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1 Preliminary results

In this talk we are going to discuss some local properties of (mod p) Galois representations at the prime p.

Let p be a prime number, N a positive integer prime to p, k an integer and € : (Z/NZ)* — F; a
character. Let f be a cusp form of type (IV, k,e). We also assume that f is an eigenform for all the Hecke
operators 1 (any prime [) with eigenvalue a; € F,. For the definition of the Hecke algebra we refer to
Kirsten’s talk. We will denote by Gq the absolute Galois group of Q, and by x the mod p cyclotomic
character. We work with arithmetic Frobenius elements.

Theorem 1.1 (Deligne). There exists a unique (1@ to isomorphism) continuous semi-simple representation
ps:Gq — GL(V), where V is a two-dimensional F,-vector space, such that for all primes l{ Np,

e pyr is unramified at [,
o trps(Froby) =
e det py(Froby) = e(l)I*1.

Remark 1.2. By choosing a basis of V' we can treat p; as having image in GLy(F,). It then follows
from continuity of py that there exists a finite extension x of F) such that p; factors through some map
Gq — GLa(k) — GL2(F)p) taht we may also denote py.

We fix an embedding Q <+ Q,. This determines a prime p of the integral closure Z of Z in Q over p.
Let G, C Gq denote the decomposition group of p. Our goal is to study py,, := ps|g,. We will denote by
I, the inertia group inside Gy, by I}’ the wild inertia subgroup, and set IIt) = Ip/I;)” to be the tame inertia

quotient. We will identify G, with Gal(Q,/Q,) and G,/I, with Gal(F,/F,). Moreover, for any a € F, we
denote by A, the unramified character ¢ : G, — F; such that ¢(Frob,) = a.

Theorem 1.3 (Deligne). Let f be a cusp form of type (N, k,e) with 2 < k <p+ 1. Assume f is a Hecke
eigenform with eigenvalues a;, and that a, # 0. Then py,, is reducible and
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Remark 1.4. Theorem 1.3 was proved by Deligne in a letter to Serre using p-adic etale cohomology and
mod p “vanishing cycles” calculations on modular curves in characteristic p; in particular his proof uses his

construction of p-adic Galois representations associated to eigenforms.

Proposition 1.5. Let f be a cusp form of type (N,1,€). Assume that f is a Hecke eigenform and Tp,f = apf.
Suppose that the polynomial
P(X) = X* = a,X +€(p) 1)

has two distinct roots in Fp, or that f is the reduction of a characteristic zero eigenform of weight 1 and
level N. Then py, is unramified.



Proof. We omit the proof of the case when f is the reduction of a characteristic zero eigenform (cf. Theorem
4.1 in [DS74]), so assume P(X) has distinct roots in F,,. Let f(q) = Y b,g" be the g-expansion of f at some
cusp. In his talk Hui discussed the action of the operator V), on g-expansions of cusp forms. In particular
Vpf is a cusp form of type (N, p,€) and V,f(¢) = 3 bpg™. On the other hand, Bryden defined the Hasse
invariant A, which is a modular form of type (1,p — 1,1) and has g-expansion 1 at all cusps. Hence Af is
a modular form of type (N,p,€) and Af has g-expansion ) b,q". As discussed in Hui’s talk, both Af and
Vpf are eigenforms for all 1T} with [ # p and their Tj-eigenvalues are the same as those of f. On the other
hand, since T}, f = apf and (p) f = €(p) f, it follows from general identities that

T,(Af) = apAf —e(p)Vif (2)

and
T,(Vpf) = Af. (3)

Let W be the two-dimensional space spanned by Af and V,f. It follows from formulas (2) and (3)
that P(X) is the characteristic polynomial for the action of T, on W. Let @ # ' be the roots of P(X).
Let g, g' be the corresponding normalized eigenforms of type (N,p,€). Since f, g and ¢’ have the same
eigenvalues for 1j, [ # p, we have tr py = tr p, = tr p,s by the Tchebotarev density theorem. We also have
det py = det py = det pgy = €. Hence the semi-simple representations pr, p, and pg are isomorphic by the
Brauer-Nesbitt theorem. Since aa’ = €(p) # 0, both « and o' are non-zero. Hence we can apply Theorem
1.3 and conclude that we have

Pap = {/\E(p)/a /\*a] = [Aa, /\*a] (4)

and
Py [Ae@)/a' A’;] - Fa A”;] . (5)
Since o # o', the representation space py, contains lines with distinct characters Ao and Ay, so pyp =
Ao D Ay is unramified. O

Theorem 1.6 (Gross). Let f = > a,q"™ be as in Theorem 1.3, and suppose that af) # €e(p) if k = p.
Then pf7p|1;u is trivial if and only if there exists a cuspidal eigenform f' = > al q" of type (N, k', €), where
k'=p+1—k, such that ,

la) = 1¥ o (6)
for all 1.

Proof. We are only going to prove that the existence of f’ implies that ps, is tamely ramified. For the
converse (which is the hard part of this theorem), see Theorem 13.10 in [Gro90]. Let f' be as in the
statement of the theorem and let a; denote the eigenvalue of T} corresponding to f'. Formula (6) implies
that tr ps (Frob;) = tr (py ® x*'~1)(Froby) for all I { Np, where x denotes the mod p cyclotomic character.
Hence by the Tchebotarev density theorem together with the Brauer-Nesbitt theorem as before, we get

ppr = prex L (7)

First assume k # p. We begin by show that a;, # 0. Note that for all primes [ # p, we have a; = ¥ g
by assumption. If aj, = 0, we can also write a;, = p’“rilap as k' # 1. Hence f' of weight k' and 0¥ ~1f of
weight pk’ have the same g-expansions. Here 6 is the operator whose properties were discussed in Kirsten’s
talk. Hence 6% =1 f = A* f'_ which means that 6% —1 f has filtration k’. However, it was proved in Kirsten’s
talk that 6% —! f has filtration pk’, since f has weight at most p — 1, which yields a contradiction. Hence
a, #0if k # p.

Applying Theorem 1.3 to the representation py (still assuming k # p), we see that there is a line Ly in
the space V' of py such that G, acts on Ly via the character X’lelx\f(p)/a;. On the other hand applying
Theorem 1.3 to the representation ps, we get a line L ¢ in its representation space on which G, acts via the
character x*~'A.(;)/q, and hence a line Ly C V on which G, acts via the character Xk’_l(xk_l)\e(p)/%).



In particular, the action of I, on Ly is via ¥ Tkl — yP=1 = 1 and on Ly via x* L. Since k # p by

assumption, so x* # 1, Ly # Ly and so we conclude that V = Ly @ L. Thus pgr, and hence also py, is
diagonalizable; i.e., pf(o) has order prime to p for every o € G. Thus pf|1;u is trivial.

Now assume k = p. Then f' = > al,¢" is of weight 1. Note that f is in the span W of V, f" and Af'.
Indeed, by looking at g-expansions, we see that 6((a, — a;,)V,f' + Af' — f) = 0, and so there exists a form
h =" cpqg™ of weight 1 such that

(ap —a)Vof' + Af' — f =V,h,

and h is an eigenform for 7; with eigenvalue a; if [ # p since V,, commutes with such 7; in weights 1 and
p (and Vj, is injective). Moreover, the p-th coefficient of the g-expansion of V,h is zero, so ¢; = 0. Since
¢ = aje; = 0 for all [ # p, we have 8(h) = 0. As 6 is injective on forms of weight prime to p, we get h = 0, and
so we conclude that f € W, as claimed. As a, # €(p)/a, by assumption, and the characteristic polynomial
for T}, on W has constant term e(p) (by matrix calculation) with a, as a root (since f € W), there is a
unique Hecke eigenform g € W whose eigenvalue for T}, is b, := €(p)/a,. Then by applying Theorem 1.3 to
ps and pg = py, we get a line Ly in the space W of py on which G, acts via the unramified character Ac(p)/a,
and a line Ly on which G, acts via A(y)/s,- Since aj # €(p), we again get V = Ly ® L, and conclude that
pylre is trivial. Note that in this case pyp is in fact unramified. O

2 A theorem of Mazur

Let p be an odd prime and ¢ a prime with ¢ Z 1 mod p. (We allow £ = p.) Let f be a normalized cuspidal
eigenform of weight 2, level N, and trivial charater. We drop the assumption that p4 N. Suppose N = M/{
with £{ M. Here is a basic “level lowering” theorem.

Theorem 2.1 (Mazur). Suppose the Galois representation p : Gq — GLa(F)) attached to f is irreducible.
If £ # p, then assume that p|g, is unramified, and if £ = p, then assume that p is finite at p. Then p is
modular of type (M,2,1).

Proof. We will suppress some of the technical details. Let Xo(N) over Z; be the coarse moduli space for
the I'g(/N)-moduli problem on generalized elliptic curves over Z)-schemes. Let Jo(/N) be the jacobian of
Xo(N) over Q. Let Jo(N) be the Neron model of Jo(N) over Z. It follows from the work of Deligne-
Rapoport that Xo(N)p, is the union of two copies of X¢(M)r,, which intersect transversally at geometric
points corresponding to precisely supersingular elliptic curves. Their theory shows that Xo(M )r, is smooth,
as L1 M.

Lemma 2.2. The normalization map Xo(M)g, U Xo(M)p, = Xo(N)F, induces a short ezact sequence

0= To(N)p, = Jo(N)%, = Jo(M)F, x Jo(M)r, = 0, (8)

where To(N)r, is the torus whose character group X := Homg, (Io(N)F,, (Gn)F,) as a Z[Gal(F,/F,)]-
module is the group of degree zero divisors on Z{O(M)E with support in the supersingular points.

Proof. The existence of exact sequence (8) is a general fact about semi-stable curves, cf. Example 8 in
section 9.2 of [BLR90]. To any semi-stable curve Y over an algebraically closed field one associates the
graph I'(Y") whose vertices are the irreducible components of Y and whose edges are the singular points of
Y: an edge corresponding to a point P joins vertices V7 and V5 if and only if the irreducible components
corresponding to V3 and Vs, intersect at P. (We get a “loop” at a vertex if it lies on only one irreducible
component, corresponding to “formal self-crossing”.) The character group X can be canonically identified
with H (I'(Xo(N)F,),Z) as a Z[Gal(F,/F)]-module. Using this identification, one proves that X has the
alternative description in terms of the supersingular geometric points. O

There is yet another tautological short exact sequence

0= Jo(N)g, = Jo(N)r, = Bo(N)r, =0, (9)



where ®o(N ), is the finite etale group scheme of components of Jo(NV)g,.

The Hecke algebra T of level N acts on Jo(IN) and by the Neron mapping property also on Jo(N). This
action respects the exact sequences (8) and (9) due to functoriality considerations with identity components
and maximal toric parts.

Since p is absolutely irreducible and modular of type (IV,2,1), by the Brauer-Nesbitt theorem and the
triviality of Brauer groups of finite fields there exists a maximal ideal m of T with an embedding x := T/m —
F, and a two-dimensional k-vector space V with Gq-action such that the induced action on F), ®, V is
via p and such that Jo(IN)(Q)[m] is isomorphic to the direct sum of a finite number of copies of V as
k[Gq]-modules.

First assume that ¢ = p, as this is the case that will be of interest to us. Let W be the finite etale k-vector
space scheme over Q such that W(Q) = V as k[Gq]-modules. By assumption p is finite at p, so (by oddness
of p and Raynaud’s theorems when “e < p —17) there exists a finite flat s-vector space scheme 20 over Z )
extending . By the remarks above we can choose an injection of V into Jo(N)(Q) which gives rise to a
closed immersion of W into Jy (V).

Lemma 2.3. There ezists a closed immersion 20 — Jo(N) prolonging the closed immersion W — Jo(N).
Proof. We are going to prove the following more general statement:

Claim 2.4. Let R denote a complete dvr of mized characteristic (0,p) with absolute ramification index
e < p— 1. Denote by K the fraction field of R. Let & be a finite flat commutative p-group over R, and A
an abelian variety over K with semi-stable reduction. Let 2 be the Neron model (over R) of A (so 2 has
closed fiber with semi-abelian identity component, whence U[n] is quasi-finite, flat, and separated over R for
every nonzero n in Z). Suppose there ezists a closed immersion i : G — A, where G = Bk . Furthermore,
assume that the Galois module (A[p]/A[pls)(K) is unramified, where Alpl¢ denotes the “finite” part of the
quasi-finite flat separated R-group A[p]. Then vk extends to a closed immersion ¢ : & — 2.

We remark here that the hypotheses of semi-stable reduction and unramifiedness are satisfied by 2 =
Jo(IN) over Zy. This is a consequence of [Gro72] and uses the fact that Xo(/NV) has semi-stable reduction
over Zg (as £1 M).

Proof of the Claim. We first show that LK|®?( extends. The composite
Bk = G = A"k — AP")/AP" DK

is the zero map since, as discussed by Nick in his talk, Raynaud’s results on finite flat group schemes imply
that a finite flat connected R-group has no nonzero unramified quotients of its K-fiber. Hence we have a
commutative diagram

G—)Q[[p]K

I

6 — (Alpl)x

where all the maps are closed immersions. Now, using the fact that 2[p]s is finite flat (as opposed to A[p],
which is generally only quasi-finite and flat), the lower horizontal arrow extends to a closed immersion
¢ — Alp|r by Raynaud’s Theorem ([Ray74], Corollary 3.3.6). As 2[p]y C A%, we have proved that tx|go
extends.

We will now show that ¢ extends. Since ®° is a finite flat commutative group, it makes sense to talk
about the quotient (& x 2°)/6° with &° embedded by the “twisted diagonal” z + (x, —x). We have a
commutative diagram

6 — (6 x )/ . (10)

|
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Our goal is to show that the closed embedding B° < 2 factors through the left vertical arrow in diagram
(10). First note that it suffices to show that (& x 2°)/6° is smooth. Indeed, the natural addition map
G x A — A factors through (G x A)/(8%)k — A, soif (& x A%)/&° is smooth, then (G x A)/(6°)x — A
extends to ¢ : (& x A°)/B° — 2A by the Neron mapping property. Diagram (10) gets amalgamated to a
diagram

& — (6 x A) /& . (11)
[
8" 20 2A

To establish commutativity of diagram (11) it is enough (by separatedness and flatness over R) to check
commutativity of the right triangle on generic fibers. Since (%), = A, the corresponding triangle on generic
fibers clearly commutes, so we get the desired result concerning (10).

It remains to prove that (& x 2°)/& is smooth over R. Note that & x A° is of finite type and flat as
are & and 20°. As & is finite and flat over R, the map & x 2% — (& x A°)/B° is finite, flat and surjective.
Hence (& x %)/ is of finite type and flat over R. Thus to verify smoothness of (& x A°)/&°, it is enough
to check smoothness of fibers. As the geometric generic fiber is clearly smooth (it is just a product of copies
of A), it remains to check smoothness of the closed fiber. This follows from the following Fact.

Fact 2.5. Let k be a field, G a finite commutative k-group and H a smooth commutative k-group. Suppose
we are given a closed immersion of k groups G° — H. Then (G x H)/G° is k-smooth, where G® — G x H
is g% = (9% (¢")7").

To prove Fact 2.5, we may assume that k is algebraically closed. Then G = G° x G®*, hence (Gx H)/G® =
G® x H, which is smooth. O

Lemma 2.6. The image of Wg, in ®o(N)r, is zero.

Proof. It is a theorem of Ribet (cf. Theorem 3.12 in [Rib90]) that ®(/N)p, is Eisenstein in the sense that
for all ¢ prime to p, the operator T}, acts on it via multiplication by ¢+ 1. Thus the action of T on ®¢(N)F,
factors through T/I, where I is the ideal of T generated by the elements T, — ¢ — 1 for ¢ prime to p. Note
that since p is irreducible, I is relatively prime to m. Indeed, if m and I were not relatively prime, then
T, = g+ 1 mod m for almost all g. By Tchebotarev Denisty Theorem we have then trp = 1+ x and
det p = x. Brauer-Nesbitt Theorem implies then that p®® = [1 X], which contradicts the irreducibility of p.
The Lemma follows. O

Lemma 2.6 implies that 20, lands inside Jo (N)%p. From now on assume that p is not modular of type
(M,2,1). Then it follows (since p is irreducible) that the image of 2, inside Jo(M ), X Jo(M)F, must be
trivial ([Rib90], Thoerem 3.11). Hence, W, lands inside the torus TO(N)F .

The Hecke algebra acts on the character group X, and Ribet showed in [Rib90] (Lemma 6.3) that
V C Hom(X/mX, up), where p1), denotes the Galois modules of p-th roots of 1 over Q.

Lemma 2.7. The action of Frob, on X/mX coincides with the action of T, and of —w,, where w, denotes
the level p Atkin-Lehner involution.

Proof. For the proof that the actions of T}, and of —w, on Ty(NN)§ (and hence on X/mX) coincide, see
[Rib90], Proposition 3.7. We will show that the action of Frob, and of —wp coincide on X/mX. Since
X =Hi(I'(X0(N)g ),Z), it is enough to consider the action of Frob, and of —w, on I'(Xo(N)¢ ). By using
the moduli interprgtation of Xo(N)F, one sees that Frob, and w, are both involutions and have the same
effect on the edges of F(Z{O(N)fp), but Frob, fixes the vertices of I'(¥g (N)fp), while w,, swaps them. Hence

Frob, ow, swaps the vertices of I'(Xo (N )Fp) and fixes its edges, which on the homology has the same effect
as multiplication by -1. O



Since w,, is an involution and « is a field, Lemma 2.7 implies that G, acts on Hom(X/mX, p,,) via ¢y,
where 1) is an unramified quadratic character. In particular the action of G, on det, V is via ¢¥?x? = x*.
On the other hand, G, acts on det, V by det p = x, hence x = x?, and thus x must be trivial, which is an
obvious contradiction since p is odd. This finishes the proof of Theorem 2.1 in the case when ¢ = p.

The case ¢ # p proceeds along the same lines, but is simpler as one does not need an analogue of Lemma
2.3. Instead we note that when ¢ # p, the Galois module V' is unramified by assumption. Thus there
exists a finite etale k-vector space scheme 20 over Z) such that V = 20(Q) as x[Gq]-modules. Hence the
injection V < Jo(N)(Q)[m] gives rise to the a closed immersion 2q < Jo(NN). As £ # p, 20 is smooth over
Z(y), hence the extension 20 — Jo(/V) exists by the Neron mapping property. We claim that it is a closed
immerion. Indeed, let 20 denote the schematic closure of the image of 20 in Jo(N). Then 20 is finite and
flat over R, but since it is an f-group with ¢ # p, it is also etale. Hence the fact that 2q — Wq implies
that 20 = 20. In that case the final conclusion that y = x? implies that £ = 1 mod p, which was assumed
not to be the case. O
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