1 = K1,00K1 ¢ denote the maximal compact subgroup of
U(1,1)(A) with

and

Kl,oo = { |:_Oéﬁ §j| S GLQ(C) | |a|2 + |ﬂ|2 — ]_, O[B € R}

being the maximal compact subgroup of U(1,1)(R) and K1 ¢ =[], U(1,1)(Zy).
As usually we extend §; to a map on U(1,1)(A) using the Iwasawa decomposition.
For g € U(1,1)(A), set

(3.7) BEy,)(g,8) = > d1(7g)°.
vEBLQ\U(1,1)(Q)
The following proposition follows from [50], Theorem 19.7.
Proposition 3.8. The series Ey(1,1)(g,5) converges absolutely for Re (s) > 1 and

continues meromorphically to all of C. It has a simple pole at s = 1 with residue
3/x.

We now define a complex analogue of Ey1,1)(g,s). As SL2(R) acts transitively
on H, so does U(1,1)(R) D SLy(R). Hence for every z; € H there exists go €
U(1,1)(R) such that z; = gt Set ¢ = (90,1) € U(1,1)(R) x U(1,1)(A¢). An
easy calculation shows that

(3.8) 01(g) = Im (21).

For z; and g as above, define the complex Eisenstein series corresponding to
EU(1,1)(9>5) by

(3.9) Ey,)(z1,8) :== Eya,1)(9, s)-
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It is easy to see that
(3.10) Ey,1)(21,8) = > (Im (y21))°.
YEB; (Z)\U(1,1)(Z)
The series Ey1,1)(21,5) possesses a Fourier expansion of the form
EU(Ll) (Zla S) = Z cn(yl: 8)6271'1'77,%1,
nez

where z1 := Re (z1) and y; := Im (z1).
Lemma 3.9. Let z; and g be as before, i.e., z1 = gooi. Then

(2s—1D)T(s—3) ~
(@) IE VT

where ((s) denotes the Riemann zeta function.

co(s,41) =7 +

Proof. This is a standard argument. See, e.g., [10], the proof of Theorem 1.6.1. [

3.4. Residue of the Klingen Eisenstein series. Let Eg(g,s) be the Klingen
Eisenstein series defined in section 3.1. This section and section 3.5 are devoted to
proving the following theorem.

Theorem 3.10. The series Eg(g,s) has a simple pole at s =1 and one has
_ _5mL(2 (=)

T Ak@L (3, (=)

where (i (s) denotes the Dedekind zeta function of K.

(3.11) ress=1 Eg(g,s)

Theorem 3.10 is a consequence of the following proposition.

Proposition 3.11. The following statements hold:

(i) For any fized s € C with Re (s) > 2/3 the function Eg(g, s, z) has a simple
pole at z =1/2 and

3
(3.12) res._1/2Ep(g,5,2) = %EQ(Q, s+1/3).

(ii) For any fixed z € C with Re (z) > 1/2 the function Ep(g, s, z) has a simple
pole at s =2/3 and
2
™
1 2 F =—F=F 1/2).
(3 3) ress_% B(gasVZ) GCK(2) P(g;z_'_ / )
Indeed, using Proposition 3.11 and interchanging the order of taking residues we
obtain:

1 2 72 1
res,_z Eg <g,s + §> = — res._1 Ep (g, 3 + z) .
By Proposition 3.2,

1 ) 45L (2, (=2))

res._1 Ep <g, B +z

and thus we finally get

ress—1 Eg(g,s) =



16

CONGRUENCES AMONG MODULAR FORMS ON U(2,2)

which proves Theorem 3.10.
We now prepare for the proof of Proposition 3.11, which will be completed in
section 3&5'

Let

a b
&
c d

€ Mg(A). Since [¢%] € U(1,1)(A), we can use the Iwasawa

decomposition for U(1,1)(A) with respect to the upper-triangular Borel to write

[¢ 4]

[® 5] k with & € K1, where K is as in section 3.3. Note that if k = [} }2],

then | ", "?| € Ko. Define a character
K3 kg d
$q : Mg(A) = Ry
by
T T 1
a b 1 e gl =
¢Q 2 = ¢Q 2 1 = |aa|Aa
c d 1 a
and a character
¢p: Mp(A) - Ry
by:
A
w0 ([ )-
r Xk K1 K2
K3 Ka _ —17. 1\
op & "'3,1 HI2 = |xy ('Ty )|A7
* g Ky Ky

where we used the Iwasawa decomposition for GL2(Ak) = Resx/q GL2(A) with
respect to its upper-triangular Borel By, and its maximal compact subgroup Kr =
U(2) [Iitoo GL2(Ok,v) to write A € GLz(Ak) as

K1 K2

|:L17 *:| |:K}1
Y| |k3
K3 Ra

We again have Ky K

K2

M] € Br(A)Kp.

Extend ¢g and ¢p as well as dg and dp to functions on G(A) using the Iwasawa
decompositions

(3.15) G(A) =B(A) Ko = P(A) Ky = Q(A) Ky.
A simple calculation shows that
(3.16) 0505 = 05 el = 0 0

. Q0P = 0g Q P P

for any complex numbers s and z. Let Eg(g,s,z) be the Borel Eisenstein series
defined in section 3.1. By Proposition 3.5 the series is absolutely convergent if
Re (s) > 2/3 and Re (2) > 1/2 and admits meromorphic continuation to all of C2.
Using identity (3.16) and rearranging terms we get:

>

1EQ(Q\G(Q) a€B(Q)\Q(Q)

)*Ee po(ayg)* =

Eg(g,s,2) = do(vg
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(3.17) = > st > dplayg)
7EP(Q)\G(Q) a€B(Q)\P(Q)

Let Fy(1,1)(g, s) be the Eisenstein series defined by formula (3.7). We also define
an Eisenstein series on Resg/q GL2(A) by:

(3.18) EResc/q GL2(9,8) = > dr(79)°,
YEBR(Q)\Resx/q GL2(Q)

where di denotes the modulus character on By defined by:

5[.3 : B — R+
(3.19) or ( “ ﬂ) = |a@b~% 1z,

The following maps
TQ - MQUQ — U(l, 1)

T
(3.20) a b {a b}
. yu | = >
T c d
c d
and
np: P — ResK/Q GL-
(3.21) A X
A — A

give bijections
B(Q)\Q(Q) = B:1(Q)\U(1,1)(Q)

and

B(Q)\ P(Q) = Br(Q) \ Resk/q GL2(Q),
respectively.
On the A-points we can extend 7 to a map G(A) — U(1,1)(A)/K; and 7p to a
map G(A) = Resg/q GL2(A)/Kpg by declaring them to be trivial on K. Hence
we can rewrite (3.17) as

(322) Ep(g,s,2)i= Y.  0(19)" 5 Eya(me(yg),22) =
1EQIQ\G(Q)

- 3
= Z 61:’(’)/9)‘3i M EReSK/Q GLz (WP(79)7 58)
1EP(Q\G(Q)

3.5. Eg(yg,s) as a residual Eisenstein series. In this section we complete the
proof of Proposition 3.11. We will only present a proof of part (i) of the proposi-
tion as the proof of (ii) is completely analogous. (In part (ii) the role of Ey 1)
(see below) is played by Eges, /q GLs for which an easy computation shows that
ress=1 ERes,,q GL»(9,5) = 7°/(4(x(2)).) In what follows Z will denote a variable in
the hermitian upper half-plane H, and z; a variable in the complex upper half-plane
H. Otherwise we use notation from sections 3.1-3.4. Write ¢ = gqgook € G(A)
with gq € G(Q), 9o € G(R) and k € Ko¢. We have Eg(g,$,2) = EB(9c, S, 2)
and Eg(g,5) = Eg(ge,s), hence it is enough to prove (3.12) for ¢ = (goo, 1) €
G(R) x G(Ay). Let K; denote the maximal compact subgroup of U(1,1)(A) and
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let 7 : G(A) — U(1,1)(A)/K; be as in formula (3.20). Lemmas 3.12 and 3.14 are
easy.

Lemma 3.12. If g = (90, 1) € G(A), then Im (7 (9) o) = Im (gool)2,2-

Remark 3.13. Note that for any 2 x 2 matrix M with entries in C one has
Im (M5 2) = (Im (M))2,2. Hence the conclusion of Lemma 3.12 can also be written
as Im (7@ (9) o) = Im ((gooi)2,2)-

Lemma 3.14. For any Z € H, there exists v € Q(Z) such that (ImvZ)35 > 1.

The next lemma is just a simple adaptation to the case of hermitian modular
forms of the proof of Hilfsatz 2.10 of [21].

Lemma 3.15. For every Z € H, we have

sup detIm (vZ) < 0.
vel'z

Proposition 3.16. Let 0 > 0 and g = (9o, 1) € G(R) x G(A¢). For every s € C
with Re (s) > 1+ 6 and every z € C with |z — £| < 6, the series

(323 Di=le=1/2) Y |so(e) ™ By (maig), 22)
1EQIQN\GE(Q)
CONverges.

Proof. Using the same arguments as in the proof of Lemma 4.6 (cf. section 4.2)
one shows that

b= ¥

YEQ(Z)\I'z

I 7 3s+2z
(M) 2 = 1/2| [Bu1) (mQ(79) i, 22)|-

(Im (vZ))2,2

(Note that z' := mg(v9)ot is a complex variable.) As g = (goo,1) and v € 'z C
Ky ¢, we have 70 (79) 0o = 7@ (790, 1))oo- By Lemmas 3.12 and 3.14 we can find a
set S of representatives of (Z) \ I'z such that for every v € S we have

(3.24) I (1 (19)eci) = Im ((1sci)22) > 3.

The series Ey1,1)(21,22) has a Fourier expansion of the form

Ey1,1)(21,22) = Z cn(22,Im (27))e?mnRe (z1),
neZ

and Euy1,1)(21,22) — co(22,Im (z1)) for every fixed 2; continues to a holomor-
phic function on the entire z-plane and for every fixed z is rapidly decreasing
as Im (z1) — oo. It follows that for any given N > 0 there exists a constant
M(N) (independent of z; and independent of z as long as |z — 1/2| < 4) such
that |Ey(1,1)(21,22) — co(22,Im (21))] < M(N) as long as Im (z1) > N. Set z, :=
Re (m@(79)xot) and yy := Im (7(79)t) = Im ((Ygool)2,2) . Taking N = 1/2, we
see by formula (3.24) that there exists a constant M (independent of ) such that
|Eu(1,) (Ty +1iyy,22)| < M +[co(22,y,)|. Using (3.8) and Lemma 3.9 one sees that
there exists a positive constant C independent of z and of v such that

|z — 1/2|co(22,9)| < C + |y, T2.
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Thus we conclude that there exists a positive constant A (independent of z and )
such that

(3.25) ‘(’z B %) By 1) (1@ (7900)i,22) | < A1+ Im (7q (7goo)i )20y =

=A(l+1Im ('ygool)lﬂ‘s).
For s' € C lying inside the region of absolute convergence of Ey (Z) let

detIm (yZ) s
2= ¥ (e
vea@nrg | N (1Z))2.2
denote the majorant of Es(Z). By formula (3.25) we have

detIm (vZ) det2e
Im ’)/Z 2,2

(3.26) D < A|E|3si0.(Z) + A Z (Im (72))5 5.

Note that |E|ssy2:(Z) is Well—deﬁned (i.e., 3s + 2z is in the region of absolute
convergence of Ey (Z)) by our assumption on s and z. Denote the second term of
the right-hand side of formula (3.26) by D,. Then

3s+2z—(1+26)
AZ <detIm 7Z)>

Im ’yZ 2.2
By Lemma 3.15 there exists a constant M (Z) such that detIm (vZ) < M(Z) for
every v € S and hence

Dy < AM(Z)1+26|E|3S+227(1+2(5) < o0

as Re (3s + 2z — (1 4+ 26)) > 3 by our assumptions on z and s. This finishes the
proof. (I

(det Im (yZ))**+%.

Proof of Proposition 3.11. We need to show that for a fixed s € C with Re (s) >
2/3 and for every € > 0 there exists § > 0 such that |z — 1/2| < ¢ implies

1 .
(3.27) D(z):= <z—§> Yo e(r9)* TP By, (re(rg), 22)—
1EQIQ\G(Q)

3 1
5 > belyg)t <.
7EQ(Q\G(Q)

As remarked at the beginning of the section we can assume without loss of
generality that ¢ = (9oo,1) € G(R) x G(Af). We first show that (3.27) holds for
s with Re(s) > 1. Fix s € C with Re(s) > 1 and ¢’ > 0 such that 0 < §' <
Re (s) — 1. From now on assume |z — 1/2| < ¢'. Fix a set S of representatives of
Q(Q)\G(Q). By Proposition 3.16 and the fact that Eg(g,s’) converges absolutely
for ' with Re (s") > 1, there exists a finite subset S; of S such that the following
two inequalities:

(3.28) > | Gotr | <
YES:2

(3.29) >

YES2

W1 o

1
T 5‘ ‘ 00(19)* P By1.1)(mo(19),22)| <
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are simultaneously satisfied. Here S, denotes the complement of S; in S. We have
D(z) < D1(z) + D»(z), where

Di2)i= (2= 5) 3 bal19) "> Bun(ra(19),22) - o= Y- Salr0)* ).
YES; v€S;

Note that if we replace ¢’ with a smaller ¢ > 0, then estimates (3.28) and (3.29)

remain true as long as |z —1/2| < §" for the same choice of S;. Hence we find 6 > 0

with 0 < ¢ such that D;(z) < §. This is clearly possible as D;(z) is a finite sum

and it follows from Proposition 3.8 that 3/2m is the residue of Ey 1)(7q(v9),22)

at z = 1/2. On the other hand D»(z) < D3(z) + D4(z), where

NOEDS | 80(19)*+*/° By 1.1y (ma(19), 22)|

YES2

1
P
2

and 3
Di(2) = 5= 3 |Galye)™™7|.
YES2
Formulas (3.28) and (3.29) imply now that Ds(z) < €/4 and Dy4(z) < €/4. Hence
D(z) < D1(z) + D2(2) < Di(z) + D3(2) + Da(z) <€

as desired.

We have thus established the equality res._; /2 Eg(g,s,2) = %EQ (g,s+1/3) for
s with Re (s) > 1. However, both sides are meromorphic functions in s and since
the right-hand side is holomorphic for Re (s) > 2/3, so must be the left-hand side.
Hence they agree for Re (s) > 2/3. O

4. THE PETERSSON NORM OF A MAASS LIFT

The goal of this section is to express the denominator of C'r, in formula (1.1) by
a special value of the symmetric square L-function of f.

4.1. Maass lifts. Let H, as before, denote the complex upper half-plane. The
space H x C x C affords an action of the Jacobi modular group I'V := SLy(Z) x 0%,

under which ([2 5], 1) takes (r,z,w) € H x C x C to (I—Llimﬁ)

Definition 4.1. A holomorphic function
p:HxCxC—-C

is called a Jacobi form of weight k and index m if for every [‘g g] € SL»(Z) and
/\,/1, € Ok,
_ a b] ke, [ . czw ar +b z w
¢ = Flkm L d} =(er+d) e< mcr+d> Om <c7'+d’cr+d’c7'+d>

and

b = Olm[\ ] i= e(MAXt + Az + Aw) ¢ (1,2 + AT + pr,w + M+ [i).

Let k£ be a positive integer divisible by 4 and F' a hermitian cusp form of weight
k and full level. By rearranging the Fourier expansion F(Z) = ) 5 s c(B)e(tr BZ)
of F' we obtain

(4.1) F(Z)= Y ¢én(r,z,w)e(mr)

meEZso
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where Z = [, 7] € H and

Om(T,z,0) = D c<[é ;1]>e(lT+tz+tw)

ZGZZo,tE%(’)K
tt<im

is a Jacobi form of weight k£ and index m. The expansion (4.1) is called the Fourier-
Jacobi expansion of F.

Definition 4.2. The Maass space denoted by SM(I'z) is the C-linear subspace of
Sk (T'z) consisting of those F' € Si(I'z) which satisfy the following condition: there
exists a function ¢} : Z>¢ — C such that

cp(B)= Y d"'cp(4det B/d?)
d€Z>0,d|e(B)

for all B € S, where ¢(B) := max{q €Zso|iBe s}. We call F € SM(I'z) a
Maass form or a CAP form.

Theorem 4.3 (Raghavan-Sengupta [44]). There exists a C-linear isomorphism
between the Maass space and the space

(4.2) St <4, <_—4>> =
- {¢ € Sk (4, <_—4>> |6 = ib(n)qn7 b(n) = 0if (%) _ 1} _

We will describe this isomorphism in more detail. Any Jacobi form v of weight &
and index 1 can be written as a finite linear combination:

(43) w(Tazaw) = Z ft(T)et(Tazaw)a
teA
where A = {0, %, %, %}, 0:(7,2,w) =Y\ crron e(AAT + 1z + w) and
filr) = > cr(De(lT/4).

[>0,l=—4nt (mod 4)

The map (7, z,w) — fo(T) gives an injection of Jy 1, the space of Jacobi forms
of weight k and index 1, into Sj_1 (4, (_—4)) If we put ¢ = ¢ and define ¢
by é|k_1 [4 *1] = fo, the composite F +— ¢1(7,z,w) — fo(1) — ¢ gives the
isomorphism alluded to in Theorem 4.3. Denoting this isomorphism by 2, we can
map any normalized Hecke eigenform f = > o, b(n)g™ € Sp—1 (4, (=2)) to the
element Fy := Q7 '(f — f*) € SM(T'z). Here f* = 3 ., b(n)g". This lifting is
Hecke equivariant in a sense, which will be explained in section 5.4. Note that
Fy = —Fy, and Fy # 0 if and only if f # f*.

Definition 4.4. If f # f#, then Fy is called the Maass lift of f or the CAP lift of

I
Proposition 4.5. If f = > b(n)¢" € Sk_1 (4, (_—4)) is a normalized eigenform,
then

=24 (b(n) — b(n) if n Z 1 (mod 4

0 if n =1 (mod 4)
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where u(n) := #{t € A|4N(t) = —n (mod 4)}.
Proof. This follows from formula (4) on page 670 in [37]. O

4.2. The Petersson norm of Fy. To express (Fy, Fy) by an L-value we will use
an identity proved in [44] that involves a variant E,(Z) (defined below) of the
Klingen Eisenstein series Eg(g, s) (which was defined in section 3.1). For a matrix
M, denote by M; ; the (i,j)-th entry of M. Let C be the subgroup of I'z consisting
of all matrices whose last row is [0 0 0 1]. Set

det Im~yZ \°®
Ey(Z) = Z < >
v€C\I'z (Im 7Z)171
The series converges for Re (s) > 3 ([44], Lemma 1).
Lemma 4.6. Let g = (¢o0,1) € G(A) and Z = gooi. Then

1
(4.5) Eq(g,s) = ZEss(Z)-
Proof. First note that
) =4 Z (detIn;yZ)
YEC'\I'z tmyZ)1,1

where C' is the subgroup of I'z consisting of matrices whose last row is of the form

1
[0 0 0 a]witha € Of. Moreover we have C' = wQ(Z)w " with w = {1 1}
1

This gives
Z (detlva)s_ Z (M)S_ Z (detlrrryZ)s
—1 - . ’
'YECI\FZ (Im ’YZ)l,l ’YEQ(Z)\FZ (Im wyw Z)171 rYeQ(Z)\FZ (Im r)/Z)Z72
asw € I'z.

Now for v € 'z, we have dg(vg) = d¢g(g), where ¢ = (goo, 1) and Ygoo = Gookoo
with g € Q(R), ko € Ko oo- If goo = um with m = r “ s b] € Mg(R) and
u € Ug(R), then © 1

8q(vg) = dq(um) = dg(m(m™"um)) = éq(m) = |z
Moreover
Im~vyZ = Imygoi = Im gooi = Imum i.

A direct calculation shows that det Im u(mi) = det Im m i and that (Im u(mi))s 2 =
(Im mi)2 2. On the other hand

T
Immi= 1 ,
(ci+d)(ci+d)

detIm vZ
(IIII ’}/Z)272
The lemma now follows from the fact that the natural injection

Q(Z)\I'z = Q(Q)\ G(Q)

hence we have

=do(v9)'/%.
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is a bijection. This is a consequence of the identity Q(A) = Q(Q) Q(R) Q([ [ Zp),

which follows from Lemma 8.14 of [50]. O
Set
(4.6) E;(Z) = 7r_2sF(s)1"(s —1)¢(2s — 2)Ck (s)Es(2).

In [44] Raghavan and Sengupta prove that E}(Z) can be analytically continued
in s to the entire complex plane except for possible simple poles at s =0, 1,2,3.
Using Lemma 4.6 and Theorem 3.10 we conclude that E*(Z) has a simple pole at
s =3 and

2

(4.7) res,—s B} (2) = —((3).

Combining results of section 3 of [44] with a formula on page 200 in [loc. cit.] we
get
(F,Br s Fp) = 473 a7 3P0 () (s — k + 2)['(s — k + 3)x
(4.8) 2 :
x | TI ¢(s = k+34) | L(Symm? f,s) (¢1,¢1) -
j=1

Here we define L(Symm? f, s) for a normalized eigenform f = Y ° | a(n)q™ as an
Euler product:

L(Symm? f,5) = (1 — a(2)?2"°) (1 — a(2) 2%) x

y —s —8 y N
X H [(1 - a;,lp )L —aprapp°)(1 - 0‘;,21” )]
p#2

(4.9)

where the complex numbers «,,; and oy » are the p-Satake parameters of f defined
by the equation

—4
1—a(p)x + <?> pF22% = (1—apiz)(1l —apax).

Combining formulas (4.7) and (4.8) we obtain:
(4.10) (Fy, Fy) = 272720 (k) - 772 (1, ¢1) L(Symm? f, k).

Finally, to relate (¢, ¢1) to (f, f), in the next subsection we will prove the following
lemma.

Lemma 4.7. The following identity holds:

(4.11) (91,01) = 2(f, Fhr, vy = 24(f, ).
Combining Lemma 4.7 with formula (4.10) we finally obtain:
Theorem 4.8. The following identity holds:

(4.12) (Fy, Fy) = 272423 D(k) - 7= (f, f) L(Symm?® f, k).
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4.3. Inner product formula for Jacobi forms. This section is devoted to prov-
ing Lemma 4.7.

Proof of Lemma 4.7. Let ¢; and ¥ denote two Jacobi forms of weight & and index
m. It is easy to show that
(4.13)

v = [ ([ s (e

where F is the standard fundamental domain for the action of SLy(Z) on the
complex upper half-plane and F, C {7} x C x C is a fundamental domain for the
action of the matrices [-1 0 0] and [I A pu] (\,p € Ok) on C x C. After
performing a change of variables on C x C (keeping 7 fixed)

7r|z w2

dzg dz1 dwg dw1> du dv,

2 =z+w w =z —w,
and denoting by F! the fundamental domain F; in the new variables, the integral
over F, in (4.13) becomes

]- ! N~ 1 Nk M ! 12 12 !
3 . 1(7, 2", ws (1, 2", w')vte v dz dz] dwy dw;.

Set ¥; = ¥y = ¢1, where ¢ is the first Fourier-Jacobi coefficient of the CAP
form Fy. Using formula (4.3) we can write:

(4.14) (p1,01) = ZZ/ fe(7) for (D)o* =218, ¢, 7) du dv

teA t'eA
with
I(t,t' 1) / Z Z (a)T + @z + aw) e(N (b)T + bZ + bw) x

(4.15) T+ Caet+0x bet'+0x

« o= 3 ((Im () +(Re () >) dzh dz!, dwly du).
Changing variables again we get
(4.16) Itt, )= > > e —~ N7 I

act+Ok bet’'+O0k

with

I = 4/ e(2'Re (a) — 20'Re (b)) 2?1V dz) dz,,

Q1

where 2y is the parallelogram in C spanned by the two R-linearly independent

complex numbers 1 and 7, and ¢’ = zj, + iz} € C, with z{,z] € R. Before we
define Is we note that I; can be written as

Im (7) Vo 1 o
(4.17) L = 4/ e~ 54 </ e(22'Re (a) — 22'Re (b)) dx6> dr.
0 0

Now the integral inside the parantheses in (4.17) equals e=37Re (@) #1 if Re (a) =
Re (b) and 0 otherwise. Hence

Im (7 47 (2" )2 __87Re (a) 2’ )
(4.18) 11:{ 47 e T e sne (@51 g if Re (a) = Re ()
0 if Re (a) # Re (b)
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The integral
L= [ (-2 m (o) + 27 m ())e 400 dy s,
Q3

where Q5 denotes the region in the complex plane spanned by the two R-linearly
independent complex numbers 1 and —7 and y' = y{, + iy] € C with y,y] € R,
can be handled in a similar way. In fact one gets:

o= [ AT e T esrim (@2 gyt if T (a) = Im ()
? 0 if Im (a) # Im (b)

Substituting (4.18) and (4.19) into (4.16) one sees that I(¢,t',7) = 0if ¢t #¢', and
that after rearranging terms

I(t,t,7) =16 ( > / ((Re (a)v)® g ) X

e (a)ERe (t)+2Z

(4.20) y ( Z / 5 ((m (@)oui)? gyt )

Im (a)€lm (

= 16/ e—%"(Re (O+21)* gl / e~ (M (O+01)* gyt = 4y,
R R

(4.19)

where 7 = u + iv. Hence
(4.21) (o1, 01) / Z fe(T) fo(T)v* % - v du do.
Fiea

From this it follows that ), , fe(T) fo(T)v*=1 is “invariant” under SLy(Z). We
want to relate (4.21) to

(o f) = / FO o dudo.
I'i(4)\H

Denote by (f:, fi)' the integral fF1(4)\H fe(T) fe(T)v* 3 dudv. We will use cal-
culations carried out in [36]. In particular one has fi» = fi/2 and fiir1)2 =
folk—1[3 ], hence we conclude that the quantities (f;, f;)' are well-defined, since
folk—1a = fo for all @ € T';(4). Moreover, we have

(4.22)
Z (fes f1) = (fo, fo) + <f(i+1)/2>f(i+1)/2>l +2 <f1/2,f1/2>’ =

teA
= (fo, o) + (v ol 15 1)s Fawnypele—s (310) +2{fipes frp2) =
=2(fo, fo)' + 2 (fi/2, f1/2>l :

We use formula (3.5%) from [36], which is erroneously stated there, and should
read

fua) = =5 folis [ ] (1) = s folis [, 73] (),

hence

<f1/2;f1/2>l2 %(fo,foy (<f07f0|k 1[2 1]> <f0|k—1[%1]:f0>l) = %(foafoy

l\.’JI*’
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as folk—1 [1,] = fo. Thus we obtain

ST £ =3 (fo, o) =3 (folk=r [ ] folk—t [, 1)) =3 (6, 0)"

teA
Since ¢ = f — f* , and (f, f*)' =0, we get (¢,d) = 2(f, f)', so finally
N} e S— R S (N — S YO

[SLa(Z) : T'1(4)] [SLa(Z) : I'1(4)]

teA

5. HECKE OPERATORS

5.1. Elliptic Hecke algebra. The theory of Hecke operators acting on the space
of elliptic modular forms is well-known, so we refer the reader to standard sources
(e.g., [42], [14]) for definitions of most of the objects as well as their basic properties
used in this subsection.

Definition 5.1. Let k be a positive integer divisible by 4, and A a Z-algebra.
Denote by Ty the Z-subalgebra of End¢ (Sk,l (4, (_—4))) generated by the Hecke
operators T,,, n =1,2,.... We set

(1) Ta =Tz ®z A4

(2) T, to be the A-subalgebra of T 4 generated by the set

EI = {Tp}p split in K U {Tp2 }P inert in K';

(3) Tf) to be the A-subalgebra of Endc (Sk,l (4, (;4))) generated by T4 and
the (A-linear) operator TrT, which multiplies any normalized eigenform

g = a(n)q" by a(2) +a(2).

Suppose f = Yo7 ap(n)g™ € Sk—1 (4,(=2)) is a primitive normalized eigen-
form. Recall that we denote the set of such forms by . For T' € T, set Ay,c(T')
to denote the eigenvalue of 7' corresponding to f. It is a well-known fact that
Ar,c(Tn) = ag(n) for all f € NV and that the set {af(n)}nez., is contained in the
ring of integers of a finite extension L; of Q. Let E be a finite extension of Qy
containing the fields Ly for all f € N. Denote by O the valuation ring of E and by
A a uniformizer of O. Then {ay(n)}sen nez., C O. Moreover, one has

(5.1) Tg = H E
FEN

and

(5.2) To = [[ Tom,
m

where To 1, denotes the localization of Ty at m and the product runs over all
maximal ideals of Tp. Every f € A gives rise to an O-algebra homomorphism
To — O assigning to T the eigenvalue of T' corresponding to f. We denote this
homomorphism by A; and its reduction mod A by As. If m = ker Ay, we write m;
for m or if we want to emphasize the ring m lives in, we write my,, s. The algebra
T/, is studied in detail in section 8.1.
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5.2. Hermitian Hecke algebra. The theory of Hecke operators acting on the
space Si(I'z) is discussed in [23] and [37]. We summarize it here to the degree that
we need it. For the formulation of the theory which is valid for hermitian modular
forms of level higher than one (as well as the non-holomorphic ones) see [34]. See
also [35] for a theory of Hecke operators acting on the space of adelic hermitian
modular forms.

Set A := G} (Q) N My4(Ok). For a € A, the double coset space I'zal'z decom-
poses into a finite disjoint union of right cosets

FZaFZ = HI‘zaj
J
with a; € A. For F' € Sk(I'z) set F|[l'zal'z] := 3, Flra;.

Definition 5.2. The hermitian Hecke algebra (over C), denoted by Tl(“: is the
subalgebra of Endc(Sk(I'z)) generated by the double cosets of the form I'zal'z for
a € A. We call F € 8;(I'z) an eigenform if it is an eigenfunction for all T' € TL,.
We will denote the eigenvalue of T' corresponding to F' by Ap,c(T).

For a rational prime p we define an operator
r
(5.3) T):=Tz| ', } I'z,
p

if p is inert in K we additionally define

1
ho._ P
17, =Tz ? ] Iz,
p

and if p = 77 splits or ramifies in K we define
M1
(5.4) Ty :=Tz| ™, ] I'z.

We now describe the action of the operators T}, Ty, and T} on the Fourier
coefficients of hermitian modular forms. As before let S := {h € My (K) | h* = h}.
To shorten our notation we define the following elements of GLy(K):

g = c}z p} , a € Ok /pOk, pinert, aany lift of a to Ok
ap = p 1] , Dpinert;
(5.5) 31
ﬁa:_a 7T:|’ GZO,]_,___,p—]_,p:ﬂ'ﬂ'Spllt;
B, = T 1} , p= 7T split,

and for a 2 x 2 matrix M, we set M = [, 1] M [, 1]. Moreover, if B € S, we set
D ord,(det(B)) = 0;
s(B) =< —p(p—1) ord,(det(B)) > 0, ord,(e(B)) = 0;
p’(p—1) ordy(e(B)) >0,

where €(B) is as in Definition 4.2. Finally, if p is inert we write Pll) for the disjoint
union of Ok /pOxk and p.
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Lemma 5.3. Let F € §;(T'z) with Fourier expansion

F(Z) — Z CF(B)e2m'tr (BZ))
BeS

and let T € T}é. Then
TF(Z) = Y cru(B)erm (B2,

BeS
with
(5.6) crr(B)=
P lep(pTiB) +ep(pB) + 9" Y oepy cr(paiBas) T =T, pinert;
P tep(pTiB) + cr(pB) + PP Y0 o cr(Baf)* BBafy) T =TY, psplit;
pt2a k3P (cF(B;BBa) +pk72cF(ﬁ$;Bﬁia)) T =TP, psplit;
p?k=4s(B) + pk—b ZaeP; (cr(@%Bag) + p**2cp(aiBa,)) T = Tf‘,p, pinert.

Proof. This follows easily from the right coset decomposition of each of the Hecke
operators. The decomposition of T;‘ was computed by Krieg in [37], p.677. The
decomposition of TIE‘ for split p and that of T was computed by the author in [35],
Lemmas 6.5, 6.8, but see also Lemmas 6.6 and 6.9 in loc. cit. Finally, one can show
that T3 , decomposes in the following way:

1
Tf‘,p::l“zl pp2 ]FZ:
p

22 P o
=TIy p 1 L H 'y |: P » :|
p

a€Ok /p —al
(5'7) 1apB+ayy p _pd
TH | A B IV | A TR
a,7€Ok [p —ap p 0€OK /p p?
Bez/p* $EZ/p
p B p B
|_| Fz{ pp¢}|_| |_| I‘Zl pglvzﬁll_
B8,6€Z/pZ P Be(Z/pZ)* r
B¢=0 (mod p) Y€(Ok /pOK)*
This can be deduced from the calculations in [23]. O

Remark 5.4. Note that in Lemma 5.3, we have cp(B) = 0 unless B € S.

For any split or ramified prime p = 77 set ¥, := {Th, T2 T,} and for any inert
prime p, set ¥ := {TIE‘,Tf‘,p}.

Proposition 5.5 (Gritsenko, [23]). The Hecke algebra T is generated as a C-
algebra by the set |J, ¥,

Proposition 5.6. The space Si,(I'z) has a basis consisting of eigenforms.

Proof. This is a standard argument, which uses the fact that T}(‘3 is commutative
and all T € T}(‘3 are self-adjoint. O
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5.3. Integral structure of the hermitian Hecke algebra. For a split or ram-
ified prime p = 77 set

S, = {10, 7hp? Rkl whp R TRy
and for an inert prime p set

Sy = {1y, T}, }

Definition 5.7. Set T% (resp. T;’(Z)) to be the Z-subalgebra of TY, generated by

respective . . For any Z-algebra A, set = Xz A an
Up Zp ( ively by Up;ez Ep). F y Z-algebra A T} T3 A and
T};{@) = T;’@) ®z A.

Note that T% is a finite free Z-algebra.

Lemma 5.8. Let £ > 2 be a rational prime, E a finite extension of Qy and O the
valuation ring of E. Suppose that F(Z) = Y pcgcp(B)e™ (B2 € Sy (I'z) with
cr(B) € O for all B€ S. Let T € T%. Then TF(Z) = Y. yogcrr(B)e?mitr (B2)
with crp(B) € O for every B € S.

Proof. This follows directly from Lemma 5.3 and the assumption that £ be odd.
(The latter implies that the operators T3 and (i + 1)¥22=FT! | preserve the O-
integrality of the Fourier coefficients of F'.) (]

From now on A" will denote a fixed basis of eigenforms of Si(I'z).

Theorem 5.9. Let F € N". There exists a number field Ly with ring of integers
OL, such that \p.c(T) € O, for allT € T}(BLF

Proof. This is similar to the Eichler-Shimura isomorphism in the case of elliptic
modular forms. O

Let £ be a rational prime and E a finite extension of Q, containing the fields
Ly from Theorem 5.9 for all F € AN'®. Denote by O the valuation ring of E and
by A a uniformizer of ©. As in the case of elliptic modular forms, F' € N gives
rise to an O-algebra homomorphism TY — O assigning to 7' the eigenvalue of T
corresponding to the eigenform F. We denote this homomorphism by Ap and its
mod A reduction by Ap. Theorem 5.9 implies that we have

Ty = [ E
FeN?

Moreover, as in the elliptic modular case, we have

(5.8) Th =~ H TS
m

where the product runs over the maximal ideals of Tg, and Tg, . denotes the

localization of T% at m. A similar description holds for T}(lg’@). As before, if
m = ker Ap, we write mp for m or if we want to emphasize what ring m lives in, we

write mpn p Or Mph(2) po accordingly.
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5.4. Action on the Maass space.

Theorem 5.10 (Gritsenko, [23], section 2). The action of the Hecke algebra T,
respects the decomposition of Si(I'z) into the Maass space and its orthogonal com-
plement.

Theorem 5.11 (Gritsenko, [23], section 3). There exists a C-algebra map
Desc : TS — Tg)
such that for every T € TY the diagram

S]lc\/laass (FZ) T ; S]lc\/laass (FZ)

f’—)FfT TfHFf

k-t (4, (4) 255 5y (4, (21)
commutes. In particular one has

Desc(Tp) =p" ' +p* 2 +p" 2 + T2 forallp+#2,

Desc(Th ) = PP+ )T + P +p* +p—1) if pisinert in K,
(5.9)  Desc(Th) = p’c 2 7’“(1 +p)T, if p=n7issplitin K,
Desc(Tt,;) =3-2" 41 +i) "Tr Th
Desc(TF) = 2k~ (1 +i) F(Tr Tp)? —281).

Here T, is as in section 5.1, and Tr Ty denotes the operator from Definition 5.1.
Corollary 5.12. If f € S;_1 (4, (;4)) is an eigenform, then so is Fy.

Remark 5.13. Let f € N, f # f?. We will always assume that either Fy or Fyo
belongs to A" Hence we can write N = NMUNYM | where A'™M consists of Maass
lifts Fy with f € A" and N™M consists of eigenforms orthogonal to those in A™.

5.5. Lifting Hecke operators to the Maass space. Let E and O be as before.
We will now prove a result regarding the map Desc, which will be used in section
7.3. Let Tz and T7, be as in Definition 5.1. It is clear from Theorem 5.11 and

the definition of Th (2) that Desc(T};"(Z)) = T’ for any O-algebra A. Moreover, we
have the following d1agram

(5.10) Th®) P 1y
ll ll
Hm(2) Td(m)(z) O Hm’ T’(’),m’

with the lower horizontal arrow defined so that the diagram commutes. It is clear
that Desc respects the direct product decomposition in diagram (5.10). In partic-

ular, for f € N, Desc : T}gm — T}, factors through T}(;’(i)(FZ) — TIO,m’f' Let T
Fr

be the image of T}(g(z) in Endc(SM(I'z)). The horizontal arrows in diagram (5.10)
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factor through T = [T x T¢5 . and the following diagram
(5.11) T ™ T,

T ]

h,(2) M ’
Hm(2) TO7m(2) ? Hnﬁ T(’),mM ? Hm’ TO,m’

commutes. All the horizontal arrows in diagram (5.11) are surjections and the
lower ones are induced from the upper ones, which respect the direct product
decompositions. In particular we have
h,(2) M '
Tome ™ Toms = Tom:
Let MY == {F € MM | m}i = m}}. The goal of this section is to prove the
following proposition.

Proposition 5.14. If f € N, f # f? is ordinary at £, and £ 1 (k—1)(k—2)(k-3),
then for every split prime p = 77, p t £, there exists T™(p) € Tl(\o/[ v such that
mit

Desc(T™(p)) € T/, w, equals the image of T, € T, under the canonical projection
T’(’) - T’O,m’f .

As will be discussed in section 9.1, to every eigenform F € Si(I'z) one can
attach a 4-dimensional ¢-adic Galois representation pr. Moreover, if F' = Fj, for
some g € N, then the Galois representation has a special form

— pg|GK
5.12 Fo= ,
(12 ory (s © €)lce
where p, is the Galois representation attached to g (cf. section 2.3) and € is the
(-adic cyclotomic character. Let f be as in Proposition 5.14. Set R’ := HFeNgI @)
s

and let R be the O-subalgebra of R' generated by the tuples (Ap (7)) pepry for all
f

T € TX. Note that the expression Ap(T') makes sense since S (I'z) is Hecke stable.
Then R is a complete Noetherian local O-algebra with residue field F = O/A. It is
a standard argument to show that R = Tlg mM -

’ Ff
Proof of Proposition 5.14. Let I, denote the inertia group at £. For every g € N,

ordinary at ¢, we have by (5.12) and Theorem 3.26 (2) in [27] that
b2«

PE, |1, = k-1

If ¢+ (k—1)(k—2)(k — 3) it is easy to see that there exists o € I; such that the
elements 3; := €¥7%(0), By := 1, B3 := €*"1(0), B1 := €(0) are all distinct mod .
For every g as above, we choose a basis of the space of p, so that p, is O-valued
and pp, (o) = diag(B1, 82,03, 81). Let S be the set consisting of the places of K
lying over ¢ and the place (i + 1). Note that we can treat pr, as a representation
of Gk s, the Galois group of the maximal Galois extension of K unramified away
from S. Moreover, tr pr,(Gk,s) C R, since Gk,s is generated by conjugates of
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Froby, p € S and for such a p, tr pr, (Frob,) € R by Theorem 9.2 (i) and the fact
that the coefficients of the characteristic polynomial of pg, (Frob,) belong to T%.
Set

GKS] — R[GKS]

l#]

H PF, :GK75 — H GL4(0)

Fge/\/}’lf FgeNg/;

and e :=e; + ey. Let

We extend p to an R-algebra map p' : R[Gk,s] — M4(R’). Note that

p'(Frob, €) H pr, (Frob:)pl ( H pg(Frob;)
FGNMf FeNMf

and thus
tr p'(Frob, €) = (ay, (p))FgeNg[f €R,

where g = Y_>° | a,(n)g". Define T™(p) to be the image of tr p'(Frob, e) under the
O-algebra isomorphism R = T O

Oo,m -
Py

Corollary 5.15. If f € N, f # f* is ordinary at £, and £+ (k — 1)(k —2)(k — 3),
h(

then for every split prime p = w7, p 1 {, there exists T"(p) € )(2) such that

Desc(T™(p)) € T}, w, equals the image of T, € T, under the canomcal projection
T’(’) - T’(’),m’f

6. THE STANDARD L-FUNCTION OF A MAASS LIFT

Let Fy be the Maass lift of f € N. The goal of this section is to study the
numerator of the coefficient Cr, in formula (1.1). To do so we need to define
the cusp form = in (1.1). This will be done in subsection 7.3 (formula (7.15)).
In this section we define an Eisenstein series E(Z,s,m,[®) and a theta series 0,
such that their product is closely related to =Z. We then express the inner product
(Fy, E(Z,s,m,T™)0) by an L-function associated to f.

We begin by defining the appropriate theta series which will be used in the inner
product. Let f be an ideal of Ok and x a Hecke character of K with conductor f.
We assume that the infinity component of x has the form

|$00|t

Xoo (xoo) =

zt

for some integer —k < t < —6. Following [50] we fix a Hecke character ¢ of K such
that e A

Poo(Yoo) = z;.o and  Pax = <_> :

Such a character always exists, but is not unique (cf. [51], lemma A.5.1). Put
P =x"t¢ 2 Letl=t+k+2and p=1—2. Let 7 €S be such that the Fourier
coefficient cr, (7) is non-zero. Let b € Q be such that g* 7 g € bZ for all g € OF,
and let ¢’ € Z be such that g* 77! g € (¢)7'Z for all g € O%. Let ¢ € Z be such
that bc generates the Z-fractional ideal (4c") Nk, q(f) N (b)f. Note that when b = 1,

() = (4N q(f))-
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Define a Schwartz function A : M>(Agy¢) — C by setting A(z) = xj(detz) if
@ € 100 M2(Okp) and A(z) = 0 otherwise. Then the theta series of our interest
is defined by:

= D MO (detd)" e(tr (¢7 7E2)).
geMs(K)

We have 6, € M;(T5(b,c),') by [50], appendix, Proposition 7.16 and [51], page
278. In fact, since p # 0, 6y, is cusp form ([50], appendix, page 277). In this section
we will denote by T'' a congruence subgroup of I'z such that 6, € M;(I'}) and
N K* = {1}. We set I'" := T N G1(Q). Note that we have Fy € M (I'"). We
also define an Eisenstein series of weight m = k — [ and level I'™ by putting:

E(Z,s,m,T%) = > (detImZ)° % 1.
YEMENP(Q\I™

The Petersson inner product of Fy against E(-,s,m,I™) 6, has the form

<Ff7 E(7 s,m, Fh) 9X)>Fh = / Ff(Z) E(Za s, m, Fh) GX(Z)(det Im Z)k74dXdY
Ih\H

Note that we use a volume form, which is 4 times the volume form used in [51]. By
combining formulas (22.9), (22.18b) and (20.19) from [51] we arrive at the following;:
(6.1)

(Fy, B(-,5,m,I") 0,)) ., = 6405 (c) : T ()L ((s — 2))(det 7) > 72 (D +2
% CFf(T)LSt(Ff78+]-7X)

B(s) L.(2s,xq) L (25 —1,xa (__4))
The meaning of the various factors in the product is explained below. We start
with the L-function

T'h

Lst(Ffasax) = H LSt(Ffa‘S:X)p'
ptoo
This is the standard L-function of F; twisted by the Hecke character x:
(6.2)

La(Fy, )y = {Hizl{(l — NE A ENE) )~ NE A BN E) )

- {1 = N2 5 ()N (p)*) (1 = N(p)Ap X" (P)N (p) )},

for (p) = pp and (p) = p®, respectively. Here A, ; denote the p-Satake parameters
of Fy. (For the definition of p-Satake parameters when p inerts or ramifies in K,
see [29], and for the case when p splits in K, see [24].) The L-function in the
denominator of (6.1) is the Dirichlet L-function with Euler factors at all p | ¢
removed (cf. Definition 7.2). Furthermore,

[((s)) = (4m)~2s=k=tH1 D (s + % (k+ l)) r <s + % (k+1) — 1) ,

and B(s) = [],cp 9p(X*(pOx)p %), where b denotes the set of primes at which
b~!'7 is not regular in the sense of ([51], 16.1) and g, is a polynomial with coefficients
in Z and constant term 1.

For a prime p of Ok of residue characteristic p, with p odd, set ay ; = O‘ZJ’
where «, j, j = 1,2 denote the p-Satake parameters of f (cf. section 4.2), and d
is the degree over F, of the field Ok /p. For the prime p = (i + 1) of Ok, set

ap 1= a(2) and ap 5 = a(2).
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Definition 6.1. For a Hecke character ¢ of K, set

L(BC(f),s,¢) == [[ J](@ = ¢"(0)ep.;(Np) ).

pfoo j=1

Remark 6.2. If 7y denotes the automorphic representation of GL2(A) associated
with f, then L(BC(f), s, ) is the classical analogue of the L-function attached to
the base change of 7y to K twisted by .

Remark 6.3. Let g, be the modular form associated with the character ¢ (cf.
u
[31], section 12.3) and suppose that oo (Too) = ( Lo ) . Then

| ool

L(BC(f), s, %) = (1 = ¢*()a(2)27°) " D(s + u/2, f*, gy),
where D(s,-,-) denotes the convolution L-function defined in [26], where it is de-
noted by L(Afe ® Ay, ,5). Here p denotes the prime of Ok lying over (2).

Proposition 6.4. Let x be as before. The following identity holds
(6.3)  Lst(Fy,s,x) = L(BC(f),s — 2+ k/2,wx)L(BC(f), s — 3+ k/2,wx).

Here w is the unique Hecke character of K unramified at all finite places with
infinity type woo(z) = (%)_k/z.

Proof. This is a straightforward calculation on the Satake parameters of f and of
Fy. O

7. CONGRUENCE

In this section we define a hermitian modular form = as in (1.1) and formulate
the main congruence result (Theorem 7.12). The form Z will be constructed (in
section 7.3) as a combination of a certain Eisenstein series and a theta series, whose
arithmetic properties are studied below.

7.1. Fourier coefficients of Eisenstein series. We keep the notation from sec-
tion 6 and assume b = 1. Consider the set X, . of Hecke characters x' of K, such
that

‘,I/,m
(7.1) Xbo (Too) = —50,
| oo ™
(7.2) Xp(®p) =1 if ptoo, z, € O, andz, — 1 € cO p.

Here m =k —1 = —t —2 > 0 (since t < —6) denotes the weight of the Eisenstein
series F(Z,s,m,I') defined in section 6. For g € G(A), let E(g,s,c,m,x’) denote
the Siegel Eisenstein series defined in section 3.2. We put, as before,
E(Z’ S’ m’ X,’ C) = j(gOO7 i)mE(g’ S’ c7 m7 X’)?

where Z = gool and ¢ = (goo,1). Recall that in section 6 we made use of a
congruence subgroup I'! of G(Q) such that 6, € M;(I'}) and T} N K* = {1}.
In this section we fix a particular choice of I'}, namely, we set I't := I'}(c). Note
that as long as ¢ { 2, we have I'*(c) N K* = {1} and since (cond ¢') | ¢, where v’
is the character of 6, we have 6, € M;(T'}(c)). The following lemma provides a
connection between E(Z, s,m, x',c) and E(Z,s,m,T%(c)). Here E(Z,s,m,['}(c)) is
defined in the same way as E(Z, s,m, ™) in section 6. Recall that ' := I'*NG(Q).
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Lemma 7.1. The set X,, . is non-empty and
(#Xme) E(Z,5,m,T8(c) = > E(Z,s,m,x',0).
xX'eX
Proof. This is identical to the proof of Lemma 17.2 in [51]. Note that I'"(c) D
' (c). O
Definition 7.2. Let M be a non-zero integer. For a Hecke character ¢ of Q set
La(s, ) == L(s,9) [[(1—=¢"(p)p™),
p|M
where L(s,1) denotes the Dirichlet L-function.

Recall that for any Hecke character ¢ : K* \ A — C* we denote by tq its
restriction to A*. Moreover, if ¢ satisfies (7.1) and (7.2) for ¢ € Z, set ¥°(x) =
Y(T). Let

—4
(73)  D(Zs,mx'¢) = Lo(2s, X)L (2s A (—)) B(Z,5,m, ).

It has been shown in [51] (Theorem 17.12(iii)) that D(Z, s, m,x’,¢) is holomorphic
in the variable Z for s = 2 — 3 as long as m > 2. In our case m = —t —2 > 4 as
t < —6. It follows from formula (18.6.2) in [50] that

(7.4) D(Z,s,m,x",¢)lmy = (x.)(detd,)D(Z,s,m,x',¢) =
= ((X)%): ' (detay)D(Z, s,m, X, ).

Instead of looking at D(Z,s,m,x’,c) we will study the Fourier expansion of a
transform D*(Z,s,m,x’, c) defined by

(7.5) D*(Z,s,m,x',¢c) = D(Z,s,m, X, ¢)|md.
First note that since D is holomorphic at s =2 — 7, so is D*. Write
D*(Z,2 —=m/2,m, X', c) = Z cﬁle(tr hZ)
hesS
for the Fourier expansion of D*. Here S := {h € M>(K) | h* = h}.

Lemma 7.3.

’ « « .
(7.6) cf =i 2m2mHlgdc?x

1—rank(h) 4 j—1
< JI L (2 —m—j,x' <—> > I fay (X @)™,
=0 pec

where fy, y1/2 , s a polynomial with coefficients in Z and constant term 1, and c is
a certain finite set of primes. If n < 1 we set H?:o =1.

Proof. The lemma follows from Propositions 18.14 and 19.2 in [50], combined with
Lemma 18.7 of [50] and formulas (4.34K) and (4.35K) in [49]. It is a straightforward
calculation. O

Proposition 7.4. Fiz a prime £ 1 2¢, and assume that —k < t < —6. Set
XQ,c = Hp\cXQJ?' Let E' be a finite extension of Qg containing K(xq,.), the
finite extension of K generated by the values of xq,.. Denote by O' the valuation
ring of E'. For every h € S, we have 71'7309,5Q €.
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Proof. The proposition follows from Lemma 7.3 upon noting that for every Dirichlet
character ¢ of conductor dividing ¢ and every n € Zg, one has L(n,v) € Z¢]
(by a simple argument using [59], Corollary 5.13) and (1 — ¢ (p)p ") € Z[¢)] for
every p | c. O

Let 6, be as above. Set 0} :=0,[;J.

Corollary 7.5. Fiz a prime £t 2¢, and assume that —k < t < —6. Let E' be a
finite extension of Qg containing K(xq.c, itc), where u. denotes the set of c-th roots
of 1. Denote by O' the valuation ring of E'. Then the Fourier coefficients of

WﬁBD*(Za 2- m/27m7 (’l/}’)ca C) 9;(Z)

all lie in O'.

Proof. Note that it follows from the definition of 6, and Theorem 2.2 that the
Fourier coefficients of 0} (Z) lie in O. Thus the Corollary is a consequence of
Proposition 7.4. (]

7.2. Some formulae. We keep notation from the previous section. Note that since
0y € M(c,v'), we have D(Z,2 —m/2,m,(¢")%,¢) 0,(Z) € My(c) by (7.4). For
f € N we can write
(7.7)

(D(-,2—=m/2,m, (") c) Oy, Fy)

(Fy, Ff)p%(c)

)

D(Z,2 —m/2,m, ("), c)0,(Z) = Fp+ F',

where F' € My(c) and (Fy, F') = 0. Our goal now is to express
(78) <D(72 _m/27m7 (wl)c)c) 0X7Ff>[‘g(c)

in terms of L-functions of f. In section 6 we already carried out this task for the

inner product (Ff,E(-,s,m,Fh) 0X>Fh with I'" = I''(¢) N G1(Q), so we will now

relate the two inner products to each other. We first relate the inner product (7.8)

to <Ff7 E(; S, m, F}II(C)) 0X>
We have

(o)’

(79) <E('>Samarlll(c)) 0X7Ff>F11‘(c) =

/ E(Z,5,m,T%(c)) 0,(Z) Ff(Z) (det Y)*=* dX dY =
b (e)\H

- / 0.2) | S wildetay) B(Z,s,m,THe)|my | Ff(Z) dX dy.
Lo (e\H YETE (\TE(c)
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Using Lemma 7.1 (note that (¢')¢ € X, ) we get
(T10) > wildetay) B(Z,s,m I} (0))lmy =
YEY (\I'§(c)

= (#Xm,e)~ Z Z Yl(detay) E(Z,s,m, X, ¢)|lmy =

X' E€X €Dt (c)\Dh(c)

= #Xmeo) "t D E(Zs,mx0) Y @'(()) e(deta,) =

X'€X YETT()\T'g(c)
= (#Xm,o) 'T5(0) : TH()IE(Z,5,m, ("), 0),
where the last equality follows from the orthogonality relation for characters upon

noting that both ¢’ and x' are trivial on I'}(c). Thus (7.3), (7.9) and (7.10) imply
that

(A1) (D(s,m, (), )y, Fp)pa oy = [D5(0) : TR #:Xom e - Le(28, 00g) x

x L <2s — 1,94 <_—4>> (E(,5,m,TY(0)fx, Ff hpn -
Moreover, by [51], formula (17.5) and Remark 17.12(2), we have

1
] Z E(Z,s,m,T")|a.

E(Z7 s, m, Flll(c)) = TFh/ . Thi
[Fi(e): 1 a€lB\I%(c)

Hence we get

(7.12)  (D(5,m, (), )y, Fpdpn(y = [Lo(€) : T # X e - Le(25, ¥0q) X

X Lc <25 — ].,1/123 <_—4>> <E(':Samarh)0X7Ff>I‘h :

Using (6.1) we obtain
(7.13)
(D('757m7 (’I/J,)C,C)QX,Ff>F3(C) = ].67'(((47‘()725’)((21813 T) s B #Xm e X

Lo(2s, i) Le ( s— 1,04 ( ))

cr, (7) Lst(Ff, 5+ 1,X)
L.(25,xq)L. (25— 1,xq (=2))

x T(s') T(s' — 1)

?

where s’ :=5+ k — 1+ ¢/2, and finally
(7.14)
(D(a 2- m/27 m, (’l/}’)ca c)0X7 Ff)Fg(c) = Rﬂ—i%iz}cigr(t +k+ 2)F(t +k+ ]-)X

X Lst(F;3 _m/2;X);

where R := #X .0 -2 4G T B2 — m/2) 7! (det r) 42,

7.3. Main congruence result. We will now prove the first main result of this
paper. We will show that A\"-divisibility of the algebraic part of L(Symm? f,k)
implies the existence of a non-Maass cusp form congruent to F;y modulo A\". We
keep notation from previous sections.
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7.3.1. Algebraicity of Cr,. Let £ { 2c be a rational prime, and let £ be a finite
extension of Q, with valuation ring ©. We will always assume that E is “sufficiently
large” in the sense that it contains certain algebraic numbers/number fields, which
will be specified later. In particular, we assume that E contains the field E’ of
Corollary 7.5. Fix a uniformizer A € 0. We denote the A-adic valuation by ordy.
To shorten notation in this section we set D(Z) := D(Z,2 —m/2,m, ()¢, ¢), and
D*(Z) = D*(Z,2 — m/2,m, (¢")¢,c). Applying the operator |;.J to both sides of
(7.7), we get

(Db, Fy)

D*0; = Fr +G' € Mp(J'T8(c)J)

where G' := F'|J and we have (Fy,G') = 0. By Corollary 7.5, the Fourier
coefficients of 7r_3D*0; lie in O. Define a trace operator

tr : Mp(J 8 (e)J) = My (Tz)

by
F' > F'liy
vEJ I (e)J\ 'z
and set
- - - <D0x> Ff) "
(7.15) =130 (D*0) = [z : Th(o)n 3 2L py + G
X [ 0 ] <Ff,Ff> f

where G = n3tr G' € My(I'z) and we have (Fy,G") = 0. By the g-expansion
principle (Theorem 2.2), the Fourier coefficients of Z lie in O. Set

Cr, = [z : FB(C)]WB%.

By Proposition 4.5, the Fourier coeflicients of Fy lie in the ring of integers Z,

of Q, and generate a finite extension of Q,. We assume E contains all the Fourier

<D9x7Ff>

coefficients of Fy. The numerator and denominator of were studied in

<Ff7Ff>
sections 7.2 and 4.2 respectively.
Lemma 7.6.
(D, Fy) _ ) LMS(BC), 1+ S 3@) LUS(BC(S), 2 + L4, @)
Fp Fp) Lalg(Symm? f, k ’
HEf

where
a:= #Xpe B(2—m/2)" (det 7)F 121, (1),
L(t+k + j)LBC(f),j + B, x@)
miHE2I(f, f) ’
[(n)L(Symm? £,n)
™2 (f, )
for any integer n, and (x) € QN E is a A-adic unit.

LY(BC(f),j + (t+ k)/2,x@) =

Lalg(Symm2 fin) =

Proof. This is a straightforward calculation using (7.14), Proposition 6.4 and The-
orem 4.8. O
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It follows from Remark 6.3 and from Theorem 1 on page 325 in [26] that

(7.16) LY(BC(f), 1+ (t+k)/2,X@) € Q
and

(7.17) L*8(BC(f),2+ (t + k)/2,x@) € Q
and from a result of Sturm [53] that

(7.18) L8(Symm? f,k) € Q.

We note here that [53] uses a definition of the Petersson norm of f which differs
from ours by a factor of %, the volume of the fundamental domain for the action of
SL2(Z) on the complex upper half-plane. We assume that E contains values (7.16),
(7.17), and (7.18).

Corollary 7.7. Cp, € QNE.

As we are ultimately interested in (mod A) congruences between hermitian mod-
ular forms, we will use “integral periods” Q}', 2 instead of (f, f) (cf. section 8.3).
It follows from Proposition 8.15 in section 8.3 that we have:

(7.19) (1) = () QfQ;,

where 1) € Z, is defined in section 8.3 and (x) is a A-adic unit as long as f is ordinary
at £ and ¢ > k, which we assume in what follows. We also assume that E contains
n and that €1 #Xp, c.

Corollary 7.8.
(7.20)

_, LPY(BC(f),2 + (t + k) /2, x@0) L™ (BC(f), 1 + (t + k) /2, @)
Lint(Symm? f, k) ’

CFf = (*) CFf(T) n

where
(t+k+7)LBC(f),J+ [t +k)/2,Xw)
mttk+2j Q;{Q; ’

LR(BC(f),f + (t+ k)2, %) == -

. . ['(k)L(Symm? f, k)
int 2 — ?
L™(Symm?© f, k) := s QJTQ; ,

and (x) € E with ordy((x)) < 0.

Proof. This follows directly from Lemma 7.6 upon noting that ordy(B(2—m/2)) >
0 and ordy(det 7) > 0. O

We are now going to show that we can choose 7 to make cp, (7) in (7.20) a A-adic
unit. Since we have derived our formulas with the assumption b = 1, where b is
defined in section 6, we need to choose 7 appropriately so this assumption remains
valid. If 7 is f-ordinary in the sense of the following definition, then we can take
b=1.

Definition 7.9. For a rational prime ¢, we will say that 7 € S is £-ordinary if the

following two conditions are simultaneously satisfied:

* {9°79}4coz =7
o there exists ¢’ € Z with (¢/,¢) = 1 such that {g"7"'g} 02 C (¢')7'Z.
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Lemma 7.10. If f € N is such that the Galois representation Prlax is absolutely
irreducible, then there exists an (-ordinary 7 € S such that ordy(cp, (7)) = 0.

Proof. Write the Fourier expansion of f as f =, b(n)g". Since Fy is a Maass
form, we have cr, (1) = X jez_, aje(r) 4"~ "¢k, (4det 7/d?), where ¢}, and e(-) were
defined in Definition 4.2. Note that 7 = [ ;] is f-ordinary (with ¢’ = n) for any
positive integer n with (n,f) = 1. Using Proposition 4.5 and Fact 2.1 we get

—

cr, ([M1]) = —2i(b(2)* - b(2)")

and .

cry ([71]) = 2ib(p) (b(2)* +0(2)")
if p # £ is inert in K. As will be shown in Proposition 8.13, absolute irreducibil-
ity of psla, implies that there exists an inert prime po, distinct from ¢, such

that b(po) is a A-adic unit. Suppose now that both ordy (ch (It 1])) > 0 and

ordy (ch ([P 1])) > 0. Then we must have ordy (b(2)) > 0, which is impossible as
¢ is odd and [b(2)| = 2(k=2)/2 (cf. [31], formula (6.90)). O

Definition 7.11. For f € N such that the Galois representation p;|c, is abso-
lutely irreducible, let S, denote the set of positive integer n with (n,£) = 1 such

that ordy (ch (™ ])) = 0. By the proof of Lemma 7.10 the set Sy ¢ is non-empty.

7.3.2. Congruence between Fy and a non-Maass form. Our goal is to prove that
Fy is congruent to a non-Maass form. Note that if Cr, = aA™", with a € O~
and n > 0, then Fy is congruent to —a~!A"G"” mod A\". However, G" need not a
priori be orthogonal to the Maass space. We overcome this obstacle by introducing
a certain Hecke operator T which will kill the “Maass part” of G”. For ¢ € N and
F € N'®, the set

Yi={Ncl)|geN,T €Tz} U{Mrc(T)|F e N T cTh}

is contained in the ring of integers of a finite extension of Q (cf. section 5.1 and
Theorem 5.9). We assume that F contains ¥. From now on assume that the Galois
representation p;|q, is absolutely irreducible. Without loss of generality we also
assume that Fy € NP (cf. Remark 5.13). For any F € A", let mp C TY be the
maximal ideal corresponding to F. It follows from (5.8) that there exists T € T
such that T"Fy = Fy and T"F = 0 for all F € N such that mp # mp,. We apply
T" to both sides of
== CFfFf +G".

As the Fourier coefficients of Fy and Z lie in O, so do the Fourier coefficients of
T"Z by Lemma 5.8. Moreover, since 6, is a cusp form, so are = and ThE. Let

S,S}f C Sk(I'z) denote the subspace spanned by

h,
N = (F €N [ = w2},

(2)

h,(2
where m, :(2)

%2) are the maximal ideals of T';'” corresponding to F' and FY,

and m ;
respectively (cf. section 5.5). Then THhE,ThF; = Fy, T"G" € S,g?l);f. The image

of T inside Endc(Sy),) can be naturally identified with T, By the

0, (2)
me
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commutativity of diagram (5.10) and the discussion following the diagram, the O-
h,(2)
om Tlo,m'f- The algebra

1
T, w, Can be identified with the image of T}, inside Endc(Sk—1,f), where Si_;1 ¢ C

algebra map Desc : T}(;(Z) — T, factors through T

Sk—1 (4, (=%)) is the subspace spanned by N} := {g € V' | m} = m{}. Here m/
and my, denote the maximal ideals of T}, corresponding to f and g, respectively.
Denote by ¢ the natural projection T{, — TIO,m’f’ and by @ the natural projection
T}é’&) —» T}(;’Q)(Z). Assume ¢ > k, hence in particular £t (k — 1)(k — 2)(k — 3). By

7me
h,(2)
o,m?
my)
such that Desc(T"(p)) = ¢7(T,) € TIQm’f' As will be proven in section 8 (cf.
Proposition 8.14) there exists a Hecke operator T' € TIO,m’f such that T'f = nf,
TfP =nff,and Tg =0 for all g € N, g # f, f°. The operator T is a polynomial
Pr in the elements of ¢;(X') with coefficients in O (here ¥’ is as in Definition 5.1).

Let Th € Th’(z)

O7mgf)
from Py by substituting

. Qf(T;‘ —ph=t — pF=2 — pF=3) for ¢4 (T,2) if p inert in K,

o Th(p) for ¢;(T,) if p1 ¢ splits in K,

o Bp(AECTR(C+1)7ITR ) for ¢(T) if £ = AgAo splits in K.
Note that A§¢*~*(¢+1)7'Ty, is indeed an element of TV ) as £+ 1 is invertible

7Ff

in O. It follows from (5.9) that Desc(T") = T'. Apply T™ to both sides of
T"E = Cp, Fy + T"G".

Corollary 5.15, for every split prime p = 77, p { £, there exists T%(p) € T

be the Hecke operator given by the polynomial Py, obtained

Note that TMTMZ is again a cusp form. The operator T preserves the Maass space
and its orthogonal complement by Theorem 5.10. Another application of Lemma
5.8 shows that the Fourier coefficients of T*T™Z lie in ©. Moreover, since Desc is a
C-algebra map, it is clear from the definition of 7" that Tth =nFy and ThF =0
for any F inside the Maass space of Si(I'z) which is orthogonal to Fy. We thus get

(7.21) T"T"E = nCy, Fy + T"T"G"

with ThT"G" orthogonal to the Maass space.

As Cp, € QN E C C by Corollary 7.7, it makes sense to talk about its A-
adic valuation. Suppose ordx(nCr,) = —n € Z<o. We write F' = F' (mod \")
to mean that ordy(cp(h) — cp(h)) > n for every h € S. Note that since the
Fourier coefficients of T*T"Z and of Fy lie in O, but nCp, ¢ O, we must have
that either TPTRG" # 0 or Fy =0 mod A. However, by Proposition 4.5, the latter
is only possible if f = f# mod A and this contradicts absolute irreducibility of
Psla by Proposition 8.13 in section 8.2. Hence we must have TRTRG" # 0. Write
17 Cr, = aX™" with a € O*. Then the Fourier coefficients of A"T"T"G" lie in O
and one has

Fy = —a 'AMTPTRG" (mod AM).
As explained above, —a~!A"TPTRG" is a hermitian modular form orthogonal to
the Maass space.

We have proven the following theorem:
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Theorem 7.12. Let k a positive integer divisible by 4 and £ > k a rational prime.
Let f € N be ordinary at £ and such that Pilx is absolutely irreducible. Fiz a
positive integer m € Sy ¢ and a Hecke character x of K such that ordg(cond x) = 0,

Xoo(2) = (ﬁ)_t with —k <t < —6, and £ ¢ #X t 24mN, q(condy)- Let E be a
sufficiently large finite extension of Qg with uniformizer \. If
2
—n := ordy H L™(BC(f),j + (t + k)/2,x@) | — ordx(L™(Symm? £, k)) < 0
j=1
where w is the unique Hecke character of K which is unramified at all finite places

k
and such that weo(z) = (ﬁ) , then there exists F' € S(I'z), orthogonal to the
Maass space, such that F' = Fy (mod \").

Remark 7.13. For x and m as in Theorem 7.12, set ¢ = 4mNg/q(cond x). In
Theorem 7.12, we say that E is sufficiently large if it contains the field K(xq,¢, tc),
the set X, the elements (7.16), (7.17), (7.18), the Fourier coefficients of Fy and the
number 7).

Corollary 7.14. Suppose that x in Theorem 7.12 can be chosen so that

2
ordy | [T E™(BC(f), 4 + (t+k)/2,%@) | =0,

j=1
then n in Theorem 7.12 can be taken to be ordy (L™ (Symm? f, k)).

Remark 7.15. The existence of character y as in Corollary 7.14 is not known
in general. Some results in this direction (although not applicable to the case
considered here) have been obtained by Vatsal in [57]. The problem in our case is
that one would need to control the A-adic valuation of two L-values at the same
time.

Remark 7.16. The ordinarity assumption on f in Theorem 7.12 is crucial to our
method and is used in section 8 to construct the Hecke operator 7" annihilating the
Maass part of G" as above as well as to ensure that (x) in (7.19) is a A-adic unit.
One expects that the set of primes ¢ of Q such that a given (non-CM) form f is
ordinary at £ has Dirichlet density one, but for now no proof of this fact is known.
An analogous statement for elliptic curves was proved by Serre [48].

7.4. Congruence between F; and a non-CAP eigenform.

Corollary 7.17. Under the assumptions of Theorem 7.12 there ezists a non-CAP
cuspidal Hecke eigenform F such that ordx(Ag, (T") — Ap(T™)) > 0 for all Hecke
operators T" € T?Q.

Proof. Let F' be as in Theorem 7.12. Using the decomposition (5.8), we see that
there exists a Hecke operator Tg* € T% such that T'Fy = Fy and T}F = 0 for
each F' € S(I'z) which is orthogonal to all Hecke eigenforms whose eigenvalues are
congruent to those of F (mod A). Suppose all the elements of N'® whose eigenvalues
are congruent to those of Fy (mod \) are CAP forms. Then applying T to the
congruence Fy = F', we get Fy = 0 (mod A). By Proposition 4.5 this is only
possible if f = f# (mod \). This however leads to a contradiction by Proposition
8.13. O
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7.5. The CAP ideal. Recall that we have a Hecke-stable decomposition
Sk(Iz) = Sy'(Tz) © S (Tz),

where SYM(I'z) denotes the orthogonal complement of SN (I'z) inside Si(I'z). De-
note by THM the image of T% inside Endc(SyM(I'z)) and let ¢ : T% — THM
be the canonical O-algebra epimorphism. Let Ann(Fy) C T denote the annihi-
lator of Fy. It is a prime ideal of T% and Apy T% — O induces an O-algebra

isomorphism T% /Ann(Fy) = O.

Definition 7.18. As ¢ is surjective, ¢(Ann(Fy)) is an ideal of THM. We call it
the CAP ideal associated to Fy.

There exists a non-negative integer r for which the diagram

¢
(7.22) Th M

| |

Th /Ann(Fy) — TSM /¢(Ann(Fy))

Apfr Jz

0 O/ O

all of whose arrows are (J-algebra epimorphisms, commutes.

Corollary 7.19. If r is the integer from diagram (7.22), and n is as in Theorem
7.12, then r > n.

Proof. Set NNM .= {F € N | F € Sf™(I'z)}. Choose any T" € ¢~ 1(\") C TY,.
Suppose that r < n, and let F' be as in Theorem 7.12. We have

(7.23) Ff=F' (mod \").

and T"F' = A'F'. Hence applying T to both sides of (7.23), we obtain 0 =
A"F" (mod A™), which leads to

(7.24) F'=0 (mod A"").

Since r < n, (7.23) and (7.24) imply that Fy =0 (mod ), which is impossible as
shown in the proof of Corollary 7.17. O

Remark 7.20. The CAP ideal can be regarded as an analogue of the Eisenstein
ideal in the case of classical modular forms (see e.g. [39]). It measures congru-
ences between Fy and non-CAP modular forms. We will show in section 9.2 that
ordy(#TXM/p(Ann(Fy))) provides a lower bound for the f-adic valuation of the
order of the Selmer group we study in section 9.1.

8. HECKE ALGEBRAS AND DEFORMATION RINGS

The goal of this section is to prove Proposition 8.14 which was used in section
7.3 to prove Theorem 7.12, as well as some auxiliary results.



44 CONGRUENCES AMONG MODULAR FORMS ON U(2,2)

8.1. Congruences and weak congruences. Let E denote a finite extension of
Q. containing all Hecke eigenvalues of all the elements of V. Let O be the valuation
ring of £ with uniformizer A, and put F = O/\. Whenever we refer to a prime p
being split or inert we will always mean split in K or inert in K. Let Tz, Ty, be as
in Definition 5.1. To ease notation in this section we set T := T and T' := Ty,.
Moreover, if a,b € O, we write a = b if A | (a —b).

Let Ay : T — O be as in section 5.1 and as before set m; = ker \;. Moreover,
set A’ 1= As|r and denote by X;c the reduction of A’ modulo A. Put m’ := ker X;c.

From now on let f =>>°  a(n)¢" and g = >°° | b(n)¢" denote two elements of
N. We denote by pg, py : Gq = GL2(E) the ¢-adic Galois representations attached
to f and g, respectively and by p, and p, their mod A reductions with respect to
some lattice in E2. We write p for the semi-simplification of ;. The isomorphism
class of p} is independent of the choice of the lattice. (cf. section 2.3).

Definition 8.1. We will say that f and g are congruent (resp. weakly congruent),
denoted by f =g (resp. f =y g) if my = my (resp. m} =my). We will say that
f and g are congruent at p if a(p) = b(p). Let A be a set of finite primes of Z of
density zero. We will say that f and g are A-congruent, denoted by f =4 g if f
and g are congruent at p for all primes p € A.

We note that decompositions analogous to (5.1) and (5.2) hold for T” and that
the localizations Ty, and T, are Noetherian, local, complete O-algebras. For a
maximal ideal m' C T', we denote by M(m’) the set of maximal ideals of T which
contract to m’. Note that the inclusion T' — T factors into a direct product (over
all maximal ideals m' of T') of injections T{, <= [lcpq(m) Tm- We will now
examine the sets M (m') a little closer.

Lemma 8.2. Let f,g € N and let A be a density zero set of finite primes of Z not
containing £. Then f =g if and only if f =4 g.

Proof. One direction is a tautology, so assume f =4 g. We have trp;(Frob,) =

a(p) (mod X), tr7,(Frob,) = b(p) (mod A) and det7y(Frob,) = (5!)p** =
det p,(Frob,) for p # 2,£. Hence by the Tchebotarev Density Theorem together

with the Brauer-Nesbitt Theorem we get p7 = pi°, and thus, a(p) = b(p) for all
1
p € A,p # 2. Moreover, we have p¢|p, = |:qu HZ]’ where D, denotes the
f

decomposition group at 2, p and p7 are unramified characters, with 7 (Frobs) =

a(2), and x is the Galois character associated with the Dirichlet character (;4)
(cf. [27], Theorem 3.26 (3)). An analogous result holds for p,. Let 0 € Dy be
any lift of Frob,, and let 7 € I, be such that x(7) = —1, where I, denotes the
inertia group at 2. We want to show that p7(0) = pi(0) (modX). We have

tps(0) = wh(e)x(0) + 3 (o) and tr ps(ra) = i} (o)(r)X(@) + i3(2). Then as

x(r) = -1, we get pj(0) = 5(trps(o) + trps(ro)). Similarly we get p2(o) =
$(tr pg(o) + tr pg(70)). Since Py = py’ implies the equality of traces of p; and pg,
p%(0) = pi(0) and the lemma is proved. O

Proposition 8.3. If f =, g, then either f =g or f = g°.

Proof. Assume f =,, g. Using the Tchebotarev density Theorem and the Brauer-
Nesbitt Theorem, we see that p7|c, = py’lc,- By possibly changing a basis of,
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say, p,, we may assume that p7’|c, = py’|c - This implies that p7° = xp}’, where x
is either as in the proof of Lemma 8.2 or trivial. Hence a(p) = (=) b(p) for some i

and all p # 2, (. Thus by Lemma 8.2 we are done if we show that a(¢) = ()" b(¢).
If ¢ is split, then (since f =, ¢) we have a(¢) = b({), so assume £ is inert. In

that case, a(£)? = b(f)? hence if a(f) = 0, we are done. Otherwise, f and g are

~

1
l-ordinary, and in such case pf|p, = ['uf :2} with ,ufc unramified and ,ufc(Frobg) is
f

the unit root cry of X% —a(€)X + (=) €¢=2 (cf. [27], Theorem 3.26 (2)). Analogous
statements hold for p,. Now, since p; = p, ® x', we must have ay = (72)" oy As
ary is the unique unit root of the polynomial X2 —a (€)X + (5*) ¢¥72, we must have
a(l) = ay, and similarly b(¢) = a4, hence the proposition is proved. O

Corollary 8.4. If f = f*, then M(m}) = {m;}. If f # f7, then M(m’) =
{mg¢,myo}. Hence, if f = f?, we have an injection T:n,f — Tw,, while if f Z f*,
we have T(n,f — T, X Ty

Proposition 8.5. If f € A, then the canonical O-algebra map ¢y : T:n,f — T,
18 1njective.

Proof. If f = f?, then T(n,f injects into Ty, by Corollary 8.4. Assume that f #
f?. Note that in that case g =, f implies ¢ Z ¢g”. By Proposition 83, g = f
or g = fP. Without loss of generality assume that f = g. Consider Ty, as
a subalgebra of [[ cx ,=; O via T = (Ay(T))y, and T, as a subalgebra of
[Lyen g=pr O viaT = (A (T'))4. By Corollary 8.4 we have T:n,f — Ty XTm,e, 50
we just need to prove that the composite T}, < Tw, X Tn,, — T, is injective,

where the last arrow is projection. Identifying Ty, X Tw,, with a subalgebra of
R := ngN,ng O x ngN,ngﬂ O by the embeddings specified above, we see that
T e T:n,f maps to an element of R, whose g-entry in the first product is the same as

the corresponding g”-entry in the second product for every g € ', g = f (this is so,
because T'g = ag implies T'g” = ag” for T € T(n,f). Hence if T" maps to zero under

the composite T:n,f — Tm; X T, = Ty, it must be zero in Ty, X Try . O

8.2. Deformations of Galois representations. The goal of this section is to
prove surjectivity of ¢o : T}, — Tn,. We will use the theory of deformations of
s

Galois representations. For an introduction to the subject see e.g. [40].

8.2.1. Universal deformation ring. Let C denote the category of local, complete O-
algebras with residue field F. A morphism between two objects in C is a continuous
O-algebra homomorphism which induces the identity on the residue fields. For an
object R of C we denote by mp its maximal ideal. Let G be a profinite group.
Two continuous representations p : G — GLo(R) and p' : G — GL2(R) are called
strictly equivalent if p(g) = zp'(g)xz~! for every g € G with x € 1 + My(mpg)
independent of g. We will write p & p’ if p and p’ are strictly equivalent. Consider
a continuous representation p : G — GLy(F). If R is an object of C, a continuous
representation p : G — GLo(R) or, more precisely, a strict equivalence of such, is
called a deformation of p if p = p mod mp. A pair (R™V, p"?iV) consisting of an
object RV of C and a deformation p"*V : G — GLy(R"™W) is called a universal
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couple if for every deformation p : G — GLo(R), where R is an object in C, there
exists a unique O-algebra homomorphism ¢ : R*™V — R such that ¢ o p"™V ~ p
in GLy(R). The ring RV is called the universal deformation ring of p. By the
universal property stated above, it is unique if it exists. Note that any O-algebra
homomorphism between objects in C is automatically local, since all objects of C
have the same residue fields.

Theorem 8.6 (Mazur). Suppose that p : G — GLy(F) is absolutely irreducible.
Then there exists a universal deformation ring R*™ in C and a universal defor-
mation p*™ : G — GL,(R"™).

Proof. [27], Theorem 2.26. O

8.2.2. Hecke algebras as quotients of deformation rings. Consider f € N and let
pr : Gq — GL2(O) be the associated Galois representation (after fixing a lattice in
E?). Let p; : Gq — GLy(F) be its reduction modulo A. Since py is unramified away
from S = {2,¢}, it factors through Gq g, the Galois group of the maximal Galois
extension of Q unramified away from S. Let Gk s be the image of Gk under the
map Gk — Gq — Gq,s. We will be considering deformations of the representation
ps  Gq,s = GL2(F) and of py i 1= Pylay s- From now on we assume that py
is absolutely irreducible. Let (Rq, pg) and (Rk, px) denote the universal couples
of p; and py f, respectively, which exist by Theorem 8.6. We will denote mg,
and mp, by mg and mg, respectively. Let A be a density zero set of primes of Q
and g € N, g =4 f. Then after possibly changing the basis of p, we may assume
(by the Tchebotarev Density Theorem together with the Brauer-Nesbitt Theorem)
that p, = p,. Hence p; : Gq,s = GL2(0) is a deformation of p;, and pylg, is a
deformation of Py ;. As in the proof of Proposition 8.5 we identify Ty, and T:n,f
with~appropriate subalgebras of [] gen, o=y O and of IT JEN, g=. 1 O> respectively.
Let T denote the O-subalgebra of T generated by the operators T}, for p # 2, ¢ and
let T' denote the O-subalgebra of T’ generated by the set X', where ¥’ is as in
Definition 5.1. We put my := ’i‘ﬂmf and ﬁl’f = ’i"ﬂmf. Let X denote the subset of
N consisting of those eigenforms which are congruent to f except possibly at 2 or £.
Similarly let E’f be the subset of A/ consisting of those eigenforms which are weakly
congruent to f except possibly at 2 or £. We have ¥y C E’f. We again identify

Tﬁf (resp. ’i‘%l,f) with a subalgebra of ngzf O (resp. ngE} 0) in an obvious

gex, 0), and
p' = plx s- Choose bases for each p, so that p, = p, for all g,¢" € ¥y, and so

that py(c) = [! _;] for all g € X, where ¢ is the complex conjugation. We allow
ourselves to enlarge E, O and F if necessary.

way. Consider the representations p := [[ ey py - Gq,s = GL2 (H

Lemma 8.7. The image of the representation p is contained in GLQ(Tﬁf).

Proof. [11], Lemma 3.27. O

We claim that p'(Gk,s) is contained in the image of GLZ(T%I}) inside GLQ(Tﬁf )-
To prove it, let ¢ denote the map ’i‘:ﬁ’f — Tﬁﬁf induced by T <« T. It is easy
to see that (ﬁ(’i‘:ﬁ,f) is an object of C. Consider §' : Gg,s — GL» (ngﬁ’f 0),

o) = (pg(a))gegrf. We have ¢ o ' = p'. For 7 € Gk,s we denote by [7] the
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conjugacy class of 7 in Gx s. Note that Gk s is topologically generated by the set
Upespec 0k pnzgs[Frobp]. For a split p = pp, we have tr p'(Froby) = tr p'(Frobg) =
tr p'(Frob,) = T, € ’i‘;-n,f while for p inert, trp’(Frobf?) =T -ph? e T:ﬁ’f‘
Thus tr p'(Gk,s) C T:ﬁ’f’ and hence tr p'(Gk,s) C ¢(T%l,f). Since we know that
p'(Gk,s) C GL2(T4,), a theorem of Mazur ([40], Corollary 6, page 256)) implies
that (after possibly changing the basis of p'), we have p'(Gg s) C GLg(qﬁ(T%})).
Then p is a deformation of p; and p' : Gr s — GL2(¢(T%1,f )) is a deformation

of p; i- Hence there are unique O-algebra homomorphisms ¢q : Rg — T4 ; and
oK : R — ¢(T:ﬁ})’ such that ¢ o pg =~ p, and ¢k o px = p'. In fact as pg|a, is
a deformation of p j, there is a unique O-algebra homomorphism ¢ : Rk — Rg,
such that ¢ o px = pg|c, . Hence we get the following diagram

(8.1) Rg —>RQ

where ¢ denotes the embedding q&(’i‘(ﬁ,f ) C Ta ;- Note that diagram (8.1) commutes.
[Indeed, as top' is a deformation of p 7.1k there is a unique O-algebra homomorphism
a: Rg — Tfﬁf, such that aopg & top’. Since ¢pxopr ~ p’ we get Lodgopr ~ 1op',
and hence ¢t o ¢ = a by uniqueness of a. On the other hand as stated in the
paragraph before diagram (8.1), ¢ o px = pglay, thus ¢g oY o px & ¢g o pola -
Since ¢g o pg & p, we have ¢pg o pola, = plax =top'. Hence pgopopg 1oy,
which implies as before that ¢g o ¢ = a. So, 1 0 ¢k = ¢ o ¢.] Furthermore, note
that ¢g and ¢x are surjective. Our goal is to prove surjectivity of 1 which will
imply surjectivity of ¢. From this we will deduce surjectivity of ¢q.

The map ¢ : Rk — Rg is local, hence induces an F-linear homomorphism on
the cotangent spaces my /(my,ARx) — mq/(m§), ARq), which we will call 9.
We will show that ¢, : @ — a 01 in the exact sequence of dual maps

0 — Homp(C, F) — Homg (mq/(m, ARq), F) 2= Homp (m/(m¥, ARK), F)

is injective, which will imply C := coker ¢,y = 0.
Let G be a profinite group and (R"™V, p"V) the universal couple of an absolutely
irreducible representation p : G — GLy(F).

Lemma 8.8. One has Homp (M puniv /(Mm% , AR"Y), F) = H(G,ad(p)), where
H! stands for continuous group cohomology and ad(p) denotes the discrete G-module
M, (F) with the G-action given by g - M = p(g)Mp(g) *.

Proof. [27], Lemma 2.29. O

When G = GQ7S (OI‘ G = GK,S) and RV = RQ (OI‘ R — RK), we will
denote the isomorphism from Lemma 8.8 by t¢ (or tx, respectively).
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Proposition 8.9. The following diagram is commutative:

Ver

(8.2) Homp(mQ/(mg), /\RQ), F) — Homp(mK/(mﬁ(, )\RK), F)
toll lltK
H'(Gq,s,ad(p)) — H'(G.s,ad(p))

Proof. This follows from unraveling the definitions of the maps in diagram (8.2).
We omit the details. O

8.2.3. Isomorphism between T:n,f and Ty, .. Note that since # ad(p;) is a power of
¢, and Gal(K/Q) has order 2, the first cohomology group in the inflation-restriction
exact sequence

0 — H'(Gal(K/Q),ad(p;)“**) = H'(Gq,s,ad(p;)) = H'(Gk,s,ad(py))

is zero, hence the restriction map in diagram (8.2) is injective, and thus so is 97,.
Hence C' = 0 and thus v is surjective. An application of the complete version of
Nakayama’s Lemma (cf. [18], exercise 7.2) now implies that ¢ is surjective.

Corollary 8.10. Let f € N and suppose that ﬁf|GK 1s absolutely irreducible. Then
o 'i‘(ﬁ} — ’i‘;nf is surjective.

Proof. This is essentially a summary of the arguments we have carried out so far.
O

Proposition 8.11. Assume that f € N is ordinary at £ and that Py
lutely irreducible. Then ¢y : T}, — Ty, is surjective.
s

Gy s abso-

Proof. Consider the commutative diagram

¢ ~

(83) %1} —_— g
' $o l
m} E— Tmf
where my, m; and m’; are contractions of my to T, T' and T’ respectively. Since
f satisfies the assumptions of Corollary 8.10, ¢ is surjective. For p # 2,¢, it is
clear that T}, € Ty, is inside the image of ¢. If £ is split, then Ty, contains Ty
by definition, so assume ¢ is inert. Then T} € Tp,. Since f = Y7 a(n)q" is
ordinary at ¢, we must have a(f) ¢ A, hence the image of T; in F is not zero, i.e.,
Ty ¢ my. Thus the equation X? — T} splits in Ty, , /my into relatively prime factors
X — Ty and X + Ty. Since T;n,f/m’f = Ty, /my, X? — T7 splits in T(n,f/msc, and
then by Hensel’s lemma it splits in T(n}. This shows that T} is in the image of ¢y.
It remains to show that 75 is in the image of ¢y.

Let p, : Gq,s = GL2(0O) denote the Galois representation associated to g =

1

Yoo b(n)g™, g = f. Arguing as in Lemma 8.2, we get py|p, = [%X 2] with
1 o
2

pa(o) = 5(tr pg(o) + tr py(70)) (for notation see the proof of Lemma 8.2). Let L
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be the fixed field of Gq, g, and L' C L always denote a finite Galois extension of Q.
Using the Tchebotarev Density Theorem we can write
o= lim ¢(L')Frobyy (L,
QCL'CL

where p(L') is a choice of p € S and {(L') € Gq,s is such that
olr = &(L)|L Frobyry | &(L) .

Hence (tr py(0))y = @QCL’CL (tr (Frobyr))y = @QCL’CL Tp(Ly, where each
T) is considered as an element of [] . -, O. Since every Ty € Im(do), and
Im(¢o) being the image of T:n,f is complete, (tr pg(0))y € Im(¢p). Similarly one

shows that (tr py(70)), € Im(p), and hence T5 € Im(¢py). O

Corollary 8.12. Assume f € N is ordinary at £. If Pty is absolutely irreducible
then the canonical O-algebra map T, — Ty, is an isomorphism.
s

Proposition 8.13. If ps|a, is absolutely irreducible, then f # f*.
Proof. Assume that p; : Gq — GL2(F) is absolutely irreducible when restricted to

Gk. Suppose f =3  a(n)q" = f» => ", a(n)q". Let p be a prime inert in K.
By Fact 2.1, a(p) = —a(p), hence a(p) = —a(p), and thus trp;(Frob,) = a(p) =
0. Let L be the splitting field of p; and denote by ¢ € Gal(L/Q) the complex
conjugation. By possibly replacing F with a finite extension, we can choose a
basis of the space of p; such that with respect to that basis ps(c) = [* _;]. Let
o € Gal(L/K), and suppose that p,(c) = [*]. By Tchebotarev Density Theorem
there exists a prime p and an element 7 € Gal(L/Q) such that co = 7 Frob, 77!.
Since o € Gal(L/K), we must have Frob, ¢ Gal(L/K), and thus p is inert in K.

g

Hence trp;(Frob,) = a —d = 0. Let o' € Gal(L/K) and write ps(0') = [Z, g,].

Then p;(00’) = [‘C‘;‘,' Igz: ‘C‘l')’,'j:sg: } Since the argument carried out for o may also
be applied to o' and oo’ € Gal(L/K), we have a’ = d' and bc’ = ¢bf, and this
condition implies that oo’ = o'c. Hence Gal(L/K) is abelian, which contradicts

the absolute irreducibility of |, . The proposition follows. O

8.3. Hida’s congruence modules. Fix f € N andset Ny := {g € N | my = my}.
Write Ty, ® E = E x Bg, where Bg = ngNf\{f} E and let B denote the image

of T\, under the composite Ty, & T Q F NEN Bpg, where 7y is projection. Denote
by 0 : T, = O x B the map T ~ (A\f(T),n;(T)). If E is sufficiently large,
there exists 7 € O such that cokerd = O/nO. This cokernel is usually called the
congruence module of f. Set N} :={g € N'|mj =m/}.

Proposition 8.14. Assume f € N is ordinary at { and the associated Galois
representation py is such that p¢la, is absolutely irreducible. Then there emists
T e T:n,f such that Tf =nf, Tf? =nf? and Tg =0 for all g € N} \ {f, f*}.

Proof. First note that T:n,f can be identified with the image of T' inside Endc (Sk—1,¢),
where Sp_1,5 C Skp—1 (4, (_—4)) is the subspace spanned by ./\/]’c By Corollary 8.12,
the natural O-algebra map T:n,f — T, is an isomorphism. So, it is enough to

find T' € Ty, such that T'f = nf and Tg = 0 for every g € Ny \ {f}. (Note
that by Proposition 8.13, f” ¢ N.) It follows from the exactness of the sequence
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0 = T, % OxB - O/nO — 0, that (5,0) € O x B is in the image of
Twn, < O x B. Let T be the preimage of (1,0) under this injection. Then T has

the desired property. O
Proposition 8.15 ([25], Theorem 2.5). Suppose £ > k. If f € N is ordinary at {,
then
(£,.)
n=)"Fo
ALy

where Q}', 2} denote the “integral” periods defined in [56] and (x) is a A-adic unit.

9. GALOIS REPRESENTATIONS AND SELMER GROUPS

In this section we will give a lower bound on the order of (the Pontryagin dual
of) the Selmer group ad” pf|g, (—1) in terms of the CAP ideal (Theorem 9.10) as
well as in terms of the special L-value L (Symm? f, k) (Corollary 9.11). We will
also discuss the relationship between Corollary 9.11 and the Bloch-Kato conjecture
for the “motives” ad® My(—1) and ad’ My(2), where My is the motif (over Q)
associated to f (section 9.3).

9.1. Galois representations. It is well-known that one can attach an f-adic Ga-
lois representation to every f € A/ (cf. section 2.3). In this section we gather some
basic facts concerning Galois representations attached to hermitian modular forms.

Let F € Sg(I'z) be an eigenform. For every rational prime p, let A, ;(F), j =
1,...,4, denote the p-Satake parameters of F. (For the definition of p-Satake
parameters when p inerts or ramifies in K, see [29], and for the case when p splits
in K, see [24].) Let p be a prime of Ok lying over p. Set

X, (F) == (Np) 720" (p) Ay 5 (F),

where w is the unique Hecke character of K unramified at all finite places with
infinity type weo(Too) = (%)_k/z.

Definition 9.1. The elements A, ;(F) will be called the Galois-Satake parameters
of F at p.

By Theorem 5.9 there exists a finite extension Lp of Q containing the Hecke
eigenvalues of F. In what follows for a number field L and a prime p of L we
denote by Frob, the arithmetic Frobenius at p.

Theorem 9.2. There exists a finite extension Er of Q¢ containing Ly and a 4-
dimensional semisimple Galois representation pp : Gk — GLg. (V) unramified
away from the primes of K dividing 20 and such that

(i) For any prime p of K such that p { 2¢, the set of eigenvalues of pp(Froby)
coincides with the set of the Galois-Satake parameters of F' at p (cf. Defi-
nition 9.1);

(i) If p is a place of K over {, the representation pr|p, is crystalline (cf.
section 9.2).

(iii) If £ > m, and p is a place of K over {, the representation pr|p, is short.
(For a definition of short we refer the reader to [13], section 1.1.2.)
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Remark 9.3. We know of no reference in the existing literature for the proof of
this theorem, although it is widely regarded as a known result. For some discussion
regarding Galois representations attached to hermitian modular forms, see [4] or
[2]. We assume Theorem 9.2 in what follows.

Remark 9.4. It is not known if the representation pp is also unramified at the
prime ¢ + 1. See [1] for a discussion of this issue.

As before, we assume that E is a sufficiently large finite extension of Q, with
valuation ring O, uniformizer A and residue field F = O/A. Let f = Y7 | a(n)q" €
N be such that ﬁf|GK is absolutely irreducible. Then by Proposition 8.13, Fy # 0.
From now on we also assume that ad’ Prlcy, the trace-0-endomorphisms of the
representation space of ﬁf|GK with the usual Gg-action, is absolutely irreducible.
Let € denote the f-adic cyclotomic character. It follows from Proposition 6.4 that
the Galois representation pr, = prrx ® (py,x ® €). From now on we assume in
addition that 2% # a(2) #Z 2*¥~* (mod \).

9.2. Selmer group. Set N™"M := {F € NP | F € SfM(I'z)}. Let M" denote the
set of maximal ideals of T% and MM the set of maximal ideals of THM. We have
TEM = [Tweresw TRM, where TRM denotes the localization of TEM at m. Let
¢ : T8 — TSM be the natural projection. We have M® = M¢ U M", where M¢
consists of those m € M" which are preimages (under ¢) of elements of MNM and
M= MM\ M. Note that ¢ factors into a product ¢ = [werte PmXlmersne Oms
where ¢, : TR — T, is the projection, with m’ € MM being the unique maximal
ideal such that ¢~!(m’) = m and O, is the zero map. For F € N'® we denote by
mp (respectively miM) the element of M" (resp. of MNM) corresponding to F. In
particular, mpM € MMM is such that ¢~ (mFM) = mp,.

We now define the Selmer group relevant for our purposes. For a profinite group
G and a G-module M (where we assume the action of G on M to be continuous) we
will consider the group HZ (G, M) of cohomology classes of continuous cocycles
G — M. To shorten notation we will suppress the subscript ‘cont’ and simply write
HY(G,M). For a field L, and a Gal(L/L)-module M (with a continuous action of
Gal(L/L)) we sometimes write H'(L, M) instead of H},  (Gal(L/L), M). We also
write H°(L, M) for the submodule M G2(L/L) consisting of the elements of M fixed
by Gal(L/L).

Let L be a number field. For a rational prime p denote by ¥, the set of primes
of L lying over p. Let ¥ D X, be a finite set of primes of L and denote by Gy the
Galois group of the maximal Galois extension Ly, of L unramified outside of X. Let
V be a finite dimensional E-vector space with a continuous Gg-action. Let T' C V'
be a Gx-stable O-lattice. Set W :=V/T.

We begin by defining local Selmer groups. For every p € X set

Hyy(Ly, M) = ker{H"(Ly, M) = H'(I,, M)}.
Define the local p-Selmer group (for V) by

{Htlm(Lp:V) peE\El

HYL,,V) :=
f (Lp,V) ker{H'(Ly,V) = H*(Lp,V @ Berys)} b € Zo.

Here Berys denotes Fontaine’s ring of ¢-adic periods (cf. [19]).
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For p € ¥;, we call the Dy-module V' crystalline (or the Gr-module V' crys-
talline at p) if dimg, V = dimq, H°(Ly,V ® Berys). When we refer to a Galois
representation p : Gy, — GL(V) as being crystalline at p, we mean that V' with the
G -module structure defined by p is crystalline at p.

For every p, define H} (Ly, W) to be the image of H} (Ly, V) under the natural
map H'(L,,V) — H'(L,,W). Using the fact that Gal(%, : kp) = Z has cohomo-
logical dimension 1, one easily sees that if W is unramified at p and p € Xy, then
H{(L,,W)=H},(Ly,W). Here k, denotes the residue field of L.

For a Zy,-module M, we write MV for its Pontryagin dual defined as

MY = Homcont(M: Q(/ZK)-

Moreover, if M is a Galois module, we denote by M(n) := M ® €” its n-th Tate
twist.

Definition 9.5. For each finite set ¥’ C ¥\ ¥, the group

Hl(Lp:W)

Iy, (% :=ker { H'
Sez( ,W) er (GE,W)—) @ Hfl(Lp,W)

pEIUR,
is called the (global) Selmer group of the triple (X,%", W). We also set Sx (X', W) :=
Sels (X', W)V, Sels (W) := Sels (), W) and Sx(W) = Ss (B, W). Define Sels (X', V
in the same way with V instead of W.

For L = Q, the group Sels(Z \ £, W) is the standard Selmer group H} (Q, W)
defined by Bloch and Kato [5], section 5.

Let X, %' be as above. Let p : Gy — GLg (V) denote the representation giving
the action of Gx. on V. The following two lemmas are easy (cf. [46], Lemma 1.5.7
and [52]).

Lemma 9.6. Sy, (X', W) is a finitely generated O-module.

Lemma 9.7. If the mod A reduction p of p is absolutely irreducible, then the length
of Sx (X', W) as an O-module is independent of the choice of the lattice T'.

Remark 9.8. For an O-module M, ord¢(#M) = [O/A : F¢]lengthy (M).

Example 9.9. Let L = K, ¥ = %, pr ik = py|a, and let V denote the represen-
tation space of

ad’ py i (—1) = ad’ pr.x @ €+ C Homp(prx @€, pri)

of Gg. Let T C V be some choice of a Gk-stable lattice. Set W = V/T. Note
that the action of Gg on V factors through Gy. Since the mod A reduction of
ad’ ps xk @€~ is absolutely irreducible by assumption, ord(Ss(W)) is independent
of the choice of T'.

Our goal is to prove the following theorem.

Theorem 9.10. Let L, ¥ and W be as in Example 9.9. Suppose that for each
F e Nng, the representation pp : Gx — GL4(E) is absolutely irreducible. Then

ordg (#55 (W) 2 orde(# TR} /by, (Ann(Fy))).
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Corollary 9.11. With the same assumptions and notation as in Theorem 7.12 and
Theorem 9.10 we have

orde(#5s(W)) 2 n.

If in addition the character x in Theorem 7.12 can be taken as in Corollary 7.14,
then

ord¢(#Ss(W)) > ordy(#0/ L™ (Symm? £, k)).

Proof. The corollary follows immediately from Theorem 9.10 and Corollary 7.19.
O

9.3. Relations to the Bloch-Kato Conjecture. In this section we discuss how
our results (Theorem 9.10 and Corollary 9.11) are related to the Bloch-Kato con-
jecture. We begin by recalling the statement of the conjecture in our particular
case. We follow closely the exposition in [13]. For more details as well as precise
definitions the reader is encouraged to consult [13], section 2.4 and [20].

Let Ey be a number field, which we will assume to be “sufficiently large” (in
particular we assume that Fy contains all the Hecke eigenvalues of f) and write
E for its completion at a prime A lying over ¢ determined by our choice of the
embedding Q < Q,. This is consistent with our previous definition of E as a
sufficiently large finite extension of Q. Let My be the “premotivic structure”
attached to f over Q with coefficients in Ey. Write

M :={Mp, Mar, {Mo}o, I, {5 }o, {I" }o, {W'}i},

for the premotivic structure ad® My(—1). Here v runs over the set of finite places
of Ey, Mp (resp. Mgyr; M,) is a finite dimensional vector space over Ey (resp.
Ey; Ey.,), with an action of Gal(C/R) (resp. with a decreasing filtration Fil’;
with a pseudo-geometric action of Gq), I : C® Mgr — C ® Mp (resp. I§ :
Ey,y ®p, Mg — My; IV : Barp ®¥Q, Ey,y ®py Myr — Bar,p ®Q, M,) is a C ® Ey-
linear (resp. Ejp ,-linear; Byr,p ®q, Eo,v-linear with v | p) isomorphism respecting
the Gal(C/R)-action (resp. the Gal(C/R)-action; the Gq,-action and filtrations),
where Bgg,p is the ring defined by Fontaine, and W' are the so called weight
filtrations, whose definition we omit. Similarly one defines the premotivic structure
ad® My(2), which we denote by M*. We have My = Vq and M} = Vg = Va3),
where Vg is the E[Gq]-module ad” ps(—1).

From now on let M € {M, M*}. We adopt similar notation for other symbols,
e.g., Vq € {Vq, V3 }, where the choice of M determines the choice of V and other
symbols related to M in an obvious way.

Let

Ag(M) = Homp, (det Mg,%t(MdR/FﬂOMdR))

be the fundamental line for M and write d¢(M) for the O-lattice in E ® g, A¢(M)
defined by Fontaine and Perrin-Riou (see [20], section II.4 or [13], p. 700 or [33] for
details). Here T indicates the subspace fixed by Gal(C/R).
The Bloch-Kato conjecture relates the lattice d¢(M) to the value at 0 of an
L-function of M normalized by a certain period, both of which we now define.
The isomorphism I°° gives rise to an R ® Ep-linear isomorphism

ocoy—1
RoM: = (CoMp)™ 05 Ro M — R® Mar/Fil’ Mg,
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whose determinant over R ® Ep is ¢t (M) € R ® Ag(M) which we will refer to as
the Deligne period of M. Note that ¢ (M) is canonically defined, i.e., not just up
to a multiplication by an element of Ej as in [12].

Let a1 and ap 2 be the p-Satake parameters of f as defined in section 4.2. For
an odd prime p, set

Ly(ad® Mo, s) := (1 = appagap *) M1 =p*) (1 - apiapap *)
and put
Ly(ad® My, s) := (1 —27*)7L.
Then the L-function of ad® My(n) is defined as

(9.1) L(ad® My(n), s) := HLp(adO Mo, s +n).

In particular we have
L(M,s) = L(ad® My,s — 1)
and
L(M*,s) = L(ad” My, s + 2).

The properties of L(ad® My,s) are summarized in [13], p. 686. In particular
L(ad® My, s) is entire as a function of s and satisfies a functional equation with
respect to s — 1 — s.

Remark 9.12 (Geometric vs. arithmetic Frobenius). In general one defines the
L-function of a motive A" as [], det(1 — f,p~?), where f, denotes the action of the
Frobenius element at p on the inertia invariants of the space of Ny (or on Crys(N)
if p=1{) - see [5], p. 361 for more details. However, this definition depends in
general on whether one uses the geometric or arithmetic Frobenius. In [5] Bloch
and Kato use the geometric Frobenius and then their conjecture relates L(N,0) to
the Selmer group of /. Moreover, in that case one has L(N(n),s) = L(N, s + n).
Also note that L(ad® My, s) is independent of the choice of geometric or arithmetic
Frobenius, since the set of eigenvalues of ad’ ps is of the form {o,1,a !} hence
is invariant under taking the inverse. To be able to keep with the spirit of the
original paper of Bloch and Kato, we defined our L-function in (9.1) so that it
agrees with the L-function defined in [5], i.e., L(ad® My(n),s) := [, = fop™),
where f, denotes the action of Frob, ! on the appropriate space (see above) and
Frob,, is the arithmetic Frobenius at p as before.

It follows from a result of Sturm [53] that there exists a basis b(M) of Ag(M)
such that

L(M,0)(1®b(M)) = ¢t (M).

The first version of (the A-part of) the Bloch-Kato conjecture can be formulated
as follows.

Conjecture 9.13 (Bloch-Kato, cf. [13], Conjecture 2.14). One has
(9.2) (M) = (1@ bM))O
as lattices in E @ A¢(M).
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In [20], Diamond, Flach and Guo give an alternative description of the lattice
0¢(M) in terms of Tate-Shafarevich groups. This description will allow us to state
a different version of Conjecture 9.13 and relate it to Theorem 9.10 and Corollary
9.11.

Set ¥ := ¥, U Xy. Note that the representation Vq is unramified outside X.
To formulate the second version of the Bloch-Kato conjecture one needs to choose
“integral structures” on the one-dimensional E-vector spaces E ® detp, M and
E ® detg,(Mar/ Fil° Mag). One does this by choosing a free rank one O-module
w(M) € E ® dety, (Mar/Fil>Mar)), which in the following we abbreviate as w,
and a Galois stable O-lattice Tq C Vq which gives rise to a free rank one O-module
in E ® detg, M3 via the isomorphism I}. Set Wq := Vq/Tq. Let

Selg (22, WQ)
I(7q) :=
79) = S va) 0 (B/0)
be the Tate-Shafarevich group of 7q. The group III(7q) is finite ([20], Proposition
11.5.3.5). Put 74 := Homo(Tq,0(1)) and set V§ := T§ @0 E and W§ :=
VE/TE - Note that VE = Vg and (V)P = Vq.

Assume that

(9.3) Selg (X2, Vq) = Sels (X, V4) = 0.

This follows from a conjecture on the order of vanishing of L(M, 0) (cf. [20], section
I11.4.2.2) and the fact that in our case
(9.4) H°(Q,Vq) = H(Q,Vg) = 0.

For a commutative ring R and a finitely generated R-module N, denote by
Fittg(N) the Fitting ideal of N in R. For the definition and basic properties of
Fitting ideals see for example the Appendix of [41]. Using Theorem I1.5.3.6 in [20],
Diamond, Flach and Guo show that

Fitto H%(Q, Wq) - Fitto H*(Q, W)
- Fitto (7)) - Tamg,(7q)
where L, (7Tq) is a lattice in £ ® A¢(M) depending on the choice of the “integral
structures” Tq and w = w(M), and

Tam(,(Tq) = Tam} ,(Tq) - Tam2 (Tq) - [[ Tam)(7q)
p#L,00

(9.5) (M)

Lo(Tq),

is the Tamagawa ideal of Tq relative to w (cf. [20], section IL.5.3). It follows from
Proposition 11.4.2.2 in [20] that Tam)(7q) = Tam? (Tq) = O for all p # (.

The integral structures 7q and w give an identification of E ® A¢(M) with E.
Then the quotient L, (7q)/ Tamgw(TQ) is identified with a fractional ideal of E
whose inverse we denote by Tam,,(7q). Similarly, (1® b(M))O is identified with a
fractional ideal (,(7q)/L(M,0)) - O of E for some Q,(7q) € E/O*. Using our
assumption (9.3), we get I1I(7q) = Sels (X2, Wq). Moreover, as explained in [13],
p. 708, one also has an O-linear isomorphism ]_LI('T(?) = Homg, (I1(7q), Q¢/Z/)
and the latter group is just Sx (X2, Wq).

Using the above arguments and (9.4), Conjecture 9.13 can be rephrased in the
following way.
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Conjecture 9.14 (Bloch-Kato conjecture, second version). For M € {M,M*}
one has

(9.6) £S5 (5, Wq) - Tam,, (Tq) = % o

as fractional ideals of E.

Let Tk be Tq considered as an O[Gg]-module. Set Vg := Tk ® E and Wk =
Vi [Tk. Then Vi is unramified away from primes of K lying over £.
The following is just a restatement of Corollary 9.11.

Theorem 9.15. With the same assumptions as in Theorem 7.12 and in Corollary
9.11 we have the following containment of fractional ideals of E:

(9.7) #Sx,(Wk) - O D L™ (Symm? f, k) - O.

We will now discuss the relation between Theorem 9.15 and Conjecture 9.14. As
before, let M € {M,M*}. Write s(M) =k — 3 and s(M*) = k.

Theorem 9.15 falls short of proving that the left-hand side of (9.6) contains the
right-hand side of (9.6), but gives some evidence for this containment. First note
that

L(M,0) = L(ad® My, s(M) — (k — 2)) = a(M)L(Symm? f, s(M)),

where a(M) comes from the discrepancy in the definitions of the Euler factors at
2 of L(M,s) and L(Symm? f,s) and a(M) € O since X { 2. Moreover, using the
functional equation for L(Symm? f,s) (cf. [47]) one concludes that

ord¢ (L™ (Symm? f,k — 3)) = ord (L™ (Symm? f, k)).

Recall that the order of the Selmer group is independent of the choice of the lattice
7q, hence we can fix 7q as in [13], section 1.6.2 and w(M) as in [13], p. 709. It
has been shown by Dummigan [17], p.11 using Proposition 7.7 in [12] and some
arguments in [13] that with these choices of Tq and w(M), one has Q,(Tq) =
uw*S(M)’ZQ?Q; for w an f-adic unit. Thus the right-hand side of (9.6) is the same
for M and M* and is contained in the right-hand side of (9.7). This containment
is an equality if a(M) is a A-adic unit.

Similarly, using the fact that ]J_I(T(f) ~ III(7q)Y one sees that #Sx (X2, Wq) =
#S55 (X2, Wg). On the other hand Theorem 9.15 concerns the group Sy, (Wk) =
Sx(¥2, Wk), which can be potentially larger than Ss (X2, Wq) (this follows from
the inflation-restriction sequence), so (9.7) does not imply an analogous contain-
ment for Sx(Wq) or Sx(Wq) - see also Remark 9.16 below. Finally, we are not
able to show that with the choice of Tq and w as above, one has Tam,(7q) D O.
Dummigan in [15], section 7 and [16], section 6 showed that Tam, (7q) = O if f
is a modular form of level 1. See [15], section 10 for a discussion of the difficulties
involved, when the level of f is larger than one. Diamond, Flach and Guo in [13]
have computed the Tamagawa ideal for the motives ad® My and ad® Mo (1) (cf. the
proof of Theorem 2.15 and Proposition 2.16 in [13]). However, their calculations
cannot, be extended to our case.

To summarize, if f is such that #Sx (X2, Wk) = #S5(X2, Wq) and Tam,, (7Tq) =
O, Theorem 9.15 implies that the right-hand side of (9.6) is contained in the left-
hand side of (9.6).
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Remark 9.16. One can state a conjecture similar to Conjecture 9.14 for the restric-
tion M|k of the premotivic structure M to Gg. Then the L-function L(M|g,0)
factors as

L(M,0)L (M,O, <_—4>> = a(M)L(Symm?® f,k — 3)L (Symm2 k=3, <_—4>>

and the Selmer group on the left-hand-side of (9.6) is replaced by Sy, (Wk). So,
this version of the Bloch-Kato conjecture gives us the same Selmer group as the one
in Theorem 9.15, but an extra L-value L (Symm2 fk—3, (_—4)) Unfortunately we
are unaware of any rationality results for that special value. One needs a statement
that would involve the period ¢ (M|k) used in the formulation of the Bloch-Kato
conjecture. For the value L(Symm? f,k) we have used a rationality result due to
Sturm [53], who uses a period related to the Petersson inner product (f, f), but his
theorem (cf. [53], p. 220) specifically excludes the value L (Symm2 fk—3, (_—4))

Remark 9.17. In [13] Diamond, Flach and Guo proved the A-part of the Bloch-
Kato conjecture for the motives ad’ My and ad” My(1) using an extension of the
methods of Taylor and Wiles [61, 54]. The latter two motives are in duality and
the two L-values L(ad’ My,0) and L(ad® My(1),0) are related by the functional

equation. Hence our result provides evidence for an extension of their theorem to
the motives ad” My(—1) and ad” My(2).

9.4. Degree n Selmer groups. In this section we collect some technical results
regarding Selmer groups which will be used in the proof of Theorem 9.10. Let G
be a group, R a commutative ring with identity, M a finitely generated R-module
with an R-linear action of G given by a homomorphism p : G — Autgr(M). For
any two such pairs (M', p'), (M",p"), the R-module Hompg(M", M') is naturally a
G-module with the G-action given by

(g @)(m") = p'(9)d(p" (g7 )m").
Suppose there exists (M, p) which fits into an exact sequence of R[G]-modules
X: 0-M M- M"—0,

that splits as a sequence of R-modules. Choose sx : M" — M, an R-section of X.
Define ¢x : G — Hompg(M", M') to be the map sending g to the homomorphism
m'" = p(g)sx (p"(g) " 'm") — sx(m").

Lemma 9.18. Let Extgg)(M", M') denote the set of equivalence classes of R[G]-
extensions of M'" by M' which split as extensions of R-modules. The map X — ¢x
defines a bijection between Extgg)(M", M') and H' (G, Hompg(M", M')).

Proof. The proof is a simple modification of the proof of Proposition 4 in [58]. O

Let E, O and A be as before. Let L be a number field and ¥ a finite set of
places of L containing ¥,. Let p' : Gy, — GLg(V'), p" : Gy — GLg(V") be
two Galois representations. Choose Gy-stable O-lattices 7" C V', T" C V", and
denote the corresponding representations by (17, plp) and (T, plf.,) respectively.
Define W' :=V'/T", and W' := V" /T". Set V = Homg(V",V'). Let T C V be a
Gx-stable O-lattice, and set W = V/T'. For an O-module M, let M[n] denote the
submodule consisting of elements killed by A\". For p € ¥, Lemma 9.18 provides a
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natural bijection between H'(Ly, W[n]) and Exto,x»(p,|(W"[n], W'[n]). We now
define degree n local Selmer groups. If p € ¥\ Xy, set

H{(Ly,W(n]) := H,(Ly,W([n]), where W is as above.

If p € Xy, define H} (L, Wn]) C H*(L,, W[n]) to be the subset consisting of those
cohomology classes which correspond to extensions

0= W'[n] = Wn] = W"[n] -0 € Extoxp,(W"[n], W[n])

such that W[n] is in the essential image of the functor V defined in [13], sec-
tion 1.1.2. We will not need the precise definition of V. It is shown in [13]
that H{ (Lp, W[n]) is an O-submodule of H'(L,, W[n]) and that H}(Ly, Wn])
is the preimage of H}(L,,W[n + 1]) under the natural map H'(L,, W[n]) —
H'(Ly,Wn +1]) (cf. Section 2.1, loc. cit.).

Lemn}a 9.19. Fizpe X, Letp:Gp — G~LE(‘~/)~be~a Galojs representation short
at p, T C V an O[Dy]-stable lattice and W := V/T. If W(n] fits into an ezact
sequence

0= W'[n] = Win] = W"[n] 50 € Exto/anp,|(W"[n], W'[n]),
then such an extension gives rise to an element of H} (Ly, Wn]).

Proof. See [13], Section 1.1.2. O

Proposition 9.20. The natural isomorphism
limy H' (Ly, Wn]) = H' (Ly, V)

induces a natural isomorphism
limg HY (Ly, Wn]) = H} (Ly, W),
n

Proof. See [13], Proposition 2.2. O

9.5. Proof of Theorem 9.10. The key ingredient in the proof of Theorem 9.10
is Lemma 9.21 below. Before we state it, we need some notation. Let L be any
number field, ¥ O X, a finite set of primes of L. Let n',n"” € Z>¢ and n :=
n' +n". Let V' (respectively V') be an E-vector space of dimension n' (resp. n'’),
affording a continuous absolutely irreducible representation p' : Gz — Autg(V’)
(resp. p" : Gy — Autg(V")). Assume that the residual representations 7' and
p'" are also absolutely irreducible (hence well-defined) and non-isomorphic. Let
Vi,...,Vin be n-dimensional E-vector spaces each of them affording an absolutely
irreducible continuous representation p; : Gy, — Autg(V;), i = 1,...,m. Moreover
assume that the mod A reductions p; (with respect to some Gx-stable lattice in V;
and hence with respect to all such lattices) satisfy

—88 ~v —/ —=I

PP =p op
For 0 € Gy, let 2?20 aj(0)X? € O[X] be the characteristic polynomial of
(v @ p")(0) and let 377, ¢j(i,0) X’ € O[X] be the characteristic polynomial of
¢i(1,0)
pi(0). Put ¢j(o) == € O™ for j =0,1,...,n— 1. Let T C O™ be
cj(m,o)
the O-subalgebra generated by the set {c;j(¢) | 0 < j < n—-1,0 € Gs}. By
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continuity of the p; this is the same as the O-subalgebra of O™ generated by
{cj(Froby) |0 < j <n—1,p ¢ X}. Note that T is a finite O-algebra. Let I C T
be the ideal generated by the set {c;(Frob,) —a;(Frob,) |0 <j <n—1,p ¢ X}
From the definition of I it follows that the O-algebra structure map O — T/I is
surjective. Let J be the kernel of this map, so we have O/J = T/I. The following
lemma is due to Urban.

Lemma 9.21. Suppose F* contains n distinct elements. Then there exists a Gx-
stable T-submodule £ C @;-, Vi, T-submodules L', L" C L (not necessarily G-
stable) and a finitely generated T-module T such that

(1) as T-modules we have £ = L' & L" and L" =T ;

(2) L has no T|Gx]-quotient isomorphic to p';

(3) L'/IL" is Gx-stable and there exists a T[Gx]-isomorphism

L)IL+ L) = M" 90 T/I

for any Gx-stable O-lattice M" C V",
(4) Fittp(T) = 0 and there exists a T[Gx]-isomorphism

LI =M @0 T/IT
for any Gx-stable O-lattice M' C V',

Proof. Lemma 9.21 follows from Theorem 1.1 of [55]. We only indicate how one
proves that Fittr(7) = 0, which is not directly stated in [55]. By Lemma 1.5 (i)
in [loc. cit.], £' = 7" hence it is enough to show that a := Fittx(£') = 0. Since
a C Annr (L), if a # 0, there exists a non-zero ¢ € T such that t£' = 0. Let
1 <4 < m be such that the projection ¢; of ¢t onto the ith component of T C O™ is
non-zero. Then ¢; annihilates the image of £" under the projection of @;’;1 Vi = Vi.
Since 0 # t; € O and O is a domain, we must have that the image of £’ in V; is
zero. Thus the composite £ — @;nzl V; — V; factors through £/L£" = L = T
by part (1) of the Lemma. Hence the image of £ in V; is a Gy-stable, rank n'
O-module which contradicts the assumption that p; is absolutely irreducible. We
conclude that Fittp (L") = 0. O

We will now show how Lemma 9.21 implies Theorem 9.10. For this we set
° nl — n" — 2;
e L=K,Y=%,U{(i+1}, Y :={(G+1)}
P =pri, P =prr @€ V', V" = representation spaces of p', p" respec-
tively;
o T = TE‘I\F/If;
./\/FfM ={F e N | ¢ (mEM) = mp, } (we denote the elements of N};\IfM
by Fl,. .. ,Fm),
e I = the ideal of T generated by ¢m,, (Ann Fy)
(Vi, pi) = the representation pg;, i =1,...,m.

Remark 9.22. As mentioned in section 9.2, p’ and p" factor not only through Gy,
but also through Gy,, however, the p; do not necessarily factor through Gy, (cf.
Theorem 9.2), and hence we have to work with ¥ as defined above. Nevertheless,
for any Gy, module M which is unramified at (i + 1) we have an exact sequence (cf.
[58], Proposition 6)

0— H'(Gx,,M) - H'(Gx, M) — H'(I(;11), M).
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Hence in particular the group Ss (W) from Theorem 9.10 is isomorphic to Ss ({(¢ +
1)}, W), which we study below.

Lemma 9.21 guarantees the existence of £, £’ £" and T with properties (1)-(4)
as in the statement of the lemma. Let M' (resp. M") be a Gxy-stable O-lattice
inside V' (resp. V'"'). The split short exact sequence of T-modules (cf. Lemma
9.21, (1))

(9.8) 0L -L—>L/L =0

gives rise to a short exact sequence of (T /I)[Gx]-modules, which splits as a sequence
of T/I-modules (cf. Lemma 9.21, (3) and (4))

(9.9) 0> M @0 T/IT = L/IL — M" ®0 T/I = 0.

(Note that L/IL = L. &1 T/I =2 L ®o T/I, hence (9.9) recovers the sequence from
Theorem 1.1 of [55].) Let s : M" ®o T/I — L/IL be a section of T/I-modules.
Define a class ¢ € H'(Gy, Homy,((M" @0 T/I,M' ®0 T/IT)) by

g (Mm@t s(m”" @t)—g-s(g7t-m" @t)).
The following lemma will be used in the proof of Lemma 9.25.

Lemma 9.23. Let ;1) denote the inertia group of the prime ideal (i +1). We
have c|r,,,, =

Proof. For simplicity set J := [;11) and D := D 1). We identify D with
Gal(K (j+1)/K(i+1))- 1t is enough to show that J acts trivially on £/IL. Let
¢ : D — Auty,;(L/IL) be the homomorphism giving the action of D on L£/IL
and denote by K the splitting field of ¢. Set G := Gal(Ky/K(;11)). Note that for

g € D we can write ¢(g) = [¢11(g) i;zgg], where ¢11(g9) € Auty/(M' @0 T/IT),

¢22(g) S AutT/I(M" Xo T/I) and ¢12(g) € HOIHT/I(M” Ko T/I,M’ Ko T/IT)
Also note that ¢11 and ¢29 are group homomorphisms from G into the appropriate
groups of automorphisms. Let K""/K(;1) be the maximal unramified subexten-
sion of Ks/K(;41) and let o € Gal(K""/K(;41)) be the Frobenius generator. Let
T be a topological generator of the totally tamely ramified extension Ks/K"". On
the one hand ¢(r) = [* ¢121(T)] since M’ and M" are unramified at (¢ + 1), and on
the other hand, ¢(oc70™1) = €(0)é(7). This implies that

(9.10) $11(0) P12 (T)22(0) " = €(0) pra (7).

Writing f = Y2, a(n)¢™ and using Theorem 3.26(ii) from [27], we get ps k|p =
[#* 4, ], where p; are unramified characters with p»(o) = a(2). Assume M' = M"
as O-submodules of V' (= V' as an E-vector space) and choose an O-basis {e;, ez}
of M' so that in that basis psk|p = [*! 4] Since M' @0 T/IT = (T/IT)?, it
follows that every element € M' ®p T /IT can be written as e; ® t; + es ® to,
where t1,t2 € T/IT are uniquely determined by =. Hence p'(c0)(e;) = p;j(0)e; and
p"(o)(ej) = pj(o)e(o)e;. Write ¢12(7)(e; ® 1) = e1 @ tj1 + e2 @ tjo. Then (9.10)
implies that t;; = tas = 0. Moreover, if t;2 # 0, we must have p (o)u2(o)™t =
€(0)™? (mod A), while if t3; # 0, we must have p;(0)uz(0) ™! = €(0)? (mod A).
Since det p'(0) = p(0)pu2(0) = €¥72(0) (mod A) by the Tchebotarev Density
Theorem, we get 2 (o) = €(0)® = 2% (mod \) if t15 # 0 and ps(0) = e(o)k—* = 2k~
(mod A) if t21 # 0. Since none of these congruences can hold due to our assumption
on f, we get ¢12(7) = 0 and the lemma follows. O
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Note that Homy,;(M" @0 T/I,M' @0 T/IT) =2 Homo(M",M') @0 T/IT, so
¢ can be regarded as an element of
H*(Gs,Homo(M", M"Y @0 T/IT).
Define a map
v: Home (T /IT,E/O) -H'(Gs,Homp(M", M') @0 E/O)
f=(1® f)(e).

Note that T := Homoe (M", M') is a Gy-stable O-lattice inside V =ad prE@et =
Hompg(V",V'). Then W = Homp(M",M") ®0 E/O =W & E/O(-1), where W
is as in Theorem 9.10.

Lemma 9.24. We have Sx:(W) = Sy (W).

(9.11)

Proof. Let O, be a free rank-one O-module on which G5, operates by a (non-trivial)
character x, and set Wy, = E/O® O,,. Since every element in Sels; (1, ) is killed by
a power of ¢, we have Selx;(W, ) = 0 if and only if the A-torsion part Sels, (W, )[1] of
Sely;(Wy,) is zero. Hence it is enough to show that Sels;(W.-1)[1] = 0. Note that the
natural map H*(Gy, W, [1]) = H*(Gyx, W, ) is an injection since H%(Gx, W) =0
for a non-trivial x. Hence Sels, (W, )[1] = Sely,(W,)NH* (G, Wy [1]). Thus, we have
Sels (W.-1)[1] = Selg(W.-1) N H! (Gg,W-1[1]). Since W, -1[1] = W_-1[1], where
w: Gy — Z; is the Teichmuller lift of the mod ¢ cyclotomic character, we conclude
that Sely, (W -1)[1] = Sels(W,,-1)[1]. So it suffices to show that Sely,(W_-1)[1] = 0.

Its Pontryagin dual Sy;(W,,-1) is isomorphic to Cl%}ée), the wl-isotypical part of

the (-primary part of the class group of K ({y). This in turn is isomorphic to Cl“é;;,),
since ¢ is odd ([41], Remark (3), p. 216). By [41], Theorem 2, p. 216, the ¢-adic
valuation of the order of Cl“ézée) is equal to the f-adic valuation of Bj(w)FQel,

where B () is the first generalized Bernoulli number of . Since B (w) = & (mod
¢), and £ > 3, we obtain our claim.

By Lemma 9.24 it is enough to work with Sy (W) instead of Sy;(W). Since the
mod A reduction of the representation ad”(ps x) ® €' is absolutely irreducible,
Lemma 9.7 implies that our conclusion is independent of the choice of 7'. Hence we
can work with 7" chosen as above.

Lemma 9.25. The image of v is contained inside Sels,({(i + 1)}, W).
Lemma 9.26. ker(:)Y = 0.
We first prove that Lemma 9.25 and Lemma 9.26 imply Theorem 9.10.

Proof of Theorem 9.10. By Remark 9.22, Sy, (W) = Sy({(i + 1)},W), so it is
enough to bound the size of the latter group. It follows from Lemma 9.25 that

ord(#Sx (W)) > orde(#Im(z)Y),

and from Lemma 9.26 that

(9.12) ordy(# Im(r)") = ord(# Home (T /IT,E/O)Y).

Since Homo (T /IT,E/O)Y = (T /IT)"Y =T/IT (cf. [27], page 98), we have
ordy(# Im(e)") = ord¢(#T/IT).
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So, it remains to show that ord,(#7/IT) > ord,(#7T/I). Since Fittr(7T) =

0
(Lemma 9.21 (4)), we have Fitt0(7 ®r T/I) C I and thus ord,(#(T @ T/I)) >
orde(#T/I). As orde(#T /IT) = orde(#(T @1 T/I)), the claim follows. O

Proof of Lemma 9.25. Consider f € Homo(7/IT,E/O). Since c|r,,, = 0 by
Lemma 9.23, we only need to show that (1 ® f)(c)|p, € H}(L,,W) for p € %y.
Fix such a p. Note that since 7/IT is a finitely generated T-module, it is also
a finitely generated O-module (since T/I = O/J). In fact it is even of finite

cardinality for the same reason. In any case, there exists a positive integer n such
that Homo (7 /IT,E/O) = Homo (T /IT, E/O[n]). Thus

Im(t) C HY(Gyx,Homp(M", M') @0 E/O[n]) = H(Gx, W[n]).

By Lemma 9.20, we have ling Hy (L, W;) = H} (L,, W), hence it is enough to show
J

that Im(¢) C H} (Ly, Wn]). However, this is clear by Lemma 9.19 since by Theorem

9.2, each p; is short at p (note that we are assuming that ¢ > k). O

Proof of Lemma 9.26. We follow [52], but see also [55], Fact 1 on page 520. First
note that if f € Home (7 /IT, E/O), then ker f has finite index in 7 /IT. Suppose
that f € kert. We will show that the image of ¢ under the map

¢ : H' (Gs,Homp(M",M") 0 T/IT) = H*(Gx,, Homp(M",M") @0 K)

is zero. Here Ky := (T /IT)/ker f. Assuming f # 0, we will use this fact to produce
a T[Gs]-quotient of £ isomorphic to 7' and thus arrive at a contradiction. Set
Iy :=(E/O)/Im f and T := Home (M", M'). Tensoring the short exact sequence
of O[Gy]-modules

0> KL E/O S 1 >0,

with ®»T and considering a piece of the long exact sequence in cohomology together
with the map ¢ we obtain commutative diagram with the bottom row being exact
(9.13)

Hl(Gz,T®o T/IT)

H'(1®
P (1®f)

o - L 2z H'(19f) L -
H (Gz,T@(’)If)—>H (Gz,T@(’)Kf)—>H (Gz,T@(’)E/O).

Since f € kert, we get H (1 ® f) o ¢(¢c) = 0. As the action of Gy on M’ and
M" respectively gives rise to absolutely irreducible non-isomorphic representations,
H°(Gx,,T ®0 I;) = 0. So, exactness of the bottom row of (9.13) implies that
¢(c) = 0. From now on assume that 0 # f € ker¢. Since ker f # 0, there exists an
O-module A with ker f C A C T/IT such that (T/IT)/A = O/X = F. Since the
image of ¢ in H'(Gx, T ®o ((T/IT)/A)) under the composite

(9.14) HY(Gs,T @0 T/IT) % HY(Gs, T ®0 (T/IT)/ ket f)) —
— HY(Gs,T @0 (T/IT)/A)).

is zero, the sequence

(9.15) 0= M ®0F = (L/IL)/AL + M' @0 A) - M" 90 F = 0
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splits a sequence of T[Gyx]-modules. As Gy, acts on M'®o F via p’, this contradicts
the fact that £ has no quotient isomorphic p'. Hence ker ¢ = 0 and thus (ker:)¥ =0
as well. (]
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