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Abstract. In this note we compute Hecke eigenvalues of Siegel Eisenstein

series on the unitary group U(2, 2) induced from a character. We do this for
Hecke operators at primes not dividing the level of the Eisenstein series.

1. Introduction

In a recent paper Walling [Wal12] computed Hecke eigenvalues of Siegel Eisen-
stein series on GSp4 induced from a character. Her method involves directly calcu-
lating the action of the operators on the Eisenstein series without prior knowledge
of their Fourier coefficients. The goal of this note is to compute eigenvalues of
Hecke operators acting on hermitian Siegel Eisenstein series (for primes not divid-
ing the level). Our method, which uses some representation theory (but still no
knowledge of Fourier coefficients), makes the calculations much less involved than
the ones carried out in [Wal12] (however, let us note here that Walling in [loc.cit.]
also computes eigenvalues for the operators at primes dividing the level).

More precisely, let K be an imaginary quadratic field, and let G be the quasi-
split unitary group U(2, 2) associated with the extension K/Q. Let ψ be a Hecke
character of K. We consider the (in general non-holomorphic) Eisenstein series
E := E(g, s,N,m,ψ) (studied e.g., by Shimura [Shi97], [Shi00]) of weight m, level
N induced from the representation ψ◦det ofMP (A), whereMP is the Levi subgroup
of the Siegel parabolic of G. We show that E is an eigenform for certain set of Hecke
operators generating the local Hecke algebras at primes p - N , and compute the
corresponding eigenvalues for these generators. The adelic approach taken here not
only simplifies calculations, but is in fact natural whenever the class number of K is
greater than one as in that case the associated symmetric space has more than one
connected component, and some Hecke operators at non-principal primes permute
these components.

2. Notation

2.1. Hecke characters. Let K be an imaginary quadratic field with ring of inte-
gers OK . Denote by hK the class number of K. For a number field L let AL denote
the ring of adeles of L, and put A := AQ. Write AL,∞ and AL,f for the infinite
part and the finite part of AL respectively. For α = (αv) ∈ A set |α|A :=

∏
v |α|Qv ,

where |α|Qv
denotes the v-adic norm of α. Hereafter the index v will always denote

a (finite or infinite) place of Q. In particular if v = ∞, then Qv = R and |α|Q∞
denotes the usual absolute value. The letter p will be reserved for a finite place of
Q.
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By a Hecke character of A×K (or of K, for short) we mean a continuous homo-
morphism

ψ : K× \A×K → C×.

We will think of ψ as a character of (ResK/Q GL1/K)(A), where ResK/Q stands
for the Weil restriction of scalars. We have a factorization ψ =

∏
v ψv into local

characters ψv :
(
ResK/Q GL1/K

)
(Qv)→ C×. For M ∈ Z, we set ψM :=

∏
p|M ψp.

2.2. The unitary group. For any affine group schemeX over Z and any Z-algebra
A we denote by x 7→ x the automorphism of (ResOK/ZXOK

)(A) induced by the
non-trivial automorphism of K/Q. Note that (ResOK/ZXOK

)(A) can be identified
with a subgroup of GLn(A⊗OK) for some n. In what follows we always specify such
an identification. Then for x ∈ (ResOK/ZXOK

)(A) we write xt for the transpose

of x, and set x∗ := xt and x̂ := (xt)−1. Moreover, we write diag(a1, a2, . . . , an) for
the n× n-matrix with a1, a2, . . . an on the diagonal and all the off-diagonal entries
equal to zero.

We will denote by Ga the additive group and by Gm the multiplicative group.
To the imaginary quadratic extension K/Q one associates the unitary similitude
group scheme over Z:

G := GU(2, 2) = {A ∈ ResOK/Z GL4 | AJĀt = µ(A)J}

with J =

[
−I2

I2

]
, where for any n ∈ Z+ we write In for the n × n identity

matrix and µ(A) ∈ Gm. We will also make use of the group

U = U(2, 2) = {A ∈ G | µ(A) = 1}.
Let p be a rational prime. Write Kp for K ⊗Q Qp, and OK,p for OK ⊗Z Zp.

Note that if p is inert or ramified in K, then Kp/Qp is a degree two extension of
local fields, and a 7→ a induces the non-trivial automorphism in Gal(Kp/Qp). If p
splits in K, denote by ιp,1, ιp,2 the two distinct embeddings of K into Qp. Then the
map a⊗ b 7→ (ιp,1(a)b, ιp,2(a)b) induces a Qp-algebra isomorphism Kp

∼= Qp ×Qp,
and a 7→ a corresponds on the right-hand side to the automorphism defined by
(a, b) 7→ (b, a). We denote the isomorphism Qp ×Qp

∼−→ Kp by ιp. For a matrix
g = (gij) with entries in Qp ×Qp we also set ιp(g) = (ιp(gij)). For a split prime p
the map ι−1p identifies G(Qp) with

Gp = {(g1, g2) ∈ GL4(Qp)×GL4(Qp) | g1Jgt2 = αJ, α ∈ Q×p }.
Note that the map (g1, g2) 7→ (g1, α) gives a (non-canonical) isomorphism G(Qp) ∼=
GL4(Qp)×Gm(Qp).

2.3. Compact subgroups. For an associative ring R with identity and an R-
module N we write Mn(N) for the R-module of n× n-matrices with entries in N .
Let x = [A B

C D ] ∈ M2n(N) with A,B,C,D ∈ Mn(N). Define ax = A, bx = B,
cx = C, dx = D.

For N ∈ Z and a rational prime p, set

K0,p(N) = {x ∈ G(Qp) | ax, bx, dx ∈M2(OK,p), cx ∈M2(NOK,p)} .
For any p, the group K0,p := K0,p(1) = G(Zp) is a maximal (open) compact sub-
group of G(Qp). Note that if p - N , then K0,p = K0,p(N). Set

K+
0,∞ :=

{[
A B
−B A

]
∈ U(R) | A,B ∈ GL2(C), AA∗ +BB∗ = I2, AB

∗ = BA∗
}
.
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Then K+
0,∞ is a maximal compact subgroup of U(R). We will denote by K0,∞

the subgroup of G(R) generated by K+
0,∞ and diag(1, 1,−1,−1). Then K0,∞ is

a maximal compact subgroup of G(R). Finally, set K0(N) := K+
0,∞

∏
pK0,p(N).

Similarly, we define K1(N) = K+
0,∞

∏
pK1,p(N) with

K1,p(N) = {x ∈ K0,p(N) | ax − I2 ∈M2(NOK,p)}.

3. Siegel Eisenstein series

We adopt the following notation. If H is an algebraic group over Q and g ∈
H(A), we will write g∞ ∈ H(R) for the infinity component of g and gf for the finite
component of g, i.e., g = (g∞, gf).

Definition 3.1. Let K be an open compact subgroup of G(Af). Write Z for the
center of G. LetMm(K) denote the C-space consisting of functions f : G(A)→ C
satisfying the following conditions:

• f(γg) = f(g) for all γ ∈ G(Q), g ∈ G(A),
• f(gk) = f(g) for all k ∈ K, g ∈ G(A),
• f(gu) = det(cui + du)−mf(g) for all g ∈ G(A), u ∈ K∞ = K0,∞ (see

(10.7.4) in [Shi97]; also see section 2.3 above for the notation cu and du),
• f(ag) = a−2mf(g) for all g ∈ G(A) and all a ∈ C× = Z(R) ⊂ G(R).

As before, let N > 1 be an integer, and ψ a Hecke character of K satisfying

(3.1) ψ∞(x) = xm|x|−m

for a positive integer m, and

(3.2) ψp(x) = 1 if p 6=∞, x ∈ O×K,p and x− 1 ∈ NOK,p.
Set

(3.3) Mm(N,ψ) := {f ∈Mm(K1(N)) | f(γg(k∞, kf)) =

= ψN (det(akf))
−1 det(ck∞i+dk∞)−mf(g), g ∈ G(A), γ ∈ G(Q), (k∞, kf) ∈ K0(N)}.

Let P be the Siegel parabolic of G, i.e., P = MPUP where MP is the subgroup

MP =

{[
A

αÂ

]
| A ∈ ResK/Q GL2/K , α ∈ Gm

}
,

and UP is the (abelian) unipotent radical

UP =




1 b1 b2
1 b2 b4

1
1

 | b1, b4 ∈ Ga, b2 ∈ ResK/Q Ga/K

 .

Define µP : MP (Q)UP (A) \G(A)→ C by setting

µP (g) =

{
0 g 6∈ P (A)K0(N),

ψ(det dq)
−1ψN (det dk)−1(ck∞i+ dk∞)−m g = qk ∈ P (A)K0(N).

Note that µP has a local decomposition µP =
∏
v µP,v, where

(3.4) µP,v(qvkv) =


ψv(det dqv )−1 if v - N, v 6=∞,
ψv(det dqv )−1ψv(det dkv ) if v | N, v 6=∞,
ψ∞(det dq∞)−1(ck∞i+ dk∞)−m if v =∞.
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Let δP denote the modulus character of P (A). We extend δP to a function on G(A)
using the Iwasawa decomposition G(A) = P (A)K0(N) and declaring it to be trivial
on K0(N). Note that this is well-defined, and that δP has a local decomposition
δP =

∏
v δP,v with

(3.5) δP,v

([
A

D

]
uk

)
= |detAdetD−1|2Qv

,

where

[
A

D

]
∈MP (Qv), u ∈ UP (Qv) and k ∈ K0,v(N) if v 6=∞, or k ∈ K+

0,∞ if

v =∞.

Definition 3.2. The series

E(g, s,N,m,ψ) :=
∑

γ∈P (Q)\G(Q)

µP (γg)δP (γg)s/2

is called the (hermitian) Siegel Eisenstein series of weight m, level N and character
ψ.

For any fixed g ∈ G(A) the Siegel Eisenstein series converges absolutely for Re(s)
sufficiently large. It admits a meromorphic continuation in s to the entire complex
plane with finitely many simple poles (cf. Proposition 19.1 in [Shi97]). It is easily
checked that E(g, s,N,m,ψ) ∈ Mm(N, (ψc)−1), where the character ψc is defined
by ψc(a) := ψ(a).

4. The Hecke algebra

4.1. Generalities. Let p be a rational prime and (V, π) a smooth representation
of G(Qp). For a summary of the theory of such representations see e.g., [Bum97],
section 4.2. Recall that K0,p := G(Zp) is a maximal (open) compact subgroup of
G(Qp). Fix a left-invariant Haar measure dg on G(Qp) such that

∫
K0,p

dg = 1. We

denote byHK0,p
the algebra of compactly supported, smooth (i.e., locally constant),

bi-K0,p-invariant functions from G(Qp) into C. The multiplication in HK0,p is
defined to be the convolution

(φ1 ? φ2)(g) =

∫
G(Qp)

φ1(gh−1)φ2(h)dh.

For any subset H of G(Qp) denote by [H] the characteristic function of H. The
function [K0,p] is the identity element of HK0,p

. The algebra HK0,p
is called the

spherical Hecke algebra of G(Qp).

Lemma 4.1. The algebra HK0,p
is commutative.

Proof. The proof is the same as the proof of Theorem 4.6.1 in [Bum97]. �

The representation π defines an action v 7→ π(φ)v of HK0,p
on V by

π(φ)(v) :=

∫
G(Qp)

φ(g)π(g)v dg.

Before we state our results let us begin with the following lemma which explains
how everything we are about to state can be easily expressed in terms of right cosets
as opposed to left cosets.
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Lemma 4.2. Let a ∈ G(Qp) be a diagonal matrix, and assume that the double
coset space K0,paK0,p decomposes as K0,paK0,p =

⊔n
i=1 aiK0,p. Then K0,paK0,p =⊔n

i=1K0,pµ(ai)a
−1
i .

Proof. The map ϕ : G → G defined by ϕ(x) = µ(x)x−1 is an anti-involution
on G. If a ∈ G(Qp) is diagonal, then ϕ(a) = JaJ−1. Since J ∈ K0,p, we get
K0,paK0,p = K0,pϕ(a)K0,p. Applying ϕ to the equality K0,paK0,p =

⊔n
i=1 aiK0,p we

obtain the lemma. �

For any subgroup H of G(Qp) we denote by V H the subspace of V consisting of
vectors fixed by H.

Lemma 4.3. Let a ∈ G(Qp), and assume that the double coset space K0,paK0,p

decomposes as K0,paK0,p =
⊔n
i=1 aiK0,p with ai ∈ G(Qp). Then for v ∈ V K0,p we

have

π([K0,paK0,p])v =

n∑
i=1

π(ai)v.

Proof. We have

π([K0,paK0,p])v =

∫
K0,paK0,p

π(g)v dg =

n∑
i=1

∫
aiK0,p

π(g)v dg.

Making a change of variable g 7→ aig, and using the fact that dg is a left-invariant
measure we get

π([K0,paK0,p])v =

n∑
i=1

∫
K0,p

π(aig)v dg =

n∑
i=1

π(ai)v.

�

Lemma 4.4. Let φ ∈ HK0,p
and v ∈ V K0,p . Then π(φ)v ∈ V K0,p .

Proof. We need to show that π(k)π(φ)v = π(φ)v for k ∈ K0,p. We have

π(k)π(φ)v = π(k)

∫
G(Qp)

φ(g)π(g)v dg = π(k)π(φ)v =

∫
G(Qp)

φ(g)π(kg)v dg.

Making a change of variable g 7→ k−1g, and using the fact that dg is left-invariant
we see that the last integral equals

∫
G(Qp)

φ(k−1g)π(g)v dg. Since φ is left K0,p-

invariant, the lemma follows. �

Corollary 4.5. Let a ∈ G(Qp). If K0,paK0,p =
⊔n
i=1 aiK0,p with ai ∈ G(Qp) and

v ∈ V K0,p , then
∑n
i=1 π(ai)v ∈ V K0,p .

Proof. By Lemma 4.3 we have
∑n
i=1 π(ai)v = π([K0,paK0,p])v. Hence the claim

follows by Lemma 4.4. �

4.2. Double coset decompositions.
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4.2.1. The case of a split prime. Let p be a prime which splits in K. Write (p) = pp.
Recall that G(Qp) ∼= GL4(Qp)×Gm(Qp). An element g of G(Qp) can be written
as g = (g1, g2) ∈ GL4(Qp)×GL4(Qp) with g2 = −µ(g)J(gt1)−1J. Set

• Tp := K0,p(diag(1, p, p, p),diag(1, 1, p, 1))K0,p,
• Tp := K0,p(diag(1, 1, p, p),diag(1, 1, p, p))K0,p,
• ∆p := K0,p(pI4, I4)K0,p.

It is a standard fact that the C-algebra Hp is generated by the operators Tp, Tp,
Tp, ∆p, ∆p and their inverses.

Proposition 4.6. We have the following decompositions

Tp =
⊔

a,b,c∈Z/pZ

([
p b
p c

1
−a p

]
,

[
p a b c

1
1
1

])
K0,pt

⊔
d,e∈Z/pZ

([
p d
p e
p

1

]
,

[
1
p d e

1
1

])
K0,pt

⊔
f∈Z/pZ

([
1
−f p

p
p

]
,

[
1
1
p f

1

])
K0,pt([ p

1
p
p

]
,

[
1
1
1
p

])
K0,p,

(4.1)

Tp =
⊔

b,c,d,e∈Z/pZ

([ p b c
p d e

1
1

]
,

[
p b d
p c e
1
1

])
K0,pt

⊔
a,c,f∈Z/pZ

([ p a c
1
p f

1

]
,

[ 1
−f p c

1
−a p

])
K0,pt

⊔
e,f∈Z/pZ

([ 1
p e
p f

1

]
,

[
1
−f p e

p
1

])
K0,pt

⊔
a,b∈Z/pZ

([
p a b

1
1
p

]
,

[
p b
1

1
−a p

])
K0,pt

⊔
d∈Z/pZ

([ 1
p d

1
p

]
,

[
p d
1
p

1

])
K0,pt([

1
1
p
p

]
,

[
1
1
p
p

])
K0,p.

(4.2)

Proof. This follows easily from the corresponding decompositions for the group
GL4(Qp). �

4.2.2. The case of an inert prime. Let p be a prime which is inert in K. Set

• Tp := K0,p diag(1, 1, p, p)K0,p,
• T1,p := K0,p diag(1, p, p2, p)K0,p,
• ∆p := K0,ppI4K0,p.

The operators Tp, T1,p, ∆p and their inverses generate the C-algebra Hp.
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Proposition 4.7. We have the following decompositions

Tp =
⊔

b,d∈Z/pZ
c∈OK/pOK

[ p b c
p c d
1
1

]
K0,p t

⊔
e∈Z/pZ

[
1
p e
p
1

]
K0,pt

⊔
a∈OK/pOK

b∈Z/pZ

[
p a b

1
1
−a p

]
K0,p t

[
1
1
p
p

]
K0,p.

(4.3)

T1,p =
⊔

a,c∈OK/pOK

b∈Z/p2Z

[
p2 ap b+ac cp

p c
1
−a p

]
K0,p t

⊔
c∈OK/pOK

d∈Z/p2Z

[
p c

p2 cp d
p

1

]
K0,p

⊔
a∈OK/pOK

[
p a

1
p

−ap p2

]
K0,p t

[
1
p

p2

p

]
K0,pt

⊔
b,d∈Z/pZ

bd≡0 (mod p)
(b,d)6=(0,0)

[ p b
p d
p
p

]
K0,p t

⊔
b∈(Z/pZ)×

c∈(OK/pOK)×

[
p b c

p c |c|2b−1

p
p

]
K0,p

(4.4)

Proof. See the proof of Lemma 5.3 in [Klo09] and references cited there. �

5. Eigenvalues

Fix a rational prime p - N . For ψ′ a Hecke character of K as in section 3 we let
the local Hecke algebra HK0,p

act on functions inMm(N,ψ′) in the usual way, i.e.,
by means of the canonical embedding G(Qp) ↪→ G(A) and the right regular action
on the p-component. More specifically, let a ∈ G(Qp), and let A ⊂ G(Qp) be such
that K0,paK0,p =

⊔
α∈A αK0,p. Then for any f ∈Mm(N,ψ′) we have

[K0,paK0,p]f(g) =
∑
α∈A

f(gα).

It is a standard fact that [K0,paK0,p]f ∈Mm(N,ψ′) (see e.g., [Shi00], section 20.3),
but we will not use it.

Theorem 5.1. Let ψ be a Hecke character of K as in section 3. The Eisenstein
series E(g, s,N,m,ψ) is an eigenfunction of the operator [K0,paK0,p] with eigen-
value

λ([K0,paK0,p]) =
∑
α∈A

µP,p(α)δP,p(α)s/2 =
∑
α∈A

ψp(det dα)−1δP,p(α)s/2.

Proof. In this proof we fix s ∈ C in the range of absolute convergence of E(g, s,N,m,ψ).
For any place v of Q and any g ∈ G(Qv) set

fv(g, s) = µP,v(g)δP,v(g)s/2

with µP,v as in (3.4) and δP,v as in (3.5). Let x ∈ G(Qp). As K0,p(N) = K0,p,
a maximal compact subgroup of G(Qp), we conclude that fp(·, s) is right-K0,p-
invariant. Let I be the C-space of all functions h : G(Qp)→ C such that

(i) there exists an open subgroup Uh ⊂ G(Qp) with the property that h(gu) =
h(g) for all u ∈ Uh, g ∈ G(Qp) and
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(ii) h(qg) = fp(q, s)h(g) for all q ∈ P (Qp), g ∈ G(Qp).

First note that fp(qg, s) = fp(q, s)fp(g, s) for q ∈ P (Qp) and g ∈ G(Qp). To see
this, one uses the Iwasawa decomposition to write g = qgkg with qg ∈ P (Qp) and
kg ∈ K0,p and the fact that fp(·, s) is a character when restricted to P (Qp). Hence
we conclude that fp(·, s) ∈ I. Moreover, G(Qp) acts on I by the right regular action,
and condition (i) guarantees that this action induces a smooth representation which
we denote by π. Note that, indeed, if h ∈ I, then Uπ(g)h = gUhg

−1. Hence condition
(i) defining the membership of I is satisfied for π(g)h.

Furthermore, it is clear that dimC I
K0,p = 1 as fp(·, s) ∈ IK0,p , and any right-

K0,p-invariant function h ∈ I is of the form h(qk) = h(q) = fp(q, s)h(I4). The fact
that fp(·, s) ∈ IK0,p allows us to use Corollary 4.5 to conclude that

∑
α∈A π(α)fp(·, s) ∈

IK0,p . However, since dimC I
K0,p = 1, there must exist λ ∈ C (independent of x)

such that

(5.1)
∑
α∈A

fp(xα, s) =
∑
α∈A

π(α)fp(x, s) = λfp(x, s).

We can find λ by plugging in x = I4, and thus get

λ = fp(I4, s)
−1
∑
α∈A

fp(α, s) =
∑
α∈A

µP,p(α)δP,p(α)s/2 =
∑
α∈A

ψp(det dα)−1δP,p(α)s/2.

In other words we have shown that the Hecke operator [K0,paK0,p] acts on the space
I, and fp(·, s) is an eigenvector for this operator with eigenvalue λ as above.

We now claim that this implies that E(g, s,N,m,ψ) is also an eigenfunction for
[K0,paK0,p] with the same eigenvalue. Write E(g) for E(g, s,N,m,ψ) for short. For
g ∈ G(A) write gv ∈ G(Qv) for its vth component. Note that by definition

E(g) =
∑

γ∈P (Q)\G(Q)

∏
v

fv(γgv, s).

One has

(5.2) [K0,paK0,p]E(g) =
∑
α∈A

E(gα) =
∑
α∈A

∑
γ∈P (Q)\G(Q)

fp(γgpα, s)
∏
v 6=p

fv(γgv, s).

By our assumption on s the sum on the right converges absolutely for every α ∈ A,
so we can interchange the order of summation and obtain

[K0,paK0,p]E(g) =
∑

γ∈P (Q)\G(Q)

∏
v 6=p

fv(γgv, s)
∑
α∈A

fp(γgpα, s) =

=
∑

γ∈P (Q)\G(Q)

∏
v 6=p

fv(γgv, s)λfp(γgp, s) = λE(g),
(5.3)

where the second equality follows from (5.1) by putting x = γgp. �

Recall that we denote by ψN the product
∏
v|N ψv. Note that we can regard ψN

as a Dirichlet character of (OK/NOK)×. Hence for α ∈ OK we will simply write
ψN (α) for ψN (j(α)), where j denotes the canonical embedding of K into

∏
v|N Kv.



HECKE EIGENVALUES 9

Corollary 5.2. Let λ(T ) denote the eigenvalue of the Hecke operator T corre-
sponding to the Eisenstein series E(g, s,N,m,ψ). Then

(5.4) λ(T ) =


(p+ 1)ψp(ιp((p, 1)))−1[p2−s + ψN (p)ps] T = Tp,

p4−2s + ψN (p)p
∏

p|p(Np + 1) + ψN (p)2p2s T = Tp,

(p2 + 1)ψN (p)[p4−2s + ψN (p)(p− 1) + ψN (p)2p2s] T = T1,p,

where the first case holds for a split p with pOK = pp, the middle one for both split
and inert p, and the last case holds for inert p.

Proof. This is straightforward using Theorem 5.1 and the double coset decomposi-
tions in section 4.2. Let us only note that we made use of the following calculation:
Let γp ∈ A ↪→ AK be the adele whose pth component equals p and all the other
ones equal 1. Then one has

ψp(ι((p, p))
−1) = ψ(γ−1p ) = ψ(pγ−1p ) = ψ∞(p)ψN (p) = ψN (p).

Indeed, the first equality follows from the definition of the map ι, the second one
from the K×-invariance of ψ, the third one from (3.2) and the assumption that
p - N , and the last equality follows from (3.1) as p ∈ R. �

Remark 5.3. The results of this paper can easily be translated to the classical
setup, where automorphic forms are regarded as functions on (hK-many copies of)
the symmetric space H2 := {Z ∈ M4(C) | −i(Z − Z∗) > 0}. The group U(R)
acts on H2 in the following way: gZ = (agZ + bg)(cgZ + dg)

−1. For x ∈ U(Af),
g ∈ U(R) and Z = g diag(i, i) define ([Shi00], (17.23a))

Ex(Z, s,m, ψ,N) = det(cgi+ dg)
mE(xg, s,N,m,ψ).

If hK = 1, then we can take x = I4 and write E(Z, s,m, ψ,N) for EI4(Z, s,m, ψ,N).
Then it follows from Theorem 5.1 that E(Z, s,m, ψ,N) is an eigenfunction for all
the Hecke operators at primes p - N , and one can compute its eigenvalues using
Corollary 5.2. Moreover, in this case the element (p, 1) ∈ OK,p represents the
principal ideal πOK , where π is a generator of p, and one can compute

ψp((p, 1)) = ψ∞(π)−1ψN (π)−1 = π−mpm/2ψN (π)−1.

If hK > 1 the series E(g, . . . ) corresponds to hK-many functions Ex(Z, . . . ) of
H2, where detx runs over distinct ideal classes of OK . Then each Ex(Z, . . . ) is an
eigenform for all the Hecke operators in Corollary 5.2 except for Tp, where p is non-
principal. However, taken together as an hK-tuple the Eisenstein series Ex(Z, . . . )
can be interpreted as an eigenvector of the operator Tp.
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