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1 The reflex field

Let F denote a CM field, [F' : Q] = 2g. Denote by F* the maximal totally real subfield of F. Let C be
a CM field which is Galois over Q and splits F. We denote by R the maximal totally real subfield of C.
To ease notation, every time we write A ® B, for two Q-algebras A and B, we mean A ®q B. There is a
canonical map of F' ® C-algebras

FeC> I ¢ (1)
¢p€Homqg(F,C)
given by c¢® f — (co(f))e, which is an isomorphism; the notation Cy means C' made into an F-algebra via ¢.

We have a similar decomposition for F'® R. Indeed, F'® R is canonically isomorphic to the (finite) product
HpeSpec(F®R) (F ® R)/p, where each of the quotients is non-canonically R-isomorphic to C. We naturally

have (F @ R)/p = (F ® R),. We let F}, denote (F ® R), and P denote Spec(F ® R). We also write F}," for
the corresponding factor field of F* ® R. We have a natural identification:

(RESF/Q Gm)R l) H Rest/R Gm
peP

which for any R-algebra A is given by

(F® A S (FoRog A)* 5 [ (F or 4.
peP
Let (F,®) be a CM type (over C, cf. Brian’s talk), i.e., ® C Homgq(F,C) is a set of representatives for
Homgq(F,C) mod Gal(F/F*). Every ¢ € Homgq(F,C) uniquely extends to an R-algebra map ¢:FQR— C
(f @ r = ¢(f)r) which must factor through exactly one of the factor fields Fy, yielding an R-algebra
isomorphism ¢, : F, — C. Hence, we can think of ® as the set {¢, : F, — C | p € P}. If ¢, € ® we will
denote the other R-algebra isomorphism F, — C by Ep since it is related to ¢, via Gal(C/R)..

Let S := Res¢/r Gy. We define a map he : S = (Resp/q Gin)r = HpeP Resp, /r G, which for every
R-algebra A is given by he(A) = (H¢p6<1> ¢;1) ®1: (CorA)* = (FeA)* =]],cpFydr A

Example 1.1. On R-points, the map hg is the map C* — Hpep F,* given by z — (gi)gl(z))p. In fact, since
S is a torus and R is infinite, S(R) is Zariski-dense in S and hence knowing he on R-points determines it
completely.

Let T be the kernel of the composite Resp/q Gm — Resp+/q Gn — (Resp+/q Gim) /G, where the first
arrow is the norm map Ny, p+ and the second is the natural projection. In Nick’s talk it was shown that the
kernel of the first arrow is a torus, so connectedness of G, implies connectedness of T', hence T' C Resp/q G
is a Q-torus.

Lemma 1.2. The map he factors through Tg.



Proof. We want to show that hg, 1(TR) = S. As rational points are Zariski-dense in any torus over an infinite
field, it is enough to check the equality holds on R-points, i.e., we want to show that he (S(R)) C T(R). By
Example 1.1, this says that the map

H¢pe<1> ¢p H FX F)J/F+() H(F+)><
P

¢p€P peP

CX

lands in R* diagonally embedded in ], . p(F,7)*. However this is clear as the canonical maps R* — (F,5)*

are isomorphisms and for every p € P we have that ¢, (NFP/(F+)F ((bp_l(z))) = N¢/r(z) € R is independent
of p. O

Choose a totally negative element o € R* for which there exists 6 € C'* such that 62 = a. (The existence
of such a and ¢ was shown in Tong’s talk via weak approximation.) We define a map

(he)
fig : Gryyo = S — Te,
where the first arrow j : G, /¢ = Sc is defined on A-points (for any C-algebra A) b

j(a)z%@(a+1)+76®62(3_1).

It is easy to see a priori (using that R is the maximal totally real subfield of the CM field C) that j is
independent of a and ¢ and that j(aa') = j(a)j(a’), so j really is unit-valued and is a group morphism.
More concretely, if we identify S¢ with G, x ¢*(Gyy,) (with ¢ denoting the non-trivial element of Gal(C/R))
then j is given (on Yoneda points) by z — (z,1).

Definition 1.3. The subfield E(r g) of C' which is the field of definition of uge is called the reflex field of
(F, D).

We will denote the descent of pe to E := E(rg) by pie,r, or simply by pe when it cannot cause confusion.
We have Gal(C/E,e)) = {0 € Gal(C/Q) | 0" (o) = po }.

Remark 1.4. In Eiji’s talk the reflex field F* was defined to be the subfield of C' generated by elements
> sca #la), a € F. He also proved that F'* is the fixed field of the group {o € Gal(C/Q) | 0® = ®}. The
next two lemmas imply that the notion of the reflex field in the sense of Definition 1.3 coincides with that
defined in Eiji’s talk.

Lemma 1.5. 0*(ua) = poa

Proof. Since ug is a map between connected algebraic groups in characteristic zero, it is uniquely determined
by the induced map on the Lie algebras. For any affine group scheme G, where k is a ﬁeld the Lie algebra
Lie(G@) is in canonical bijection with the points in G(k[e]) mapping to 1 € G(k) (here €2 = 0). The map
to = (hao)o o j induces a map on Cle]-points

Cle)* — (C @R Cle)* — (F o Cl)* = [[ (F ®r Cle)* (2)
peP

where the first arrow satisfies 1+ ce — + ® (2 + ce) + ‘5®‘5ce and the second arrow satisfies
1+ (cad)(loe = (1+ (6, () @) (1@ ),

We now investigate the effect of the o*-operation on the C-linear map Lie up. We consider the following
situation. Let G, H be two affine group schemes of finite type over Q and let V and W be the tangent

spaces at identity of G and H respectively. A C-group map G¢ KR H¢ induces a C-linear transformation
CoV LN ® W that is Lie(¢). On the other hand, for o € Gal(C/Q) the map o*¢ induces the Lie



T,
algebra map C ® V Z =% C® W that is the scalar extension of Ty via o, so we get a commutative diagram
of C-vector spaces

id ®T,

C,RcCRV —— 30, RcCOW (3)
c®v>—>c®1®v1\l ZTc®w>—>c®l®w
o* Ty
cCeV CoWwW

Hence, if v € V and Ty(v) = > c; @ w; € C @ W, then (6*Ty)(v) = > o(c;) @ w; = (0 ® 1) o Ty (v). So in
our case, 0*(ua)(1+¢€) = (1® 0)(ua (1l +¢€)) for v € Q[e]* C Cle]*, where 1@ o : (F®C)* - (F®C)* is
induced from 1 ® o : F ® C — F ® C. We have the following commutative diagram of rings:

FoC = F&C (4)
U f@®2=(fp®2)v 2
HpeP F,®rC (75 ®2p)o (o oty )y HpeP F,®rC

(fo®zp) o> (dp (Fp)2p,Pp(fp)2p)
HpEP C‘Pp X Cgp

(fo®zp)pr(T(fr)2r)-

HT:F‘—)C CT HT:F‘—)C CT

where f; := f, and z; := 2z, if 7 and T are the two ways to identify F, with C' as R-algebras.
Let v =1+ ¢ € Q[e]*. We first calculate the image of e (1 +€) € (F' ® C[e])* inside ([],.pc,c C-[e]) -
-1
By the definition of maps (2), we have ue(1+¢€) = (1 + 1 (1 + & S)M) (I® e))p € [[,cp(Fp ®C); which
gives the element (1+¢,1) € [[,cp Cj X Cg ,ie., pe(l+¢€) = (8r)r, where 8, = 1+eif r€ ®and 3, =1
otherwise. ’

Now, 0*(ue)(1 + €) = (1 ® 0)(uae (1l + €)) viewed as an element of ([[p., . C-le])”* is identified with
U, ((8;)r) by commutativity of diagram (4), where ¥, is the right vertical arrow in diagram (4). We have
U, ((8:)r) = (6(By-1,))r, s0 by the definition of 8, we have 0(8,-1,) = 1+¢€if 077 € ® and 0(B,-1,) =1
otherwise. Hence o*(a) = tos.

(zr)r=(0(z5-1.))r

O
Lemma 1.6. pue = po if and only if & = @',

Proof. One implication is trvial. The other implication follows immediately from the description of ug in the
proof of Lemma 1.5. Indeed, we calculated there that pe(1+€) = (3;), € ([[,.pc Cr) ™, where 3, = 1 +¢
if 7 € ® and B, = 1 otherwise. Hence if pue = pe, we must have & = @',

O

2 The reflex norm

We will now define the notion of the reflex norm. Let L'/L be a finite separable field extension (not
necessarily Galois), and X a commutative affine L-group of finite type. Fix a separable closure L*®P/L.
There is a canonical “trace” map

ResL//LXLz —>X, (5)
which for an L-algebra A is given by

XLr(A L Ll) — X(A 1 Ll) N X(A QL Lsep)Gal(LSep/L) _ X(A)



a' H o(a').
oc€Homp (L',L=eP)
This is independent of the choice of L**P and is natural in X. Setting L = Q, L' = E = E(r ), and X =T,
we obtain a canonical map
’(/) H ResE/Q Ty —T.

Remark 2.1. Such a map can also be obtained with Resy/q G, replacing 7', and the two are compatible via
the inclusion ¢ : T' — Resp/q G since (5) is natural in X. We will use this fact in the proof of Proposition
2.5. On C-points with X = Resp/q G, the “trace” Resp/q X1 — X is the map (F®L'®C)* — (F®C)*
induced by the product of F @ C-algebra maps z ® y ® z = x ® o(y)z over all o € Homq (L', C), i.e., this is
the usual ring-theoretic norm on units.

Definition 2.2. The map r¢ = 9 o Resg/q pe : Resg/q G — T is the reflex norm.

We will now give an alternative definition of the reflex norm and show that it is equivalent to the one given
above.

Let A be an abelian variety over C, with i : F < End°(A) of type (F,®). Let E be the reflex field of
(F, ®). The abelian variety (A, i) typically does not descend to E. However the tangent space at identity ¢ 4 /¢
is isomorphic [] ;.4 Cp as an F' @ C-module and this concrete model []; 4 Cy has a natural C-semilinear
action of Gal(C/E) via 0((ag)g) = (0(as-14))¢, so it descends to E in the following sense.

Lemma 2.3. Up to isomorphism, there exists a unique F @ E-module tg such that te p C = H¢>€<1> Cy as
F ® C-modules compatible with the natural Gal(C/E)-actions on both sides.

Proof. See Eiji’s talk. We only note here that explicitly ¢s is defined to be the F'® E-submodule of Gal(C/ E)-
invariants in [[,cqe Co. O

We now define a map No : Resg/q G — Resp/q Gy, which for any Q-algebra A is given by

No(A) : (B ® A)% - (F o 4)%,
via s — detF®QA (S 1t ®Q A= te XQ A).

Example 2.4. Let F' be a quadratic imaginary field. Then ® = {¢ : F' < ('} is a one-element set, hence
E = ¢(F). In this case tg is a one-dimensional F-vector space and Ng(Q) : EX — F* is given by ¢~ 1.

The following proposition shows that Ng coincides with the reflex norm in the sense of Definition 2.2.
Proposition 2.5. Let ¢t : T — ResF/Q G, be the inclusion map. Then tore = Ng.

Remark 2.6. It is important that the target group of the reflex norm is the torus 7', and not merely the
full group Resp/q G- The reason which makes this fact significant for us is (as will be proved later, using
results in Nick’s talk) that the Q-points of T' are discrete in T'(A ), where Ay denotes the finite adeles of Q.
This makes the quotient space T'(Q) \7T'(Ay) Hausdorff. This is not the case if we replace T' with Resg/q G,
unless the group of intgral units of F' is finite, which is to say F' is imaginary quadratic.

Proof of Proposition 2.5. First note that E C C by definition. To ease notation we will denote by £ the set
Homgq(E, C). Also for each o € £ we choose ¢ € Gal(C'/Q) satisfying 6| = 0. Then 6¢ makes sense for
every ¢ € ®.

We will show that the following diagram commutes:

Resg/q te,E

(E®C)* (F® E®C)* (6)
E®C—actionl ll‘[,eg[v](d
el (P )% =110 0%

Ti=C YT

Autpgo(te ® C)



where the top map is on C-points and [0](f ® e® z) = f @ o(e)z as an F ® C-algebra map from F ® E® C
to F'® C. By Remark 2.1 the composite of the right vertical arrow with the top arrow is ¢ or¢(C), while the
composite of the other two arrows is Ng(C'). We will first describe the map Ng(C) = detpgc o( EQC)-action.
We have an F' ® E ® C-linear decomposition

te RC =te Qg E®C = th>®ECg:th>®EC®cCUZH HC¢®cCg:H HC¢7J
oc€el o€eE o€l peD o€l ped

where the second equality from the right follows from the definition of f¢ in the proof of Lemma 2.3;
the notation Cy , means C made into an F-algebra and F-algebra via ¢ and ¢ respectively. Moreover
E®C = [l,ee Cr acts on te @ C = [[,c¢ [[sca Co,0 via the diagonal action of Cy on [[,cq Cs,0- To
compute detpge we need to rearrange the factors in [, ¢ H¢6<I> Cy,s according to the action of F'® C.
As F ® C-modules we have to ® C' = [] . pe,c Ve, where Vo = [y yexa,r) Coor With (@, 7) =
{(p,0) e ®@xE|6¢p=7}. Foroe &, let o' : E®C — C be the C-algebra map induced by e ® z — o(e)z.
On each V; an element § € E ® C acts by multiplication by the diagonal matrix diag (0'(£))(¢,0)ex(@,r), SO
the C--determinant of this C-linear action equals [, ,)ex (@, 0'(§) € Cr for each 7: F — C.
After we prove that diagram (6) commutes, this computation will provide a practical way to calculate the
reflex norm (cf. Remark 2.7).

We will now describe the composite of the top and right maps in diagram (6). We first consider the top
map; the difficulty is that ue over C' is concrete but ug g is “abstract”. Note that given two Q-schemes X

and Y, and an E-map Xg ER Yg, with E a subfield of C', we have a commutative diagram:

Resg/q f

(Resp/q XE) (C) = Xp(E® O) (Resp/q Yr) (C) = Yp(E® C) (7)

¢ t

Resgpgc/c fo

(Respsc/c Xpac/c) (O) (Respac/c Yeac)c) (O)

14 l

I1, Resc, /¢ feo v
HU:E'—>C Resca'/c XOV (C) co/e e HJ:EHC ReSC,/C YC, (Co')

14 l

1, foo
HU:E‘—)C Xca (C‘T) d HO’:E‘—)C YCa (CG')

c) : Xo, = Yo, Hence if X = Gy, Y = Respq G, and f = pg g then since
pse (by Lemma 1.5), we have that Resg/q pe,r on C-points is identified with the map

*

| —

I o ] (ResijqGu)e (C) = [[ (Foc)*. 8)

o:E—C o:E—C o:E—C

For any o : E < C, we have the following commutative diagram of rings

[T,ep(Gos) ' ®1

C@RCU F®Ca':Hp€pr®RCa' (9)
ll l(fp@za)prH(&¢p(f5¢p)ZU7&¢P(f5¢F )Zo)p
Co' X CF St HPGP Cd’)ﬂ"' X Capu:r

and a commutative diagram of unit groups



Jjce

Cf — (CorC,)" (10)
Zorr (20,1 Zl
CrxCZ

Note that the composite of the top map in diagram (9) with jc, is the map pse. Hence if z, € CJF,

then pize(20) = (20,1), if we view it as an element of J[ . p Cgp,a X C’gpﬂ via the right vertical arrow

in diagram (9). If we identify [[,.p Co, 0 X 03, 0 With Il pesc Cro, then (z5,1), is identified with the
element (274)r,s, Where 2, := z, if 7 € ® and z;, := 1 otherwise.
Now, for every oy : E <= C' we have the following commuative diagram of rings:

E®@F®C looll) FaC (11)

l

HU:E‘—)C F ® CU t

t

(fp.cr®zp.cr)):,v'_>(fp,70®Z)J,v70)
HD’:E;}C HpeP Fp ®r Co : HpeP Fp ®rC

l l

~ ~

Ha:Ef—>C Hd)pe<1> Coy,o X Cap,a HpEP Cs, X% CE,,

t t

(zf.a)f.aH(zTO.ao)
HU:E‘—)C HT:F°—>C’ CT#T HT:F‘—)C CT

Our goal is to compute [],c4[0] (Resg/q pe,) (€), where £ € (Resp/q Gm) (C) = (E ® C)*, but for
2y 1= 0' (&) by using diagrams (7) and (11) this is the same as first computing []_ .., pe#(25), which is

(z'r,a)'r,a € H H C—;iaa

oc:E—C 17 F—C

Foro=T

then composing it with the bottom arrow in diagram (11) giving (27,00 )5er0=r € [, .resc C7, and finally
taking the product over all o : E < C, yielding

H Zrowoo | = H Ze | € H cr.

_T0,00 TEX(®,T) T:F—C
O0TO=T r T

This is the same element we obtained when we calculated the composite of the other two maps in diagram

(6)-
O

Remark 2.7. The proof of Proposition 2.5 gives a concrete expression for the reflex norm of an element
e € E*. Indeed, fix 7 : F < C. Then the reflex norm rg(e) is 77} (ngz((pﬂ a(e)). Note that this is in

fact independent of the choice of 7, as it should be. Moreover, we have rg(e)rs(e) = Ng/q(e).



