
IHARA'S LEMMA FOR IMAGINARY QUADRATIC FIELDSKRZYSZTOF KLOSINAbstract. An analogue over imaginary quadratic �elds of a result in algebraicnumber theory known as Ihara's lemma is established. More precisely, we showthat for a prime ideal p of the ring of integers of an imaginary quadratic �eldF , the kernel of the sum of the two standard p-degeneracy maps between thecuspidal sheaf cohomology H1! (X0; ~M0)2 ! H1! (X1; ~M1) is Eisenstein. HereX0 and X1 are analogues over F of the modular curves X0(N) and X0(Np),respectively. To prove our theorem we use the method of modular symbols andthe congruence subgroup property for the group SL2 which is due to Serre.1. IntroductionIhara's lemma in the version stated in [6] asserts that the kernel of the map� : J0(N)2 ! J0(Np) is Eisenstein if (N; p) = 1. Here J0(N 0) denotes the Jacobianof the compacti�ed modular curve �0(N 0)nH, and � is the sum of the two standardp-degeneracy maps from J0(N) to J0(Np). The original proof of the result is dueto Ihara [4] and uses algebraic geometry. In [6] Ribet gave a di�erent proof withoutappealing to algebro-geometric methods. The result was later improved upon byKhare [5] to dispose of the condition that N be coprime to p. Khare also gives arearranged proof in the case when (N; p) = 1 using the method of modular symbols(cf. [5], Remark 4). We will use his approach to generalize the result to imaginaryquadratic �elds, where algebro-geometric techniques are not available.Let F denote an imaginary quadratic extension of Q and OF its ring of integers.The reason why over F the algebro-geometric machinery is not available is the factthat the symmetric space on which automorphic forms are de�ned is the hyperbolic-3-space, the product of C and R+, and the analogues Xn of the modular curvesare not algebraic varieties (cf. section 2). However, [5] uses only group cohomologyand his method may be adapted to the situation over an imaginary quadratic �eld.In this setting the Jacobians are replaced with certain sheaf cohomology groupsH1! (Xn; ~Mn) and for a prime p � OF we have analogues of the two standard p-degeneracy maps whose sum H1! (X0; ~M0)2 ! H1! (X1; ~M1) we will call �. (Forprecise de�nitions see section 2.) The main result of this note (Theorem 3.1) thenasserts that the kernel of � is Eisenstein (for de�nition of \Eisenstein" see section3).Originally Ihara's lemma had been used by Ribet [6] to prove the existenceof congruences between modular forms of level N and those of level Np. Hisresult, valid for forms of weight 2, was later generalized to arbitrary weight byDiamond [2], who used the language of cohomology like we chose to. A crucialingredient in Diamond's proof is the self-duality of H1(�0(N);M). Over imaginaryquadratic �elds, as over Q, there is a connection between the space of automorphicDate: August 22, 2007. 1



2 KRZYSZTOF KLOSINforms and the cohomology groups H1! (Xn; ~Mn) called the Eichler-Shimura-Harderisomorphism (cf. [10]). However, there seems to be no obvious way to adapt theapproach of Ribet and Diamond to our situation as H1! (Xn; ~Mn) is not self-dual.Ihara's lemma was also used in the proof of modularity of Galois representationsattached to elliptic curves over Q ([11], [1]). Thanks to the work of Taylor [9]one can attach Galois representations to a certain class of automorphic forms onResF=Q(GL2=F ). One could hope that Ihara's lemma in our formulation could beuseful in proving the converse to Taylor's theorem, i.e., that ordinary Galois repre-sentations of Gal(F=F ) (satisfying appropriate conditions) arise from automorphicforms, but at this moment this is a mere speculation as too many other importantingredients of a potential proof seem to be missing.The author would like to thank Trevor Arnold, Tobias Berger, Brian Conrad,Chandrashekhar Khare and Chris Skinner for many helpful and inspiring discus-sions. 2. PreliminariesLet F be an imaginary quadratic extension of Q and denote by OF its ring ofintegers. Let N be an ideal of OF such that the Z-ideal N \ Z has a generatorgreater than 3. Let p be a prime ideal such that p - N. Denote by ClF theclass group of F and choose representatives of distinct ideal classes to be primeideals pi, i = 1; : : : ;#ClF , relatively prime to both N and p. Let �, (resp. �i) be auniformizer of the completion Fp (resp. Fpi) of F at the prime p (resp. pi), and put~� (resp. ~�i) to be the idele (: : : ; 1; �; 1; : : : ) 2 A�F (resp. (: : : ; 1; �i; 1; : : : ) 2 A�F ),where � (resp. �i) occurs at the p-th place (resp. pi-th place). We also putO(p) := S1j=0 p�jOF .For each n 2 Z�0, we de�ne compact open subgroups of GL2(AF;f )Kn :=8<:�a bc d� 2 Y
q-1GL2(OF;q) j c 2 Npn9=; :Here AF;f denotes the �nite adeles of F and OF;q the ring of integers of Fq. Forn � 0 we also set Kpn = �~� 1�Kn �~� 1��1.For any compact open subgroup K of GL2(AF;f ) we putXK = GL2(F ) nGL2(AF )=K � U2(C) � Z1;where Z1 = C� is the center of GL2(C) and U(2) := fM 2 GL2(C) jMM t = I2g(here `bar' denotes complex conjugation and I2 stands for the 2�2-identity matrix).If K is su�ciently large (which will be the case for all compact open subgroupswe will consider) this space is a disjoint union of #ClF connected componentsXK = `#ClFi=1 (�K)i n Z , where Z = GL2(C)=U2(C)C� and (�K)i = GL2(F ) \� ~�i 1�K � ~�i 1��1. To ease notation we put Xn := XKn , Xpn := XKpn , �n;i :=(�Kn)i and �pn;i := (�Kpn)i.



IHARA'S LEMMA FOR IMAGINARY QUADRATIC FIELDS 3We have the following diagram:(2.1) : : : �
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// : : :where the horizontal and diagonal arrows are inclusions and the vertical arrowsare conjugation by the maps �~� 1�. Diagram (2.1) is not commutative, but it is\vertically commutative", by which we mean that given two objects in the diagram,two directed paths between those two objects de�ne the same map if and only ifthe two paths contain the same number of vertical arrows.Diagram (2.1) induces the following vertically commutative diagram of the cor-responding symmetric spaces:(2.2) : : : // Xn+1 //o
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z Xpn�1 // : : :The horizontal and diagonal arrows in diagram (2.2) are the natural projectionsand the vertical arrows are maps given by (g1; gf ) 7! �g1; gf [ ~� 1 ]�1�.Let M be a torsion abelian group of exponent relatively prime to #O�F endowedwith a GL2(F )-action. Denote by ~MK the sheaf of continuous sections of thetopological covering GL2(F ) n (GL2(AF )=K � U2(C) � Z1) � M ! XK , whereGL2(F ) acts diagonally on (GL2(AF )=KU2(C)Z1)�M . HereM is equipped withthe discrete topology. Since we will only be concerned with the case when M isa trivial GL2(F )-module, we assume it from now on. This means that ~MK is aconstant sheaf. As above, we put ~Mn := ~MKn and ~Mpn := ~MKpn .Given a surjective map � : XK ! XK0 , we get an isomorphism of sheaves��1 ~MK0 ��! ~MK , which yields a map on cohomologyHq(XK0 ; ~MK0)! Hq(XK ; ��1 ~MK0) �= Hq(XK ; ~MK):Hence diagram (2.2) gives rise to a vertically commutative diagram of cohomologygroups:(2.3): : : Hq(Xn+1; ~Mn+1)oo Hq(Xn; ~Mn)�n;n+11
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OO : : :ooThese sheaf cohomology groups can be related to the group cohomology of �n;iand �pn;i with coe�cients in M . In fact, for each compact open subgroup K with



4 KRZYSZTOF KLOSINcorresponding decomposition XK = `#ClFi=1 (�K)i n Z , we have the following com-mutative diagram in which the horizontal maps are inclusions:(2.4) Hq! (XK ; ~MK) // Hq(XK ; ~MK)L#ClFi=1 HqP ((�K)i;M) //

OO L#ClFi=1 Hq((�K)i;M)OOHere Hq! (XK ; ~MK) denotes the image of the cohomology with compact supportHqc (XK ; ~MK) inside Hq(XK ; ~MK) and HqP denotes the parabolic cohomology, i.e.,HqP ((�K)i;M) := ker(Hq((�K)i;M) ! LB2BHq((�K)i;B ;M)), where B is theset of Borel subgroups of GL2(F ) and (�K)i;B := (�K)i \ B. The vertical arrowsin diagram (2.4) are isomorphisms provided that there exists a torsion-free normalsubgroup of (�K)i of �nite index relatively prime to the exponent ofM . If K = Knor K = Kpn, n � 0, this condition is satis�ed because of our assumption that N\Zhas a generator greater than 3 and the exponent ofM is relatively prime to #O�F (cf.[10], section 2.3). In what follows we may therefore identify the sheaf cohomologywith the group cohomology. Note that all maps in diagram (2.3) preserve paraboliccohomology. The maps ��;�1 are the natural restriction maps on group cohomology,so in particular they preserve the decompositionL#ClFi=1 Hq((�K)i;M).Using the identi�cations of diagram (2.4) we can prove the following result whichwill be useful later:Lemma 2.1. The map �0;11 : H1! (X0; ~M0)! H1! (X1; ~M1) is injective.Proof. Using the isomorphism between group and sheaf cohomology all we need toprove is that the restriction maps resi : H1(�0;i;M) ! H1(�1;i;M) are injective.Since M is a trivial �0;i-module, the cohomology groups are just Homs, so it isenough to show the following statement: if G denotes the smallest normal subgroupof �0;i containing �1;i, then G = �0;i. For this we use the decomposition�0;i = ak2R(OF =p)k2N

�1;i �1k 1� t �1;i �A BC D� ;where the matrix [A BC D ] is chosen so that C and D are relatively prime elements ofOF with C 2 N, D 2 p, and A 2 OF , B 2 pi satisfy AD�BC = 1. Here R(OF =p)denotes a set of representatives in OF of the distinct residue classes of OF =p. Let� a bc d � 2 �1;i with d 2 p. Then for any k 2 Np�1i OF we have�a bc d��1 �1 + bdk �b2kd2k 1� bdk� �a bc d� = �1k 1�and the matrix h 1+bdk �b2kd2k 1�bdk i 2 �i;1, hence G contains `k2R(OF =p)k2N

�1;i [ 1k 1 ], andthus G = �i;0. ˜We can augment diagram (2.1) on the right by introducing one more group:K�1 :=8<:�a bc d� 2 GL2(Fp)� Y
q-p1GL2(OF;q) j c 2 N; ad� bc 2 Y

q-1O�F;q9=; :



IHARA'S LEMMA FOR IMAGINARY QUADRATIC FIELDS 5The group K�1 is not compact, but we can still de�ne��1;i := GL2(F ) \ �~�i 1�K�1 �~�i 1��1for i = 1; : : :#ClF . After identifying the sheaf cohomology groupsH1! (X0; ~M0) andH1! (Xp0 ; ~Mp0 ) with the groups LiH1P (�0;i;M) and LiH1P (�p0;i;M), respectively,using diagram (2.4), we can augment diagram (2.3) on the right in the followingway(2.5): : : Hq! (X1; ~M1)oo Hq! (X0; ~M0)�0;11
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Here we put Hq! (X�1; ~M�1) := LiH1P (��1;i;M) and the maps ��1;01 and ��1;0p1are direct sums of the restriction maps.The sheaf and group cohomologies are in a natural way modules over the cor-responding Hecke algebras. (For the de�nition of the Hecke action on cohomology,see [10] or [3]). Here we will only consider the subalgebra T of the full Heckealgebra which is generated over Z by the double cosets Tp0 := K ��0 1�K andTp0;p0 := K ��0 �0�K for �0 a uniformizer of Fp0 with p0 running over prime idealsof OF such that p0 - Np. The algebra T acts on all the cohomology groups indiagram (2.5). Moreover if p0 is principal, the induced action of Tp0 and Tp0;p0 onthe group cohomology respects the decomposition LiHq�((�K)i;M), where � = ;or P . 3. Main resultWe will say that a maximal ideal n of the Hecke algebra T is Eisenstein ifTl � N l + 1 (mod n) for all ideals l of OF which are trivial as elements of the rayclass group of conductor n. Such ideals l are principal and have a generator l withl � 1 (mod n). Here N l denotes the ideal norm.From now on we �x a non-Eisenstein maximal ideal m of the Hecke algebra T.Our main result is the following theorem.Theorem 3.1. Consider the map H1! (X0; ~M0)2 ��! H1! (X1; ~M1) de�ned as � :(f; g) 7! �0;11 f + �1p�0;1p1 g. The localization �m of � is injective.We prove Theorem 3.1 in two steps. De�ne a map � : H1! (X�1; ~M�1) !H1! (X0; ~M0)2 by g0 7! (��0p��1;0p1 g0; ��1;01 g0) and note that �� = 0 by the ver-tical commutativity of diagram (2.5), i.e., ker� � ��H1! (X�1; ~M�1)�. We �rstprove



6 KRZYSZTOF KLOSINProposition 3.2. ker� = ��H1! (X�1; ~M�1)�.Then we showProposition 3.3. H1! (X�1; ~M�1)m = 0.Propositions 3.2 and 3.3 imply Theorem 3.1.The idea of the proof is due to Khare [5] and uses modular symbols, which wenow de�ne. Let D denote the free abelian group on the set B of all Borel subgroupsof GL2(F ). The action of GL2(F ) on B by conjugation gives rise to a Z-linearaction of GL2(F ) on D. We sometimes identify B with P1(F ) = �ac j a 2 OF ; c 2OF n f0g	 [ f1g, on which GL2(F ) acts by the linear fractional transformations.Let D0 := fPniBi 2 D j ni 2 Z; Bi 2 B;Pni = 0g be the subset of elements ofdegree zero. If XK =`i �i n Z , then for each �i the exact sequence0! HomZ(Z;M)! HomZ(D;M)! HomZ(D0;M)! 0gives rise to an exact sequence(3.1) 0!M ! HomZ[�i](D;M)! HomZ[�i](D0;M)!! H1(�i;M)! H1(�i;HomZ(D;M)):The group HomZ[�i](D0;M) is called the group of modular symbols.Lemma 3.4. Let � be a group acting on the set B of Borel subgroups of GL2(F )and let C denote a set representatives for the �-orbits of B. Then for any trivial�-module W , H1(�;HomZ(D;W )) =Mc2CH1(�c;W );where �c is the stabilizer of c in �.Proof. The �-module structure on HomZ(D;W ) is de�ned via �(x) = �(�1x)and onLc2C Ind��cW via(fc1 ; : : : ; fcn)(c1 ; : : : ; cn) = (fc1 ; : : : ; fcn)(c1; : : : ; cn):Note that we have a �-module isomorphism � : HomZ(D;W ) ��! Lc2C Ind��cW ,given by �(�)c() = �(�1c). ThusH1(�;HomZ(D;W )) ' H1��;Mc2C Ind��cW � 'Mc2CH1(�; Ind��cW )since the action of � stabilizes Ind��cW for every c 2 C. The last group is in turnisomorphic toLc2C H1(�c;W ) by Shapiro's Lemma. ˜By taking the direct sum of the exact sequences (3.1) and using Lemma 3.4, weobtain the exact sequence(3.2) 0!Mi M !Mi HomZ[�i](D;M)!!Mi HomZ[�i](D0;M)!Mi H1P (�i;M)! 0;where the last group is isomorphic to H1! (XK ; ~MK).



IHARA'S LEMMA FOR IMAGINARY QUADRATIC FIELDS 7Remark 3.5. The space of modular symbolsLiHomZ[�i](D0;M) is also a Heckemodule in a natural way. In fact it can be shown (at least if N is square-free)that the localized map �LiHomZ[�i](D;M)�
m
! �LiHomZ[�i](D0;M)�

m
is anisomorphism, but we will not need this fact.4. Proof of Proposition 3.2Suppose (f; g) 2 ker�, i.e., �0;11 f = ��1p�0;1p1 g. Let h1 = �g 2 H1(X0; ~M0)and h2 2 H1(Xp0 ; ~Mp0 ) be the pre-image of f under the isomorphism �p0 . Then�0;11 �0ph2 = �1p�0;1p1 h1. By the vertical commutativity of diagram (2.3), we have�0;11 �0p = �1p�0p;1p1 , whence �1p�0p;1p1 h2 = �1p�0;1p1 h1. Since �1p is an isomorphism,we get �0p;1p1 h2 = �0;1p1 h1 2 H1(Xp1 ; ~Mp1 ).For K � K 0 two compact open subgroups of GL2(AF;f ) for which XK =`i �i nZ and XK0 =`i �0i n Z with �i;�0i 2 Gi, �i � �0i, we have a commutative diagram(4.1) HomZ[�i](D0;M) ��i

// H1P (�i;M)HomZ[�0i](D0;M) ��0i
//

inclusion OO H1P (�0i;M)res OO
;

where the maps ��i and ��0i denote the appropriate connecting homomorphismsfrom exact sequence (3.2). So far we have shown that(4.2) ��0;1p1 g = �0;1p1 h1 = �0p;1p1 h2:We identify g with a tuple (gi)i 2LiH1P (�0;i;M) and de�ne (h1)i 2 H1P (�0;i;M)and (h2)i 2 H1P (�p0;i;M) similarly. Equality (4.2) translates to(4.3) �gij�p1;i = (h1)ij�p1;i = (h2)ij�p1;iFix gmod;i 2 ��1�p1;i(g) and regard it as an element of HomZ(D0;M) invariant under�0;i. Using diagram (4.1) with �i = �p1;i and �0i = �p0;i and equality (4.3) weconclude that there exists (h2)mod;i 2 ��1�p0;i�(h2)i� such that (h2)mod;i = �gmod;iregarded as elements of HomZ(D0;M). Hence gmod;i is invariant under both �0;iand �p0;i.Lemma 4.1. For i = 1; : : : ;#ClF the groups �0;i and �p0;i generate ��1;i.Proof. This is an immediate consequence of Theorem 3 on page 110 in [8]. ˜Using Lemma 4.1 we conclude that gmod;i 2 HomZ[��1;i](D0;M). Put g0i =���1;i(gmod;i). Again, by the commutativity of diagram (4.1) with �0i = ��1;iand �i = �0;i we have g0ij�0;i = gi. Hence g0 := (g0i)i 2 LiH1P (��1;i;M) �=H1! (X�1; ~M�1) satis�es g = ��1;01 g0.Thus 0 = �0;11 f + �1p�0;1p1 g = �0;11 f + �1p�0;1p1 ��1;01 g0. By the vertical com-mutativity of diagram (2.5) we have �1p�0;1p1 ��1;01 = �0;11 �0p��1;0p1 , so 0 = �0;11 f +�0;11 �0p��1;0p1 g0. Since �0;11 is injective by Lemma 2.1, this implies that f = ��0p��1;0p1 g0.Hence (f; g) = (��0p��1;0p1 g0; ��1;01 g0) 2 �(H1! (X�1; ~M�1)), completing the proofof Proposition 3.2.



8 KRZYSZTOF KLOSIN5. Proof of Proposition 3.3In this section we prove that for a principal ideal l = (l) � OF such thatl � 1 (mod N) we have Tlf = (N l + 1)f on elements f 2 H1! (X�1; ~M�1) �=LiH1P (��1;i;M). For such an ideal l, the operators Tl preserve each direct sum-mand H1P (��1;i;M). The restriction of Tl to H1P (��1;i;M) is given by the usualaction of the double coset ��1;i [ 1 l ] ��1;i on group cohomology (see, e.g., [3]). Fork; l 2 OF we put �k;l := � 1 kl �, �l := [ l 1 ]. To describe the action of Tl explicitlywe use the following lemma.Lemma 5.1. Let l = (l) be a principal ideal of OF and n � �1. Then�n;i �1 l��n;i = ak2R(OF =l)k2pi �n;i�k;l t �n;i�l;where R(OF =l) denotes a set of representatives of OF =l in OF .Proof. This is easy. ˜Lemma 5.2. Let n � 3 be an odd integer. Every ideal class c of F containsin�nitely many prime ideals q such that (Nq� 1; n) = 1.Proof. We assume F \Q(�n) = Q, the other case being easier. Let G = Gal(F=Q),N = Gal(Q(�n)=Q) and C = Gal(H=F ) �= ClF , where H denotes the Hilbert class�eld of F . We have the following diagram of �elds(5.1) FnHC
mmmmmmmmmmmmm N

QQQQQQQQQQQQQQQFn = FQ(�n)G
mmmmmmmmmmmmm N

QQQQQQQQQQQQQQQ
HC

mmmmmmmmmmmmmmmmmQ(�n) N
QQQQQQQQQQQQQQQ

FG
mmmmmmmmmmmmmmmmmQChoose (�; �) 2 Gal(FnH=H)�Gal(FnH=Fn) �= N � C, such that� 2 Gal(FnH=H) �= (Z=nZ)�corresponds to an element ~� 2 (Z=nZ)� with ~� 6� 1 modulo any of the divisorsof n, and � 2 Gal(FnH=Fn) �= C �= ClF corresponds to the ideal class c. Bythe Chebotarev density theorem there exist in�nitely many primes Q of the ringof integers of FnH such that FrobQ = (�; �). Then the in�nite set of primes qof OF lying under such Q satisfy the condition of the lemma, i.e., q 2 c and(Nq� 1; n) = 1. ˜By Lemma 5.2 we may assume that the ideals pi were chosen so that Npi � 1 isrelatively prime to the exponent of M for all i = 1; : : : ;#ClF .Proof of Proposition 3.3. Let f 2 H1P (��1;i;M) and let l = (l) be a principal idealof O(p) with l � 1 (mod N). We will prove that fl := Tlf � (N l + 1) = 0. Bythe de�nition of parabolic cohomology, we have fl(��1;i \ B) = 0 for all B 2 B.



IHARA'S LEMMA FOR IMAGINARY QUADRATIC FIELDS 9Moreover, as the exponent of M is relatively prime to #O�F , it is enough to provethat fl(~�i) = 0, where ~�i := ��1;i \ SL2(F ). PutSL2(O(p))i := ��a bc d� 2 SL2(F ) j a; d 2 O(p); b 2 piO(p); c 2 p�1i O(p)� :We �rst show that fl = 0 on the i-th principal congruence subgroup�N;i := ��a bc d� 2 SL2(O(p))i j b; c 2 NO(p); a � d � 1 modNO(p)� :If x 2 NpiO(p), and g 2 SL2(O(p)), then g �1 x1� g�1 2 SL2(O(p)) \ ��1;i andfl

�g �1 x1� g�1� = 0 by the de�nition of parabolic cohomology. So fl = 0 on thesmallest normal subgroup H of SL2(O(p)) containing matrices of the form �1 x1�with x 2 NpiO(p). By a theorem of Serre [7],H = �Npi := ��a bc d� 2 SL2(O(p)) j b; c 2 NpiO(p); a � d � 1 mod NpiO(p)� :Thus fl = 0 on �Npi . Put�0Npi := ��a bc d� 2 SL2(O(p))i j b; c 2 NpiO(p)� :Since �Npi is a normal subgroup of �0Npi of index Npi � 1 we have fl

��0Npi� = 0by Lemma 5.2 and our choice of pi. On one hand fl is zero on the elements ofthe form �1c 1�, c 2 Np�1i O(p), (again by the de�nition of parabolic cohomology)and on the other hand elements of this form together with �0Npi generate �N;i, sofl(�N;i) = 0, as asserted.Thus fl descends to the quotient ~�i=�N;i. However, on this quotient all �k;l and�l act as the identity, since l � 1 (mod N) and we can always choose k 2 Npi. Thusfl = 0. ˜References1. Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor. On the modularity ofelliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc., 14(4):843{939 (electronic),2001.2. Fred Diamond. Congruence primes for cusp forms of weight k � 2. Ast�erisque, (196-197):6,205{213 (1992), 1991. Curbes modulaires et courbes de Shimura (Orsay, 1987/1988).3. Haruzo Hida. Elementary theory of L-functions and Eisenstein series, volume 26 of LondonMathematical Society Student Texts. Cambridge University Press, Cambridge, 1993.4. Yasutaka Ihara. On modular curves over �nite �elds. In Discrete subgroups of Lie groups andapplications to moduli (Internat. Colloq., Bombay, 1973), pages 161{202. Oxford Univ. Press,Bombay, 1975.5. Chandrashekhar Khare. Congruences between cusp forms: the (p; p) case. Duke Math. J.,80(3):631{667, 1995.6. Kenneth A. Ribet. Congruence relations between modular forms. In Proceedings of the In-ternational Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), pages 503{514, Warsaw,1984. PWN.7. Jean-Pierre Serre. Le probl�eme des groupes de congruence pour SL2. Ann. of Math. (2),92:489{527, 1970.
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