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Abstract. We prove a version of Ihara’s Lemma for degree q = 1, 2 cuspidal

cohomology of the symmetric space attached to automorphic forms of arbi-

trary weight (k ≥ 2) over an imaginary quadratic field with torsion (p-power)
coefficients. This extends an earlier result of the author [9] which concerned

the case k = 2, q = 1. Our method is different from [9] and uses results of

Diamond [4] and Blasius-Franke-Grunewald [2]. We discuss the relationship of
our main theorem to the problem of the existence of level-raising congruences.

1. Introduction

The classical Ihara’s lemma states that the kernel of the map α : J0(N)2 →
J0(Np) is Eisenstein if (N, p) = 1, where J0(N ′) denotes the Jacobian of the com-
patification of the modular curve Γ0(N ′) \H and α is the sum of the two standard
p-degeneracy maps. In [9] the author proved an analogue of this result for de-
gree one parabolic cohomology arising from weight 2 automorphic forms over an
imaginary quadratic field F . More precisely, for n = 0, 1 let Yn be the analogue
over F of the modular curve Y0(Npn) (for precise definitions cf. section 2). Write

Hq
! (Yn, M̃n) for the degree q parabolic cohomology group, where M̃n are sheaves

of sections of the topological covering GL2(F ) \ (V ×M) → Yn with M a torsion
Z[GL2(F )]-module and V = GL2(AF )/Kn ·U2(C)·C× for Kn a compact subgroup,
which is an analogue of Γ0(Npn). For a prime ideal p of the ring of integers OF of F

we have two standard p-degeneracy maps whose sum Hq
! (Y0, M̃0)2 → Hq

! (Y1, M̃1)
we will call αq. The main result of [9] (Theorem 2) then asserts that the kernel of
α1 is Eisenstein when M is a trivial GL2-module (weight 2 case) and that in this
case αq is injective when M has exponent a power of p (cf. [loc.cit.] Remark 12).

In the current paper we prove the following the following two results:

(1) We show that α1 is injective for all weights k ≥ 2 if M has exponent a
power of p. The method applied in [9] used modular symbols and relied on
the assumption that the group action on M was trivial. To treat the case
of a general weight we use an approach developed by Diamond [4] for the
Q-case and we extend it here to the case of F using some input from [12].
This is carried out in section 4.

(2) We show that α2 is injective for all weights k ≥ 2 if M has exponent a power
of p using results of Blasius, Franke and Grunewald [2] on the vanishing
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of the restriction map from group cohomology of S-arithmetic groups to
group cohomology of arithmetic groups. This is carried out in section 3.

In [10] and [4] Ihara’s Lemma was used to show the existence of level-raising
congruences, i.e., congruences between modular forms of level N and those of level
Np. Our results however cannot be used to prove such a result. The problem is
the occurrence of torsion in the degree two cohomology which prevents a ‘lifting’
of our result for cohomology with torsion coefficients to a statement about lattices
generated by eigenforms in the spaces of automorphic forms. It is also not possible
to conclude a level-raising result on the level of cohomology itself because the cup
product pairing is only perfect modulo torsion hence preventing us from using the
standard technique of composing αq with its adjoint α+

q and relating the order of

ker(α+
q αq) to the order of the congruence module. The relationship of our results

to the problem of level-raising is discussed in detail in section 5.
On the other hand a level-raising result for torsion cohomology classes with

trivial coefficients has recently been obtained by Calegari and Venkatesh [3]. As
noted in [loc.cit.] the cohomology classes of ‘raised’ level constructed in [loc.cit.] do
not always lift to characteristic zero hence in fact a level-raising result of the type
proved in [10] and [4] is not to be expected in the context of automorphic forms
over imaginary quadratic fields. We would like thank Frank Calegari and Akshay
Venkatesh for sending us an early version of their book.

2. Preliminaries

2.1. The congruence subgroups of GL2(F ) and symmetric spaces. Let F be
an imaginary quadratic extension of Q and denote by OF its ring of integers. Fix
once and for all an embedding F ↪→ C. For any ideal M ⊂ OF we will write Φ(M)
for the integer N(M) ·#(OF /M)×, where N denotes the absolute norm. Let N be
an ideal of OF such that the Z-ideal N∩Z has a generator greater than 3. Let p be
a prime ideal such that p - N. Write p for its residue characteristic. Denote by ClF
the class group of F and choose representatives of distinct ideal classes to be prime
ideals pj , j = 1, . . . ,# ClF , relatively prime to both N and p. Let π̃, (resp. π̃j) be a
uniformizer of the completion Fp (resp. Fpj

) of F at the prime p (resp. pj), and put

π (resp. πj) to be the idele (. . . , 1, π̃, 1, . . . ) ∈ A×F (resp. (. . . , 1, π̃j , 1, . . . ) ∈ A×F ),
where π̃ (resp. π̃j) occurs at the p-th place (resp. pj-th place). We will write η for[
π

1

]
∈ GL2(AF,f).

For each n ∈ Z≥0, we define compact open subgroups of GL2(AF,f)

Kn :=


[
a b
c d

]
∈
∏
q-∞

GL2(OF,q) | c ∈ Npn

 .

Here AF,f denotes the finite adeles of F and OF,q the ring of integers of Fq. For
n ≥ 0 we also set Kp

n = η−1Knη.
For any compact open subgroup K of GL2(AF,f) we put YK = GL2(F ) \

GL2(AF )/K · U2(C) · Z∞, where Z∞ = C× is the center of GL2(C) and U(2) :=

{M ∈ GL2(C) |MM
t

= I2} (here ‘bar’ denotes complex conjugation and I2 stands
for the 2× 2-identity matrix). If K is sufficiently large (which will be the case for
all compact open subgroups we will consider) this space is a disjoint union of # ClF
connected components YK =

∐# ClF
j=1 (ΓK)j \ Z, where Z = GL2(C)/U2(C)C× and



ON IHARA’S LEMMA FOR DEGREE ONE AND TWO COHOMOLOGY OVER IMAGINARY QUADRATIC FIELDS3

(ΓK)j = GL2(F ) ∩
[
πj

1

]
K

[
πj

1

]−1

. To ease notation we put Yn := YKn
,

Y p
n := YKp

n
, Γn,j := (ΓKn

)j and Γp
n,j := (ΓKp

n
)j .

We have the following diagram:

(2.1)

. . .
⊂
// Kn+1

⊂
//

⊂

""

Kn
⊂
//

⊂

""

Kn−1
⊂
// . . .

. . .
⊂
// Kp

n+1
⊂
//

o

OO

Kp
n

⊂
//

o

OO

Kp
n−1

⊂
//

o

OO

. . .

where the horizontal and diagonal arrows are inclusions and the vertical arrows are
conjugation by η. Diagram (2.1) is not commutative, but it is “vertically commuta-
tive”, by which we mean that given two objects in the diagram, two directed paths
between those two objects define the same map if and only if the two paths contain
the same number of vertical arrows.

Diagram (2.1) induces the following vertically commutative diagram of the cor-
responding symmetric spaces:

(2.2)

. . . // Yn+1
//

!!

Yn //

!!

Yn−1
// . . .

. . . // Y p
n+1

//

o

OO

Y p
n

//

o

OO

Y p
n−1

//

o

OO

. . .

The horizontal and diagonal arrows in diagram (2.2) are the natural projections
and the vertical arrows are maps given by (g∞, gf ) 7→ (g∞, gfη).

2.2. Cohomology. Let M be a finitely generated Z-module with M tor of exponent
relatively prime to #O×F endowed with a GL2(F )-action. Denote by M̃K the sheaf
of continuous sections of the topological covering GL2(F ) \ [(GL2(AF )/K ·U2(C) ·
Z∞)×M ]→ YK , where GL2(F ) acts diagonally on (GL2(AF )/KU2(C)Z∞)×M .

Here M is equipped with the discrete topology. As above, we put M̃n := M̃Kn
and

M̃p
n := M̃Kp

n
.

Given a surjective map φ : YK → YK′ , we get an isomorphism of sheaves
φ−1M̃K′

∼−→ M̃K , which yields a map on cohomology

Hq(YK′ , M̃K′)→ Hq(YK , φ
−1M̃K′) ∼= Hq(YK , M̃K).

Hence diagram (2.2) gives rise to a vertically commutative diagram of cohomology
groups:
(2.3)

. . . Hq(Yn+1, M̃n+1)oo

o αn+1
p

��

Hq(Yn, M̃n)
αn,n+1

1oo

o αn
p

��

Hq(Yn−1, M̃n−1)
αn−1,n

1oo

o αn−1
p

��

. . .oo

. . . Hq(Y p
n+1, M̃

p
n+1)oo Hq(Y p

n , M̃
p
n)

α
np,(n+1)p
1oo

α
n,(n+1)p
1

ee

Hq(Y p
n−1, M̃

p
n−1)

α
(n−1)p,np
1oo

αn−1,np
1

ee

. . .oo

These sheaf cohomology groups can be related to the group cohomology of Γn,j
and Γp

n,j with coefficients in M . In fact, for each compact open subgroup K with
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corresponding decomposition YK =
∐# ClF
j=1 (ΓK)j \ Z, we have the following com-

mutative diagram in which the horizontal maps are inclusions:

(2.4)

Hq
! (YK , M̃K) // Hq(YK , M̃K)

⊕# ClF
j=1 Hq

P ((ΓK)j ,M) //

OO

⊕# ClF
j=1 Hq((ΓK)j ,M)

OO

Here Hq
! (YK , M̃K) denotes the image of the cohomology with compact support

Hq
c (YK , M̃K) inside Hq(YK , M̃K) and Hq

P denotes the parabolic cohomology, i.e.,
Hq
P ((ΓK)j ,M) := ker(Hq((ΓK)j ,M) →

⊕
B∈Bj

Hq((ΓK)j,B ,M)), where Bj is a

fixed set of representatives of (ΓK)j-conjugacy classes of Borel subgroups of GL2(F )
and (ΓK)j,B := (ΓK)j ∩B. The vertical arrows in diagram (2.4) are isomorphisms
provided that there exists a torsion-free normal subgroup of (ΓK)j of finite index
relatively prime to the exponent of M tor. If K = Kn or K = Kp

n, n ≥ 0, this
condition is satisfied because of our assumption that N∩Z has a generator greater
than 3 and the exponent of M tor is relatively prime to #O×F (cf. [18], section 2.3).
In what follows we may therefore identify the sheaf cohomology with the group co-
homology. Note that all maps in diagram (2.3) preserve parabolic cohomology. The
maps α∗,∗1 are the natural restriction maps on group cohomology, so in particular

they preserve the decomposition
⊕# ClF

i=1 Hq((ΓK)j ,M).
Let us introduce one more group:

K−1 :=


[
a b
c d

]
∈ GL2(Fp)×

∏
q-p∞

GL2(OF,q) | c ∈ N, ad− bc ∈
∏
q-∞

O×F,q

 .

The group K−1 is not compact, but we can still define

Γ−1,j := GL2(F ) ∩
[
π̃j

1

]
K−1

[
π̃j

1

]−1

for j = 1, . . .# ClF . Note that Γ−1,j are not discrete subgroups of SL2(C). They
are commensurable with an S-arithmetic subgroup (in the sense of [13]) of SL2(F )
where S = {p}. However it still makes sense to define the group cohomology groups
Hq(Γ−1,j ,M) as well as the subgroups of parabolic cohomology Hq

P (Γ−1,j ,M).
The sheaf and group cohomologies are in a natural way modules over the cor-

responding Hecke algebras. (For the definition of the Hecke action on cohomology,
see [18] or [8]). Here we will only consider the subalgebra Tn,Z of the full Hecke

algebra which is generated over Z by the double cosets Tp′ := K

[
π′

1

]
K for π′

a uniformizer of Fp′ with p′ running over prime ideals of OF such that p′ - Np. For
a Z-algebra A we set Tn,A := Tn,Z ⊗Z A.

2.3. The sheaf and cup product pairing. Let k ≥ 2. Let ` > k − 1 be a
prime not dividing N(Np)DF#O×F , where DF is the discriminant of F . Fix an

isomorphism Q`
∼= C. Let E ⊂ Q` be an (always sufficiently large) finite extension

of Q`. In particular we assume that E contains F and all the eigenvalues of all
Hecke eigenforms for a fixed k and level (this is possible since the extension of Q
generated by these eigenvalues is a number field - cf. e.g., Theorem A in [17]).
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Write O for the valuation ring of E, $ for a choice of a uniformizer and F for the
residue field.

Let A be an OF -algebra. For an integer m ≥ 0, write Symm(A) for the ring
of homogeneous polynomials in two variables of degree m with coefficients in A.

For a subgroup Γ ⊂ GL2(F ), γ =

[
a b
c d

]
∈ Γ and P (X,Y ) ∈ Symm(A) we set

(γP )(X,Y ) := P (aX + cY, bX + dY ). If P (aX + cY, bX + dY ) ∈ A[X,Y ] for every
γ ∈ Γ, this defines an action of Γ on Symm(A). Set

L(m,A) = Symm(A)⊗OF
Symm(A),

where the second factor is an OF -module via the non-trivial automorphism a 7→ a
of F . Set γ(P ⊗Q) := γP ⊗ γQ. Put

L(m,M) := L(m,A)⊗AM

for any A-module M . If M is an A-algebra, then L(m,M) is a ring.
Now assume that A is an OF -algebra in which all rational primes q ≤ m are in-

vertible (cf. [5], section 3.3). For a sheaf M̃ of A-modules we set M̃0 = Hom(M̃,A)

(cf. [19], p.288). Ubran ([loc.cit], p.299) shows that it is possible to view L̃(m,A)0

as a subsheaf of L̃(m,A). Indeed, if Symm(A) is endowed with an action of a
congruence subgroup Γ ⊂ GL2(F ), one defines (cf. e.g. [5], section 3.3) a natural
pairing [·, ·]m on Symm(A)⊗ Symm(A)→ A by[

m∑
i=0

aiX
iY m−i,

m∑
i=0

biX
iY m−i

]
m

:=

m∑
i=0

(−1)i
aibm−i(

m
i

) .

Then we can define a Γ-equivariant pairing on L(m,A) ⊗ L(m,A) → A by [P ⊗
P ′, Q ⊗ Q′]m := [P,Q]m[P ′, Q′]m. Moreover, under our assumptions the pairing
[·, ·]m is perfect and we get an isomorphism L(k − 2, A)0 ∼= L(k − 2, A) of Γ-

modules. In particular in all the statements below one can replace L̃(k − 2, A)0

with L̃(k − 2, A).

Theorem 2.1 (Urban, [19], Théorème 2.5.1). There exists a pairing (induced by
the cup product):

Jn : H1
! (Yn, L̃(k − 2,O))⊗H2

! (Yn, L̃(k − 2,O)0)→ H3
c (Yn,O) ∼= O,

which is perfect modulo torsion.

Lemma 2.2. If A ⊂ C, then H1
! (Yn, L̃(k − 2, A)) is torsion-free.

Proof. The exact sequence 0 → L(k − 2, A) → L(k − 2,C) → L(k − 2,C/A) → 0
induces a long exact sequence in (group) cohomology⊕
j

H0(Γn,j , L(k−2,C/A))→
⊕
j

H1(Γn,j , L(k−2, A))→
⊕
j

H1(Γn,j , L(k−2,C)).

To prove the claim it is enough to show that that the sequence of H0-groups is
short exact. This follows from the assumption ` > k − 2 (cf. also [12], Lemma
6.2). �



6 KRZYSZTOF KLOSIN

2.4. Relation to automorphic forms. For an abelian group M we set M tf =
M/torsion.

Let K ⊂ GL2(AF,f) be an open compact subgroup. We will write Sk(K) for
the C-space of cuspidal automorphic forms on GL2(AF ) of (parallel) weight k and
level Kn. We will not need the precise definition in what follows, but we refer the
reader to [19], section 3 for details.

Theorem 2.3 (Eichler-Shimura-Harder isomorphism). There exist Hecke-equivariant
isomorphisms (cf. e.g.[19], section 3):

δq : Sk(K)
∼−→ Hq

! (YK , L̃(k − 2,C)), q ∈ {1, 2}.

Following Urban ([19], section 4) for a fixed k and a subring A ⊂ C we define
the following two sets of lattices:

L1
A(Kn) = δ−1

1 (ι1(H1
! (Yn, L̃(k − 2, A)))tf);

L2
A(Kn) = δ−1

2 (ι2(H2
! (Yn, L̃(k − 2, A)0)tf)),

where ιq are the canonical maps on cohomology induced by the embedding A ↪→ C.

Lemma 2.4. Let A be a subring of C. The lattices LqA(Kn) satisfy the following
properties:

(i) one has LqZ(Kn)⊗Z A ∼= LqA(Kn) for q = 1, 2;
(ii) the lattices L1

A(Kn) and L2
A(Kn) are free A-modules of the same rank;

(iii) the lattices L1
A(Kn) and L2

A(Kn) are both stable under the action of the
Hecke algebra Tn,Z.

Proof. The first assertion is Proposition 4.1.1 in [19]. Setting A = C in the (i) and

using the fact that LqC(Kn) ∼= Hq
! (Xn, L̃(k − 2,C)) ∼= Sk(Kn) gives (ii). Part (iii)

follows from the fact that Hq
! (Xn, L̃(k−2, A)) is Hecke-stable and the isomorphisms

δq are Hecke-equivariant. �

Corollary 2.5. The maps ιq are injective for q = 1, 2.

Proof. This follows immediately from Theorem 2.3 and Lemma 2.4(i). �

Corollary 2.6. The pairing Jn induces a perfect pairing

〈·, ·〉n : L1
O(Kn)⊗ L2

O(Kn)→ O, 〈f, h〉n = Jn(δ1(f), δ2(h))

Proof. This follows from perfectness (mod torsion) of Jn and the fact that by Corol-
lary 2.5, the maps δq induce isomorphisms between Hq

! (Xn, L(k − 2,O))tf and the
lattices LqO(Kn). �

3. Ihara’s lemma for H2

In this section we will prove an analogue of Ihara’s lemma for the groupsH2
! (YK , L̃(k−

2, E/O)). More precisely, the goal of this section is to prove the following theorem.

Theorem 3.1. Assume ` - #O×FΦ(Np). The map

α2 :

# ClF⊕
j=1

H2
P (Γ0,j , L(k − 2, E/O))2 →

# ClF⊕
j=1

H2
P (Γ1,j , L(k − 2, E/O))

defined as (f, g) 7→ α0,1
1 f + α0,1p

1 α0
pg is injective.
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Proof. Recall that α∗,∗1 are restriction maps. Set Γ′i,j := Γi,j ∩ SL2(F ) for i =
−1, 0, 1. We have a commutative diagram⊕

j H
2
P (Γ0,j , L(k − 2, E/O))2 α2 //

res

��

⊕
j H

2
P (Γ1,j , L(k − 2, E/O))

��⊕
j H

2
P (Γ′0,j , L(k − 2, E/O))2 α2 //

⊕
j H

2
P (Γ′1,j , L(k − 2, E/O)),

The injectivity of the left vertical arrow follows from the fact that ` - #O×F . So, it
is enough to prove that ‘bottom’ α2 is injective. The main ingredient in this proof
is a result of Blasius, Franke and Grunewald which we now state in a special form
pertaining to our situation.

Theorem 3.2 (Blasius, Franke, Grunewald). Let Γ ⊂ SL2(F ) be a congruence
subgroup and let ΓS ⊃ Γ be an S-arithmetic subgroup of SL2(F ) with S a finite set
of finite primes of F . Then the image of the restriction map

(3.1) H∗(ΓS , E)→ H∗(Γ, E)

coincides with the image of the space of SL2(C)-invariant forms on the symmetric
space SL2(C)/K∞ in the de Rham cohomology of the locally symmetric space Γ \
SL2(C)/K∞ (which is identified with the group cohomology of Γ). If E is replaced
by a non-constant irreducible E-representation, then the map (3.1) is the zero map.

Proof. This is Theorem 4 in [2]. �

It follows from a theorem of Serre (cf. [9], Theorem 8) that Γ′−1,j is the amal-
gamated product of Γ′0,j and (Γ′0,j)

p along Γ′1,j := Γ′0,j ∩ (Γ′0,j)
p. Hence using the

exact cohomology sequence of Lyndon (cf. [15], p. 127) one gets that the top row
in the following diagram is exact (for any coefficients M which we suppress):
(3.2)⊕

j H
2(Γ′−1,j)

f 7→(f |Γ′
0,j
,f |(Γ′

0,j
)p )

//
⊕

j(H
2(Γ′0,j)⊕H2((Γ′0,j)

p))
(f,g)7→f |Γ′

1,j
−g|Γ′

1,j
//

o (f,g)7→(f,−[π 1 ]
∗
g)

��

⊕
j H

2(Γ′1,j)

⊕
j H

2(Γ′−1,j)
βM

f 7→(f |Γ′
0,j
,−[π 1 ]

∗
f |Γ′

0,j
)

//
⊕

j H
2(Γ′0,j)

2 αM

(f,g)7→(f |Γ′
1,j

+
[
π−1

1

]∗
g|Γ′

1,j
)

//
⊕

j H
2(Γ′1,j),

where the map [ π 1 ]
∗

is induced from the map H2(Y p
0 , M̃

p
0 )→ H2(Y0, M̃0) arising

from the isomorphism Kp
0
∼−→ K0 given by conjugation by [ π 1 ] (i.e., equals the

inverse of α0
p). Note that the maps in the bottom row and the map represented by

the middle vertical arrow do not necessarily preserve the direct summands (they
do if p is principal), but the maps in the top row do.

It is clear that this diagram commutes (essentially by the definitions of the maps
involved). Let (f, g) ∈ kerαM . Then the corresponding element in

⊕
j(H

2(Γ′0,j)⊕
H2((Γ′0,j)

p)) is in the image of the top left arrow. Hence by commutativity (f, g) is
in the image of βM , so, to prove the theorem it is enough to show that βL(k−2,E/O) =
0. For this it suffices to prove that both of the restriction maps f 7→ f |Γ′0,j and

f 7→ f |(Γ′0,j)p are the zero maps (when M = L(k − 2, E/O)). We will show that
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the first restriction map is zero, the proof of the vanishing of the second map being
essentially identical.

Consider the following commutative diagram with exact columns and horizontal
arrows being restriction maps:

(3.3) H2(Γ′−1,j , L(k − 2, E)) //

��

H2(Γ′0,j , L(k − 2, E))

��

H2(Γ′−1,j , L(k − 2, E/O)) //

��

H2(Γ′0,j , L(k − 2, E/O))

��

H3(Γ′−1,j , L(k − 2,O)) // H3(Γ′0,j , L(k − 2,O))

By Theorem 3.2 (with S = {p}) the top horizontal arrow in (3.3) is the zero map
(for k > 2 the representation L(k − 2, E) is irreducible (cf. e.g. [7], p.45) and for
k = 2 one checks that the space of SL2(C)-invariant forms is zero). Since Γ0,j is a
torsion-free discrete subgroup of GL2(F ), it follows from Proposition 18(b) of [14],
that the cohomological dimension of Γ0,j is no greater than two (because the real
dimension of the symmetric space for GL2(F ) is 3). As the index of Γ′0,j in Γ0,j

is finite, Proposition 5(b) in [loc.cit.] implies that the cohomological dimension of
Γ′0,j is also no greater than two. Hence we must have H3(Γ′0,j , L(k − 2,O)) = 0.
Thus the bottom horizontal arrow in diagram (3.3) is the zero map. We will now
show that the middle horizontal arrow is also zero.

Write A for the image of the top-left vertical arrow, B for H2(Γ′−1,j , L(k −
2, E/O)) and C for the image of the bottom-left vertical arrow. We have a short
exact sequence

(3.4) 0→ A→ B → C → 0.

It is enough to show that (3.4) splits as a sequence of O-modules. By taking the
Pontryagin duals we obtain an exact sequence

(3.5) 0→ HomO(C,E/O)→ HomO(B,E/O)→ HomO(A,E/O).

Let us first show that all of the Hom-groups in (3.5) are finitely generated O-
modules.

As noted before, Γ′−1,j is the amalgamated product of Γ′0,j and (Γ′0,j)
p along

Γ′1,j . By the same argument as in the case of Γ′0,j one sees that (Γ′0,j)
p and Γ′1,j all

have cohomological dimension no greater than 2. Hence, by Proposition 7 of [14],
the group Γ′−1,j has cohomological dimension no greater than 3. Thus, one can

apply Proposition 4 of [loc.cit.] to conclude that H3(Γ′−1,j , L(k−2,O)) is a finitely
generated O-module. Thus C and Hom(C,E/O) are finite groups. Moreover,
by Remarque 1 of [loc.cit.] we also get that H2(Γ′−1,j , L(k − 2, E)) is a finite
dimensional vector space over E. It follows that A ∼= (E/O)m for some m. Thus,
HomO(A,E/O) ∼= Om. Hence all the Hom-groups in (3.5) are finitely generated
O-modules. So, in particular HomO(B,E/O) ∼= Om⊕G, where G is a finite group.
We conclude that B ∼= (E/O)m ⊕G. Then it is clear that (3.4) splits. �
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4. Ihara’s lemma for H1

In this section we will prove an analogue of Ihara’s lemma for the groupsH1
! (YK , L̃(k−

2, E/O)). More precisely, the goal of this section is to prove the following theorem.

Theorem 4.1. Suppose ` > k − 2 and ` - #O×FN(N). The map

α1 :

# ClF⊕
j=1

H1
P (Γ0,j , L(k − 2, E/O))2 →

# ClF⊕
j=1

H1
P (Γ1,j , L(k − 2, E/O))

defined as (f, g) 7→ α0,1
1 f + α0,1p

1 α0
pg is injective.

Remark 4.2. In [9] the author proved Theorem 4.1 for the case k = 2, so we will
assume below that k > 2.

Remark 4.3. If one knew that H2
P (Γ0,j , L(k−2,O)) was torsion-free then the proof

of Theorem 3.1 would carry over verbatim to this case (with n-degree cohomology
replaced by (n − 1)-degree cohomology) as then the bottom horizontal arrow in
diagram (3.3) would have to be zero on the maximal torsion subgroup which in turn
contains the image of the bottom-left vertical arrow. In this case the assumption
that ` > k − 2 is unnecessary.

Proof of Theorem 4.1. In this proof we mostly follow Diamond [4], proof of Lemma
3.2, but indicate where the arguments of [loc.cit.] need to be modified. Let O(p)

denote the ring of p-integers in F , i.e., the elements of F , whose q-adic valuation is
non-negative for every prime q 6= p. For j = 1, 2, . . . ,# ClF put

SL2(O(p))j :=

{[
a b
c d

]
∈ SL2(F ) | a, d ∈ O(p), b ∈ pjO(p), c ∈ p−1

j O(p)

}
.

Define the j-th principal congruence subgroup of level N by

ΓN,j :=

{[
a b
c d

]
∈ SL2(O(p))j | b, c ∈ NO(p), a ≡ d ≡ 1 mod NO(p)

}
.

By Lemma 10 in [9], we may assume that the ideals pj satisfy (Npj − 1, `) = 1. We
have a commutative diagram⊕

j H
1
P (Γ0,j , L(k − 2, E/O))2 α //

res

��

⊕
j H

1
P (Γ1,j , L(k − 2, E/O))

��⊕
j H

1
P (Γj(N), L(k − 2, E/O))2 α //

⊕
j H

1
P (Γ∩, L(k − 2, E/O)),

where the group Γj(N) ⊂ Γ0,j ∩ SL2(OF )j is defined as the principal congruence
subgroup of level N, Γ∩ := Γj(N) ∩ Γj(N)p and SL2(OF )j is defined in the same
way as SL2(O(p))j but with O(p) replaced by OF . The injectivity of the left vertical

arrow follows from the fact that ` - #O×FN(N).
As in [4] we will reduce the problem to showing thatH1

Sj
(ΓN,j , L(k−2, E/O)) = 0

for all j, where Sj ⊂ ΓN,j is the subset of elements conjugate in SL2(O(p))j to[
1 ∗
0 1

]
. Here for a group G, a subset Q ⊂ G and a G-module A we write H1

Q(G,A)

for the subgroup of H1(G,A) whose classes are represented by the cocycles u satis-
fying u(γ) ∈ (γ − 1)A for all γ ∈ Q (by which we mean that for every γ ∈ G there
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exists a ∈ A such that u(γ) = γa− a). Note that in the case when G = Γj(N) and
Q is the subset of parabolic elements one clearly has H1

Q(G,A) ⊃ H1
P (G,A).

By arguments analogous to the ones used in the proof of Theorem 3.1 one obtains
a commutative diagram
(4.1)⊕

j H
1(ΓN,j)

f 7→(f |Γj(N),f |Γj(N)p )
//
⊕

j(H
1(Γj(N))⊕H1(Γj(N)p))

(f,g)7→f |Γ∩−g|Γ∩ //

(f,g) 7→(f,−[π 1 ]
∗
g)o

��

⊕
j H

1(Γ∩)

⊕
j H

1(ΓN,j)
β

f 7→(f |Γj(N),−[π 1 ]
∗
g|Γj(N))

//
⊕

j H
1(Γj(N))2 α

(f,g) 7→(f |Γ∩+
[
π−1

1

]∗
g|Γ∩ )

//
⊕

j H
1(Γ∩)

with exact rows.

Lemma 4.4. Every cocycle u in Z1(ΓN,j , L(k − 2, E/O)), which is mapped by β
into

⊕
j H

1
P (Γj(N))2 represents a class in H1

Sj
(ΓN,j , L(k − 2, E/O)).

Proof. This is proved as in [4], p.211 using the fact that H1
P ⊂ H1

Q. �

So, it is enough to prove that H1
Sj

(ΓN,j , L(k − 2, E/O)) = 0. In fact one can

easily see (cf. [4], p. 211) that it is enough to prove that H1
Sj

(ΓN,j , L(k−2,F)) = 0,

where F = O/$O. The inflation-restriction exact sequence

0→ H1(SL2(OF /`), L(k−2,F))→ H1(ΓN,j , L(k−2,F))→ H1(ΓN`,j , L(k−2,F))

gives rise to an exact sequence
(4.2)
0→ H1

Q(SL2(OF /`), L(k−2,F))→ H1
Sj

(ΓN,j , L(k−2,F))→ H1
Sj∩ΓN`,j

(ΓN`,j , L(k−2,F)),

where Q is an `-Sylow subgroup of SL2(OF /`).

Lemma 4.5. One has H1
Q(SL2(OF /`), L(k − 2,F)) = 0.

Proof. This is just an adaptation of the proof of Lemma 3.1 in [4]. Let us outline
the arguments for the case of an inert ` - the split case is proved similarly. Set
G = SL2(OF /`) and write I for the representation IndGQ(F), where we treat F
as a trivial Q-module. We can regard elements of I as F-valued functions on
F`2 × F`2 \ {(0, 0)}. Set Σ := {σ : F`2 ↪→ F} and write Symk−2

σ (F) for the F`2 [G]-
module of homogeneous polynomials in two variables with coefficients in F where
the actions of both F`2 and G are via the embedding σ. While the action of G
on I is canonical we can also add an F`2-module structure via σ and denote the
resulting F`2 [G]-module by Iσ. For every σ ∈ Σ we then have a natural F`2 [G]-

equivariant injection φσ : Symk−2
σ (F) → Iσ given by φσ(P )(a, b) = P (σ(a), σ(b)).

We then define an F`2 [G]-equivariant injection φ : L(k − 2,F) →
⊗

σ∈Σ Iσ by
φ :=

⊗
σ∈Σ φσ. Let us fix an ordering of the elements of Σ and denote them by

σ1 and σ2. We will introduce a convention that for F-modules M , N in tensor
products M ⊗F`2

N the F2
` -action on the module on the left of ⊗F2

`
is via σ1 and

on the module on the right of ⊗F2
`

the action is via σ2. In particular we will just

write I ⊗ I, instead of
⊗

σ∈Σ Iσ. Note that I ⊗ I ∼= IndGQ(F ⊗F`2
ResGQI), where
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ResGQ denotes the restriction to Q functor. It is then a consequence of Shapiro’s
lemma that

H1
Q(G, I ⊗ I) = H1

Q(Q,F⊗F`2
ResGQI).

Since Q is solvable, an easy calculation shows that the latter cohomology group is
zero. Thus we have reduced the problem to showing that the sequence:

(4.3) 0→ L(k − 2,F)G → (I ⊗ I)G →
(

I ⊗ I
L(k − 2,F)

)G
→ 0

is exact. The rest of the proof consists of decomposing the module I ⊗ I and
analyzing its G-fixed points. Here we follow closely the strategy of the proof of
Lemma 3.1 in [4] with modifications needed to account for dealing with I ⊗ I
instead of just I. In this we use some results of [12] which dealt with a very similar
situation.

We have Iσ =
⊕`2−2

n=0 In,σ, where

In,σ = {f : F`2 × F`2 \ {(0, 0)} → F | f((xa, xb)) = σ(x)nf((a, b))}.
Observe that every In,σ is an F-vector space of dimension `2 + 1 and that L(k −
2,F) ⊂ Ik−2 ⊗ Ik−2 := Iκ−2,σ1

⊗F`2
Ik−2,σ2

. Moreover, note that the action of G
on I ⊗ I preserves every summand Im⊗ In, so all we need to prove is that the map

(Ik−2 ⊗ Ik−2)G →
(
Ik−2 ⊗ Ik−2

L(k − 2,F)

)G
is surjective. In fact we will prove that the module on the right is zero. To do this
we decompose Ik−2 ⊗ Ik−2 as in Lemma 5.5 of [12] (with obvious modifications),
and thus it suffices to show that

(4.4) (Sym`2−1−(k−2)
σ1

(F))⊗ Ik−2)G ⊕ (Ik−2 ⊗ Sym`2−1−(k−2)
σ2

(F))G = 0.

Write Fr,σ for the one-dimensional F-vector space on which

[
a b
c d

]
∈ G acts via

σ(d)r. Note that we have an F`2 [G]-module isomorphism:

(4.5) Ir,σ ∼= IndGP (Fr,σ)

=

{
f : G→ F | f

([
d−1 b
0 d

]
g

)
= σ(d)rf(g) for every g ∈ G,

[
d−1 b
0 d

]
∈ P

}
,

where P ⊂ G is the upper-triangular Borel subgroup of G. One then has

(4.6) Ik−2,σ1
⊗ Sym`2−1−(k−2)

σ2
(F) ∼= IndGP (Fk−2,σ1 ⊗ ResGP Sym`2−1−(k−2)

σ2
(F)).

It is easy to check that (Fk−2,σ1⊗Sym`2−1−(k−2)
σ2

(F))P = 0 or our range of k. Then
by Shapiro’s Lemma and (4.6) we obtain that the second direct summand in (4.4)
is zero. We prove that the first one is zero in an analogous way. �

It now suffices to prove the vanishing of H1
Sj∩ΓN`,j

(ΓN`,j , L(k − 2,F)). For this

first note that L(k − 2,F) is a trivial ΓN`,j-module, so one has

H1
Sj∩ΓN`,j

(ΓN`,j , L(k−2,F)) = ker(Hom(ΓN`,j , L(k−2,F))→ Hom(UN`,j , L(k−2,F))),

where UN`,j is the smallest normal subgroup of SL2(O(p))j containing the matrices

of the form

[
1 x

1

]
∈ ΓN`,j . This means that x ∈ N`pjO(p). Note that since ΓN`,j

is normal in SL2(O(p)), the group UN` is indeed contained in ΓN`,j .
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By a result of Serre (cf. [13], Theoreme 2(b), p.498 or [9], Theorem 11) we have
that UN`,j = ΓN`pjO(p)

. We now argue as in the proof of Proposition 4 of [9]. Put

Γ′N`pj
:=

{[
a b
c d

]
∈ SL2(O(p))j | b, c ∈ N`pjO(p)

}
.

Let f ∈ Hom(ΓN`pjO(p)
, L(k−2,F)). Since ΓN`pjO(p)

is a normal subgroup of Γ′N`pj

of index Npj−1 we have f
(
Γ′N`pi

)
= 0 by our choice of the ideals pj . On one hand

f is zero on the elements of the form

[
1
c 1

]
, c ∈ N`p−1

i O(p), and on the other

hand elements of this form together with Γ′N`pj
generate ΓN`,j , so f(ΓN`,j) = 0, as

asserted. This implies that H1
Sj∩ΓN`,j

(ΓN`,j , L(k − 2,F)) vanishes. The claim now

follows from exactness of (4.2). �

5. The module of congruences

In this section we will explain the relationship of Theorems 3.1 and 4.1 to the
problem of the existence of level-raising congruences for the modules of automorphic
forms over F and the cohomology.

In this section we keep the assumptions from section 2.3. Let M be a finitely
generated free O-module. For a submodule N of M we define

N sat = (N ⊗O E) ∩M.

Lemma 5.1 (Belläıche - Graftieaux, Lemme 4.1.1). Let u : N →M be an injective
homomorphism. For a sufficiently large positive integer s one has an isomorphism
of O-modules:

u(N)sat/u(N) ∼= kerus, where us := u⊗ 1 : N ⊗O/$s →M ⊗O/$s.

Let A and B be two submodules of M such that A ∩ B = 0, Asat = A and
Bsat = B. Following Belläıche and Graftieaux we define the module of congruences
between A and B by (A⊕B)sat/(A⊕B).

The maps αq (q = 1, 2) induce corresponding (injective) maps

αq : LqO(K0)2 → LqO(K1) (f, g) 7→ [K01K1]f + [K0ηK1]g,

where the double cosets act on f and g in the usual way. Define α+
1 : L2

O(K1) →
L2
O(K0)2 to be the adjoint of α1 and α+

2 : L1
O(K1) → L1

O(K0)2 to be the adjoint
of α2 with respect to the pairings 〈〈·, ·〉〉 and 〈·, ·〉1, where 〈〈·, ·〉〉 is the pairing
L1
O(K0)2 ⊗ L2

O(K0)2 → O defined by 〈〈(f, g), (f ′, g′)〉〉 = 〈f, f ′〉0 + 〈g, g′〉0.
Set Mq = LqO(K1), Aq = Im(αq), Bq = A⊥q ⊂ Mq. For brevity write TO for

T1,O. One clearly has Sk(K1) = Mq ⊗O C = X ⊕ Y , where X := (A1 ⊗O C) =
(A2 ⊗O C) and Y := (B1 ⊗Z C) = (B2 ⊗Z C) with X and Y stable under the
action of TO. Define TX (resp. TY ) to be the image of TO inside EndC(X) (resp.
EndC(Y )). Then one has the following canonical inclusion (given by restrictions):
TO ↪→ TX ⊕TY .

Let the (finite) quotient C(TO) := (TX ⊕ TY )/TO be the Hecke congruence
module between X and Y . Note that if C(TO) 6= 0 there exists Hecke eigenforms
f ∈ Aq and g ∈ Bq whose eigenvalues (for all Hecke operators in TO) are congruent
modulo $.

Lemma 5.2. Let q ∈ {1, 2}. Suppose that C(TO) = 0 and that Aq = Asat
q . Then

M sat
q = Mq = Aq ⊕Bq, i.e., the module of congruences between Aq and Bq is zero.
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Proof. This follows from [6], Lemma 4 combined with Lemma 1 together with the
easy facts that Bq = Bsat

q and Mq = M sat
q . �

Assume for the moment that Aq = Asat
q for q = 1, 2 (this equality is sometimes

referred to as ‘Ihara’s lemma’ - cf. [1]). It implies that there exists an O-submodule
Pq ⊂ LqO(K1) such that LqO(K1) = Aq⊕Pq. Given this, for n = 0, 1 we can construct

O-module isomorphisms Ψn : L1
O(Kn)

∼−→ L2
O(Kn) such that Ψ1 = ΨA ⊕ ΨP with

ΨA : A1
∼−→ A2 and ΨP : P1

∼−→ P2, where LqO(K1) = Aq ⊕ Pq. Furthermore when
we consider Ψn as an automorphism of LqC(Kn) and ΨA as an automorphism of X,
then det Ψn and det ΨA are independent of the choice of Ψn and ΨA up to a unit
in O.

Suppose now in addition that C(TO) = 0 (i.e., that there are no level raising
congruences). Then Lemma 5.2 implies that Mq = Aq ⊕ Bq for q = 1, 2, i.e., we
can write αq as (αA, 0). Consider the following sequence of isomorphisms:

(5.1) L1
O(K0)2 αA−−→ A1

ΨA−−→ A2
α+

A−−→ L2
O(K0)2 (Ψ0,Ψ0)−1

−−−−−−−→ L1
O(K0)2

where surjectivity of α+
A follows from perfectness of the pairings involved (Theorem

2.1). For q = 2 we get an analogous diagram with L1’s and A1’s interchanged with
L2’s and A2’s and the isomorphisms ΨA and (Ψ0,Ψ0) replaced by their inverses.
Using self-adjointness of the Hecke operators in Tn,O and arguing as in the proof

of Lemma 2 of [16] one can show that α+
q,Cαq,C =

[
Np + 1 Tp
Tp (Np)k−2(Np + 1)

]
,

where αq,C (resp. α+
q,C) denotes the complexification of αq (resp. α+

q ) and the map

α+
q,Cαq,C makes sense as an automorphism of L1

C(K0)2. It follows from this and the

fact that the composite in (5.1) is an O-module isomorphism that det(α+
q,Cαq,C) ∈

O×. Inverting the logic we conclude that there exist level-raising congruences (i.e.,
C(TO) 6= 0) if det(α+

q,Cαq,C) 6∈ O×. We thus arrive at a conclusion that for a

cuspidal Hecke eigenform f on GL2(AF ) of (parallel) weight k and level N such
that a2

p ≡ (Np)k−2(Np + 1)2 (mod $) (where we write ap for the f -eigenvalue
of Tp) there exists a cuspidal Hecke eigenform g on GL2(AF ) of weight k, level
Np (new at p) with f ≡ g (mod $) - the congruence being between the Hecke
eigenvalues for Ta for a a prime with a - Np. This would be an analogue for F of
classical level-raising congruences of Ribet and Diamond [10], [4].

However, the problem is that A2 is not necessarily saturated due to the presence
of torsion in the degree two cohomology (see e.g. [11] for some examples where this
group contains torsion). Let us discuss it in some more details and offer a weaker
result (Theorem 5.3) on the level of cohomology.
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By Lemma 5.1 there exists an integer s such that Asat
q /Aq ∼= ker(αq,s). Consider

the following commutative diagram:
(5.2)

LqO(K0)2 �
� αq

//

����

LqO(K1)

����

LqO(K0)2 ⊗O/$s
αq,s:=αq⊗1

// LqO(K1)⊗O/$s

⊕
j(H

q
P (Γ0,j , L(k − 2,O))tf)2 ⊗O/$s

αq⊗1
//
⊕

j(H
q
P (Γ1,j , L(k − 2,O))tf)⊗O/$s.

Theorem 5.3. For every positive integer s the map

αq⊗ 1 :
⊕
j

(Hq
P (Γ0,j , L(k− 2,O)))2⊗O/$s →

⊕
j

(Hq
P (Γ1,j , L(k− 2,O)))⊗O/$s

is injective.

It follows from Theorem 5.3 that the map

αq :
⊕
j

(Hq
P (Γ0,j , L(k − 2,O)))2 →

⊕
j

(Hq
P (Γ1,j , L(k − 2,O)))

is injective and that the image of the first module is saturated in the second one.
However, Theorem 5.3 implies injectivity of the bottom map in diagram (5.2) only
in the case of H1 which is torsion-free by Lemma 2.2. Thus Theorem 5.3 falls short
of proving that A2 is saturated and we only obtain the following corollary:

Corollary 5.4. One has Asat
1 = A1. Moreover if

⊕
j H

2
P (Γi,j , L(k − 2,O)) is

torsion-free for i = 0, 1, then Asat
2 = A2.

Finally, let us note that one cannot use Theorem 5.3 to prove the existence of
level-raising congruences on the level of cohomology groups instead of the lattices
L because the pairings Jn are only perfect modulo torsion (Theorem 2.1).

Proof of Theorem 5.3. We need to prove that the map αq ⊗ 1 in Theorem 5.3 is

injective. To shorten formulas for a Z-module A we put Ã := L(k − 2, A). The

short exact sequence 0 → Õ ·$s

−−→ Õ → Õ/$sO → 0 gives rise to the following
commutative diagram where the bottom two rows are exact sequences and the
objects in the top row are by definition the kernels of the vertical maps.
(5.3) ⊕

j H
q
P (Γ0,j , Õ)

·$s
//

��

⊕
j H

q
P (Γ0,j , Õ) //

��

⊕
j H

q
P (Γ0,j , Õ/$s)

��⊕
j H

q(Γ0,j , Õ)
·$s

//

��

⊕
j H

q(Γ0,j , Õ) //

��

⊕
j H

q(Γ0,j , Õ/$s)

��⊕
j

⊕
B∈Bj

Hq(Γ0,j,B , Õ)
·$s
//
⊕

j

⊕
B∈Bj

Hq(Γ0,j,B , Õ) //
⊕

j

⊕
B∈Bj

Hq(Γ0,j,B , Õ/$s).
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One gets an identical diagram for the groups Γ1,j . By performing a subset of the
proof of snake lemma, one can see that the top row is also exact provided that the
bottom-left horizontal arrow is injective. For q = 1 this follows from the exactness
of the sequence of H0’s. For q = 2 this is a consequence of the following lemma:

Lemma 5.5. The groups H2(Γ0,j,B , Õ) and H2(Γ1,j,B , Õ) are torsion-free.

Proof. Let B ⊂ SL2(F ) be a Borel subgroup. Write B = MN for its Levi decom-
position. Note that M ∩Γ0,j is a finite group of order dividing #O×F , hence we have

H2(Γ0,j,B , Õ) ↪→ H2(Γ0,j ∩N, Õ), so it is enough to show that the latter group is
torsion-free.

It is easy to see that Γ0,j ∩N ∼= Z2 as abelian groups. Write G for Γ0,j ∩N ∼= Z2

and choose a subgroup H ⊂ G such that H ∼= Z. From the Hochshild-Serre spectral
sequence one concludes that the sequence

(5.4) H2(G/H, ÕH)→ H2(G, Õ)∗ → H1(G/H,H1(H, Õ)),

where H2(G,M)∗ = ker(res(H2(G,M) → H2(H,M)) is exact. Since H has

cohomological dimension one we obtain that H2(G, Õ)∗ = H2(G, Õ) and that

H2(G/H, ÕH) = 0. Hence we conclude from (5.4) that H2(G, Õ) injects into

H1(G/H,H1(H, Õ)) and thus it is enough to prove that the latter group is torsion-
free.

Note that since the sequence of H-invariants

0→ ÕH → (Õ ⊗ E)H → (Õ ⊗ E/O)H → 0

is exact and H has cohomological dimension one, we obtain a short exact sequence
of cohomology groups

(5.5) 0→ H1(H, Õ)→ H1(H, Õ ⊗ E)→ H1(H, Õ ⊗ E/O)→ 0.

Since all the groups in (5.5) are naturally G/H-modules we can compute their long
exact sequence of cohomology for the group G/H and obtain:

(5.6) 0→ H1(H, Õ)G/H → H1(H, Õ ⊗ E)G/H
φ−→ H1(H, Õ ⊗ E/O)G/H →

→ H1(G/H,H1(H, Õ))→ H1(G/H,H1(H, Õ ⊗ E))

Since the last group in (5.6) is an E-vector space it is clearly torsion-free, so it
suffices to prove that φ is surjective.

To do this, first note that since G is abelian the group G/H acts on f ∈
H1(H,M) by (γ · f)(h) = γ · f(h). Moreover, since H ∼= Z one has H1(H,M) ∼=

M
(σ−1)M , where σ is a generator of H and 1 denotes the identity in H (hence zero

in Z). So, our claim follows from exactness of the following sequence (which is easy
to show):

(5.7)

0→

 Õ[
0 1
0 0

]
Õ


G/H

→

 Õ ⊗ E[
0 1
0 0

]
Õ ⊗ E


G/H

→

 Õ ⊗ E/O[
0 1
0 0

]
Õ ⊗ E/O


G/H

→ 0

The same proof works for Γ1,j,B . �
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Using the exactness of the top row in (5.3) we get the following commutative
diagram

(
⊕

j H
q
P (Γ0,j , Õ))2 ⊗O/$s

αq⊗1

��

(
⊕

j H
q
P (Γ0,j ,Õ))2

$s(
⊕

j H
q
P (Γ0,j ,Õ))2

� � //

��

(
⊕

j H
q
P (Γ0,j , Õ/$s))2

αq,O/$s

��

(
⊕

j H
q
P (Γ1,j , Õ))⊗O/$s (

⊕
j H

q
P (Γ1,j ,Õ))

$s(
⊕

j H
q
P (Γ1,j ,Õ))

� � // (
⊕

j H
q
P (Γ1,j , Õ/$s)),

where αq,O/$s is induced from αq. The map αq,O/$s is injective, by Theorem 4.1
when q = 1 and by Theorem 3.1 when q = 2. Hence the first vertical arrow is
injective. �
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197, 6, 205–213 (1992), Curbes modulaires et courbes de Shimura (Orsay, 1987/1988).

5. E. Ghate, Adjoint L-values and primes of congruence for Hilbert modular forms, Compositio
Math. 132 (2002), no. 3, 243–281.

6. , An introduction to congruences between modular forms, Currents trends in number
theory (Allahabad, 2000), Hindustan Book Agency, New Delhi, 2002, pp. 39–58.

7. G. Harder, Eisenstein cohomology of arithmetic groups. The case GL2, Invent. Math. 89
(1987), no. 1, 37–118.

8. H. Hida, Elementary theory of L-functions and Eisenstein series, London Mathematical So-

ciety Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993.

9. K. Klosin, Ihara’s lemma for imaginary quadratic fields, J. Number Theory 128 (2008), no. 8,
2251–2262.

10. K. A. Ribet, Congruence relations between modular forms, Proceedings of the International

Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) (Warsaw), PWN, 1984, pp. 503–514.
11. M. H. Sengün, On the integral cohomology of Bianchi groups, Exp. Math. 20 (2011), no. 4,

487–505.
12. M. H. Sengün and S. Türkelli, Weight reduction for mod l Bianchi modular forms, J. Number

Theory 129 (2009), no. 8, 2010–2019.

13. J.-P. Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970),
489–527.

14. , Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Prince-

ton Univ., Princeton, N.J., 1970), Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169.
Ann. of Math. Studies, No. 70.

15. , Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, Trans-

lated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English
translation.



ON IHARA’S LEMMA FOR DEGREE ONE AND TWO COHOMOLOGY OVER IMAGINARY QUADRATIC FIELDS17

16. R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98
(1989), no. 2, 265–280.

17. , l-adic representations associated to modular forms over imaginary quadratic fields.

II, Invent. Math. 116 (1994), no. 1-3, 619–643.
18. E. Urban, Formes automorphes cuspidales pour GL2 sur un corps quadratique imaginaire.
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