
ON HIGHER CONGRUENCES BETWEEN AUTOMORPHIC

FORMS

TOBIAS BERGER1, KRZYSZTOF KLOSIN2, AND KENNETH KRAMER2

Abstract. We prove a commutative algebra result which has consequences for

congruences between automorphic forms modulo prime powers. If C denotes

the congruence module for a fixed automorphic Hecke eigenform π0 we prove
an exact relation between the p-adic valuation of the order of C and the sum of

the exponents of p-power congruences between the Hecke eigenvalues of π0 and

other automorphic forms. We apply this result to several situations including
the congruences described by Mazur’s Eisenstein ideal.

1. Introduction

Let p be a prime. Let f1, . . . , fr be all weight 2 normalized simultaneous eigen-
forms of level Γ0(N) with N prime. A famous result of Mazur’s ([Maz77] Proposi-
tion 5.12(iii)) states that at least one of these forms is congruent modulo p to the
Eisenstein series E∗2 = 1−N + 24

∑∞
n=1 σ

∗(n)qn for

σ∗(n) =
∑

0<d|n,(d,N)=1

d

if p divides the numerator N of N−1
12 . One may ask for the precise relation between

valp(N ) and the ‘depth’ of congruence of the newforms f1, . . . , fr to E∗2 . One of
our results (Proposition 3.1) provides an answer to this question. More precisely, if
$N is a uniformizer in the valuation ring of a finite extension of Qp (of ramification
index eN ) which contains all of the eigenvalues of the fis and mi is defined as the
largest integer such that E∗2 ≡ fi mod $mi

N , then

(1.1)
1

eN

r∑
i=1

mi = valp(N ).

In general the Hecke eigenvalue congruences between a fixed automorphic eigen-
form π0 on a reductive algebraic group G and other eigenforms (call the set of
them Π) on G are controlled by the order of the so called congruence module. This
module can be defined as the quotient of the Hecke algebra T acting on the forms
in Π by the image J in T of the annihilator of π0 in the Hecke algebra T0 acting on
the forms in Π∪{π0} (for details on this setup see section 4). In the more classical
situation, where π0 is an Eisenstein series, J is often called the Eisenstein ideal.
However, our considerations apply in a much more general framework, e.g., when
J corresponds to a primitive cusp form or to a CAP automorphic representation
(see section 5).
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In this general setup one may ask again how many of the automorphic forms
in Π have Hecke eigenvalues congruent to those of π0 and what the “depth” of
these congruences is. We prove that whenever the ideal J is principal (like in the
Mazur example above) then an equality analogous to (1.1) can be achieved with
#T/J replacing N . However, if the ideal J is not principal, we show that instead
of equality the analog S of the quantity on the left of (1.1) (the total “depth” of
the congruences) is bounded from below by valp(#T/J) (cf. Proposition 4.3). Let
us note here that in general principality of J is not known or even expected to
hold. In many cases it is conjectured or known that the order #T/J is related to
a special value of an appropriate L-function. In this case, our results provide an
L-value bound on S.

Our paper is organized as follows. In section 2 we prove a commutative algebra
result which will be the basis for all of our applications to congruences among
automorphic forms. In fact it can be seen as a more general result regarding the
distribution of congruences among various subsets of automorphic forms (not just
single automorphic forms) - for an application in this context to a modularity
problem see [BK13]. In section 3 we apply this result to Mazur’s congruences and
derive (1.1). In section 4 we set up a framework to deal with general type of
congruences among automorphic forms and prove a lower bound on the total depth
of congruences in terms of the order of a congruence module. Finally, in section 5
we provide more examples.

On completion of this paper we learned from Fred Diamond that a similar ar-
gument was already used by him and Wiles to prove an analogue of the inequality
in our Proposition 4.3 in the case of congruences between cusp forms of different
levels (cf. Theorem 4C in [Dia89] and Lemma 1.4.3 in [Wil88]).

We would like to express special thanks to Gabor Wiese for his comments on
the paper and for help with verifying some numerical examples. We would also
like to thank Jim Brown for an email correspondence regarding multiplicity one for
Saito-Kurokawa lifts.

2. Commutative algebra

Let p be a prime. Let O be the valuation ring of a finite extension E of Qp. Fix
a choice of a uniformizer $ of O and write F = O/$O for the residue field.

Let s ∈ Z+ and let {n1, n2, . . . , ns} be a set of s positive integers. Set n =∑s
i=1 ni. Let Ai = Oni with i ∈ {1, 2, . . . , s}. Set A =

∏s
i=1Ai = On. Let

ϕi : A � Ai be the canonical projection. Let T ⊂ A be a (local complete) O-
subalgebra which is of full rank as an O-submodule and let J ⊂ T be an ideal of
finite index. Set Ti = ϕi(T ) and Ji = ϕi(J). Note that each Ti is also a (local
complete) O-subalgebra and the projections ϕi|T are local homomorphisms. Then
Ji is also an ideal of finite index in Ti.

Theorem 2.1. If #F× ≥ s − 1 and each Ji is principal, then #
∏s
i=1 Ti/Ji ≥

#T/J .

Remark 2.2. Note that the inequality in Theorem 2.1 may be strict. Consider
for example T = {(a, b) ∈ O × O | a ≡ b (mod $)} ⊂ O × O = A with Ai = O
(i = 1, 2). Let J = {($a,$b) ∈ O × O | a, b ∈ O} be the maximal ideal of T .
Then T/J ∼= T1/J1

∼= T2/J2
∼= O/$. Let us also note that Theorem 2.1 is false

if J is only assumed to be an O-submodule of T , but not an ideal. Indeed, let T
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be as above and J = {(a, b) ∈ O × O | a ≡ b (mod $2)}. Then T/J ∼= O/$, but
T1/J1

∼= T2/J2
∼= 0.

As explained in Remark 2.2 the inequality in Theorem 2.1 may be strict, however
this is not the case when J itself is principal. For principal J one not only obtains
equality, but also the assumption on the residue field is unnecessary. Let us state
this as a separate proposition.

Proposition 2.3. If J is principal, then #
∏s
i=1 Ti/Ji = #T/J .

We prepare the proofs of Theorem 2.1 and Proposition 2.3 by two lemmas and
the proposition will follow from these alone, while the proof of the Theorem is more
difficult.

If M is any finitely presented O-module, we will write FitO(M) for its Fitting
ideal (see for example [MW84], Appendix for a treatment of Fitting ideals).

Lemma 2.4. Let M be an O-module of finite cardinality. Then #M = #O/FitO(M).

Proof. This is easy. �

Lemma 2.5. Let α = (α1, α2, . . . , αs) ∈ J be such that αi generates Ji as an ideal
of Ti for each 1 ≤ i ≤ s. Then #T/J ≤ #T/αT = #

∏s
i=1 Ti/αiTi.

Proof. The first inequality is clear. Let B ∈Mn(O) be such that T = BOn. Write
αi = (βi1, β

i
2, . . . , β

i
ni) ∈ Ai. Let

A = diag(β1
1 , β

1
2 , . . . , β

1
n1
, β2

1 , β
2
2 , . . . , β

2
n2
, . . . , βs1, β

s
2, . . . , β

s
ns) ∈ O

n.

Note that AT = αT = ABOn. Thus, we have FitO(On/T ) = (detB)O and
FitO(On/αT ) = (detAB)O. It follows that

#T/αT = #O/ detA = #O/

 s∏
i=1

ni∏
j=1

βij

 .

Now let us compute #T1/α1T1. For a matrix M ∈ Mn(O) write M1 for the
first n1 rows of M . Note that T1 = B1On and α1T1 = A1T1 = A1BOn. We have
FitO(On1/T1) = FitO(On1/B1On) and FitO(On1/J1) = FitO(On1/A1BOn). Note
that every entry in any row (say jth row) of A1B equals the corresponding entry in
the jth row of B1 times β1

j . Thus the determinant of every n1 × n1 minor of A1B

equals the determinant of the corresponding minor of B1 times
∏n1

j=1 β
1
j . Hence by

the definition of the Fitting ideals we get

FitO(On1/J1) =

 n1∏
j=1

β1
j

FitO(On1/T1).

Thus we conclude that #T1/α1T1 = #O/
∏n1

j=1 β
1
j . Analogous argument works for

all 1 < i ≤ s. �

Proof of Proposition 2.3. Take α in Lemma 2.5 to be a generator of J . �

Proof of Theorem 2.1. Assume that each Ji is principal. Let αi be any generator
of Ji. Note that α1 is not a zero divisor in T1 since it is of the form (a1, . . . , an1

)
with ai ∈ O. If α1 was to be a zero-divisor one of the ai must be zero, but then J1

is not of finite index. Also αi is not a zero-divisor in Ti for i > 1.
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Proposition 2.6. Assume #F× ≥ s−1. There exists αi ∈ Ji such that (α1, . . . , αs) ∈
J and each αi generates Ji.

Proof. We proceed by induction on s. The case s = 1 is clear. Assume the state-
ment is true for s = n ≥ 1. Let s = n+1. Let T ′ (resp. J ′) be the image of T (resp.
J) under the projection A �

∏n
i=1 Ti. Then by the inductive hypothesis we know

there exists (α1, . . . , αn) ∈ J ′ such that each αi generates Ji. Since J ′ is exactly
the image of J we know that there exists x ∈ Tn+1 such that (α1, . . . , αn, x) ∈ J .
By symmetry the inductive hypothesis also gives an element (x′, β2, . . . , βn+1) ∈ J
such that each βi generates Ji.

There exists zn+1 ∈ Tn+1 such that x = zn+1βn+1. Lift zn+1 to (z1, . . . , zn+1) ∈
T and consider the difference:

(α1, α2, . . . , x)− (z1, z2, . . . , zn+1) · (x′, β2, . . . , βn+1) =

= (α1 − z1x
′, α2 − z2β2, . . . , αn − znβn, 0).

There exists u1 ∈ T1 and (if n > 1) ui, u
′
i ∈ Ti (i = 2, 3, . . . , n) such that

α1 − z1x
′ = u1α1 and αi − ziβi = uiαi = u′iβi, i = 2, 3, . . . , n.

This gives us

z1x
′ = (1−u1)α1 and ziβi = (1−ui)αi and αi = (u′i + zi)βi, i = 2, 3, . . . , n.

First let us assume that n > 1 and consider the last set of equations first. It
implies that u′i + zi ∈ T×i (i = 2, 3, . . . , n). This means either u′i or zi is a unit.
If for any i = 2, 3, . . . , n one has zi ∈ T×i , then (z1, z2, . . . , zn+1) ∈ T×, because
a non unit cannot map to a unit under a local homomorphism. But then we get
that zn+1 ∈ T×n+1 and hence x generates Jn+1, so (α1, α2, . . . , αn, x) ∈ J has the
property that all the coordinates generate the corresponding Ji and this concludes
the inductive step in this case.

If zi 6∈ T×i for any i = 2, 3, . . . , n, then u′i ∈ T×i for all i = 2, 3, . . . , n. Then
αi − ziβi generates Ti for all i = 2, 3 . . . , n.

Now, let us come back to the general case n ≥ 1. First assume that u1 ∈ mT1
.

Since T1 is local and complete, this implies that 1−u1 ∈ T×1 (cf. [Eis95], Proposition
7.10). Moreover, x′ ∈ J1, so there exists z ∈ T1 such that x′ = zα1. So, we have

z1zα1 = z1x
′ = (1− u1)α1.

Since α1 is a generator of J1, we know it is a non-zero divisor, so, we can cancel it
and get

z1z = 1− u1 ∈ T×1 .
Thus both z1 ∈ T×1 and z ∈ T×1 . This implies that J1 = α1T1 = x′T1 (i.e., x′ also
generates J1). This implies that (x′, β2, . . . , βn+1) ∈ J has the property that each
coordinate generates the respective ideal (this concludes the inductive step in this
case). Now assume u1 ∈ T×1 . Then α1 − z1x

′ also generates J1.
This shows that either we have an element that satisfies the hypothesis of Propo-

sition 2.6 or we have one consisting of generators of the ideals Ji for i ≤ n on the
first n coordinates and zero on the last one. By symmetry we have proved the
following lemma.

Lemma 2.7. Either there exists (α1, . . . , αn+1) ∈ J such that αiTi = Ji for all i
or there exist elements

a1 := (0, α1
2, . . . , α

1
n+1), a2 := (α2

1, 0, . . . , α
2
n+1), . . . , an+1 := (αn+1

1 , αn+1
2 , . . . , 0) ∈ J
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such that αjiTi = Ji for all i 6= j.

Assume that there is no element (α1, . . . , αn+1) ∈ J such that αiTi = Ji for all i.
Then by Lemma 2.7 we get the elements described in the second part of the lemma.
If n = 1, then a1 + a2 ∈ J and each of its coordinates generates the corresponding
Ji. This completes the inductive step in this case.

Now assume n > 1. For every 2 ≤ i ≤ n consider the set Σi = {α1
i + uαn+1

i },
where u ∈ O× runs over the set of representatives S of F×. We claim that there
exist at least #F×− 1 elements of Σi such that each of them generates Ji. Indeed,
suppose that there exist a, b ∈ S such that α1

i + aαn+1
i = ν1 and α1

i + bαn+1
i = ν2

and both ν1 and ν2 do not generate Ji. Then since ν1 − ν2 also does not generate
Ji, we get that (a− b)αn+1

i does not generate Ji. However since αn+1
i generates Ji,

we must have that $ | (a− b), hence a = b.
We conclude that there are at least #F×− (n− 1) elements u ∈ S such that the

element a1+uan+1 ∈ J and each of its n+1 coordinates generates the corresponding
Ji. This contradicts the assumption that no such element exists and concludes the
inductive step in this last case. �

We are now in a position to complete the proof of Theorem 2.1. Indeed, let
α := (α1, . . . , αs) ∈ J be as in Proposition 2.6. Then α satisfies the assumptions of
Lemma 2.5 and we conclude that #T/J ≤ #

∏s
i=1 Ti/Ji as claimed. �

3. Eisenstein congruences among elliptic modular forms

We note the following application to Eisenstein congruences for elliptic modular
forms: Let f1, . . . fr be all weight 2 normalized simultaneous eigenforms for Γ0(N)
for N prime. Mazur proved in [Maz77] Proposition 5.12(iii)) that if p divides the
numerator of N−1

12 then at least one of these forms is congruent modulo p to the
Eisenstein series E∗2 = 1−N + 24

∑∞
n+1 σ

∗(n)qn for

σ∗(n) =
∑

0<d|n,(d,N)=1

d.

From now on for the rest of the article fix an embedding Qp ↪→ C. For 1 ≤ i ≤ r
write Kfi for the (finite) extension of Qp generated by the Hecke eigenvalues of fi.
Let ON to be the ring of integers in the composition of all the coefficient fields Kfi

and write $N for a choice of uniformizer, eN for the ramification index of ON over
Zp and dN for the degree of its residue field over Fp. We have the following result
regarding the exponents of the Eisenstein congruences modulo powers of $N :

Proposition 3.1. For i = 1, . . . , r let $mi
N be the highest power of $N such that

the Hecke eigenvalues of fi are congruent to those of E∗2 modulo $mi
N for Hecke

operators T` for all primes ` - N . Then 1
eN

(m1 + . . . + mr) is equal to the p-

valuation of the numerator of N−1
12 .

Proof. Denote by S2(N) the C-space of modular forms of weight 2 and level Γ0(N).
For any subring R ⊂ C write TR for the R-subalgebra of EndC(S2(N)) generated
by the Hecke operators T` for all primes ` - N . Let JR be the Eisenstein ideal, i.e.,
the ideal of TR generated by T`− (1 + `) for ` - N . For a prime ideal n of TR write
TR,n for the localization of TR at n and set JR,n := JRTR,n.

Note that it follows from the definition of JR that the R-algebra structure map
R → TR/JR is surjective. Hence if R is a local ring with maximal ideal mR,
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then the ideal JR + mRTR is the unique maximal ideal of TR containing JR. To
ease notation in the proof write O for ON and $ for $N . Let m be the unique
maximal ideal of TO containing JO. Renumber fis if necessary so that mi > 0 for
0 ≤ i ≤ s ≤ r and mi = 0 for s < i ≤ r. Note that one has TO/JO ∼= TO,m/JO,m.

By Theorem II.18.10 in [Maz77], the ideal J is principal, hence we apply Propo-
sition 2.3 with T = TO,m and let Ti = O (i.e., we take n1 = n2 = · · · = ns = 1 with
nis as in section 2) and ϕi : T → Ti the map sending a Hecke operator to its eigen-
value corresponding to fi. Set mZp = m ∩ Zp. One has TO,mO = TZp,mZp

⊗Zp O
([DDT97], Lemma 3.27 and Proposition 4.7) and JO,m = JZp,mZp

⊗Zp O. Since

O/Zp is a flat extension, one has

TO,m/JO,m ∼=
TZp,mZp

⊗Zp O
JZp,mZp

⊗Zp O
∼= (TZp,mZp

/JZp,mZp
)⊗Zp O.

Thus

valp(#Ti/Ji) = valp (#O/$miO) = midN = mi
[O : Zp]

eN
.

On the other hand

valp(#T/J) = valp

(
#
TZp,mZp

JZp,mZp

⊗Zp O

)
= [O : Zp] valp

(
#
TZp,mZp

JZp,mZp

)

By [Maz77] Proposition II.9.6 we know that valp

(
#

TZp,mZp

JZp,mZp

)
equals the p-adic

valuation of the numerator of N−1
12 . [Indeed, note that while Mazur’s Hecke algebra

includes the operator TN and ours does not, it makes no difference since TN acts
as identity. This was observed by Calegari and Emerton - see Proposition 3.19 of
[CE05] - and in fact follows from Proposition II.17.10 of [Maz77].] This implies that
the p-valuation of the order of T/J is given by the p-valuation of the numerator of
N−1

12 times [O : Zp]. By Proposition 2.3 we have valp(#T/J) =
∑s
i=1 valp(Ti/Ji),

hence the Proposition follows. �

Remark 3.2. (1) A very similar statement to that of the proposition was
posed as Question 4.1 in [TiVW10]. One of the consequences of Propo-
sition 3.1 is an affirmative answer to that question.

(2) Recently, such higher Eisenstein congruences were also investigated numer-
ically by Naskr ↪ecki [Nas12] (but demanding congruence of all the Hecke
eigenvalues). He proves an upper bound for the exponent of the congru-
ence for particular cuspforms and conjectures a stronger one in the case that
the coefficient field is ramified. We note that as opposed to Naskr ↪ecki our
set f1, . . . , fr includes all cuspidal eigenforms and not just representatives
of distinct Galois conjugacy classes.

Example 3.3. A particular example that illustrates the statement of Proposition
3.1 can be taken from Section 19 of [Maz77]: Let p = 2 and N = 113. Mazur states

that in this case valp

(
#

TZp,mZp

JZp,mZp

)
=2 and rankZp(TZp,mZp

) = 3.

One checks that there is one cuspform defined over Zp congruent to the Eisenstein
series modulo p and that over a ramified quadratic extension of Zp there are a
further two Galois conjugate cuspforms congruent to the Eisenstein series modulo
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a uniformizer of that extension. Using the notation of Proposition 3.1 we therefore
have e113 = 2,m1 = 2,m2 = m3 = 1, and indeed 1

2 (2 + 1 + 1) = 2 = valp
113−1

12 .

Example 3.4. Other examples can be taken from [Nas12]. In particular in Table
5 of [loc.cit.] Naskr ↪ecki considers the following example: Let p = 5 and N = 31.
In this case there are two Galois conjugate cuspforms over a ramified extension of
degree 2, and m1 = m2 = 1, so that 1

2 (1 + 1) = 1 = valp
31−1

12 . He also considers an
example with p = 5 and N = 401. In this case there is only one Galois conjugacy
class of newforms (containing two forms f1, f2) congruent to the Eisenstein series
whose Fourier coefficients generate an order in the ring of integers of Kf1Kf2 . In
this case e401 = 1, and m1 = m2 = 1. So one has 1 + 1 = 2 = valp

401−1
12 .

4. Congruences - the general case

The results of section 2 can be applied in the context of congruences among
automorphic forms on a general reductive group whenever there is a p-integral
structure on the Hecke algebra. It is also worth noting that in many situations one
does not know or even does not expect the ideal J to be principal. In this section
we introduce a general framework of working with such congruences and prove an
analogue of Proposition 3.1 (Proposition 4.3) which uses Theorem 2.1 instead of
Proposition 2.3.

Let p be a prime as before. Let E be a finite extension of Qp. Write O for
its valuation ring and $ for a choice of a uniformizer. Let e be the ramification
index of O over Zp and set d := [O/$O : Fp]. Let S0 be a (finite dimensional)
C-space whose elements are modular forms (or more generally automorphic forms
for a reductive algebraic group). We assume that there is some naturally defined
O-lattice S0,O inside S0. Such a lattice may consist for example of forms with
Fourier coefficients in O or of images of cohomology classes with coefficients in O
under an Eichler-Shimura-type isomorphism.

Let T0 ⊂ EndO S0,O be a commutative O-subalgebra of endomorphisms which
can be simultaneously diagonalized over E. Write Π0 for the set of systems of
eigenvalues of T0, i.e., for the set of O-algebra homomorphisms λ : T0 � O. Then
we can identify T0 with an O-subalgebra of O#Π0 of finite index in a natural way.

Let λ0 be a fixed element of Π0. Set Π := Π0 \ {λ0}. Let T be the image of T0

under the projection ϕ0 :
∏
λ∈Π0

O �
∏
λ∈ΠO. If necessary we extend E further

so that #(O/$O)× ≥ #Π − 1. Let π0 ∈ S0,O be an eigenform corresponding to
λ0, i.e., such that Tπ0 = λ0(T )π0 for every T ∈ T0. Let J ⊂ T be the ideal
ϕ0(AnnT0 π0).

Remark 4.1. Note that the quotient T/J is finite. Indeed, for every λ 6= λ0 there is
Tλ ∈ J such that λ(Tλ) 6= 0. Since λ(T) ∼= O, we conclude that #λ(T)/λ(J) <∞.
Note that it follows from the definition of J that the structure map ι : O → T/J
is surjective. Hence if T/J is infinite, ι must be an isomorphism. However, the
(finitely many) maps λ ∈ Π account for all O-algebra maps from T to O. Hence
there must exist λ 6= λ0 such that λ factors through T/J which implies that λ(J) =
0. This contradicts finiteness of λ(T)/λ(J).

Remark 4.2. The quotient T/J measures p-adic congruences between Hecke eigen-
values of an eigenform corresponding to λ0 and automorphic eigenforms correspond-
ing to λ ∈ Π. It can be interpreted in terms of the congruence module C(T0) as
defined in [Gha02], section 1. Indeed, the Hecke algebra T0 decomposes over E as
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T0⊗OE = X⊕Y with X = λ0(T0)⊗OE = E and Y = ϕ0(T0)⊗OE = T⊗OE. If
we denote the corresponding projections as πX and πY and set TX := πX(T0) = O,
TY = πY (T0) = T, TX := T0 ∩ X and TY = T0 ∩ Y = J then the congruence

module C(T0) is defined as TX⊕TY
T . By Lemma 1 in [loc.cit.] we further know

that T/J = TY /TY is isomorphic to C(T0).

Proposition 4.3. For every λ ∈ Π write mλ for the largest integer such that
λ0(T ) ≡ λ(T ) mod $mλ for all T ∈ T0. Then

(4.1)
1

e
·
∑
λ∈Π

mλ ≥ valp(#T/J).

If J is principal, then (4.1) becomes an equality.

Proof. By our assumption on E the residue field condition in Theorem 2.1 is satis-
fied. Recall that the structure map O → T/J is surjective. Hence as in the proof
of Proposition 3.1 it follows that there exists a unique maximal ideal m ⊂ T con-
taining J . Write Tm for the localization of T at m. Number the elements of Π as
λ1, λ2, . . . , λr. By renumbering the λis we may assume that for i = 1, 2, . . . , s ≤ r
the map λi : T � O factors through Tm. Then mλi = 0 for s < i ≤ r. Now the
Proposition follows from Theorem 2.1 (or Proposition 2.3 if J is principal) upon
taking T = Tm, Ti = O, i = 1, 2, . . . , s (i.e, by taking n1 = n2 = · · · = ns = 1 in
section 2), ϕi = λi : T � Ti. �

5. Further examples of applications to congruences between
automorphic forms

In this section we will present a few examples where our general result can be
applied. We will use notation introduced in section 4.

Example 5.1 (More general Eisenstein congruences). Let p be an odd prime and
χ a Dirichlet character of order prime to p. Let the conductor of χ be Npr with
(N, p) = 1 (so r = 0 or 1). For each integer k ≥ 2 such that χ(−1) = (−1)k

let Sk(Np, χ) be the space of cuspforms of weight k, level Np and character χ.
Let S0 be the complex vector space of modular forms Sk(Np, χ) ⊕ CEχ, where
Eχ ∈ Mk(Np, χ) is the Eisenstein series with Hecke eigenvalues 1 + χ(`)`k−1 for
` - Np.

Let T0 be the O-subalgebra of endomorphisms of Sk(Np, χ) ⊕ CEχ generated
by the classical Hecke operators T` for ` - Np. Write λ0 for the Hecke eigenvalue
character corresponding to Eχ. Then J is given by the Eisenstein ideal generated
by T` − 1− χ(`)`k−1 for ` - Np in the cuspidal Hecke algebra T.

One expects that the order of the congruence module T/J is bounded from below
by the order of the quotient O/L(χ, 1− k), where L(χ, s) is the usual Dirichlet L-
series attached to χ (case k = 2 is proven in Proposition 5.1 of [SW97], certain cases
are implicit in e.g. [MW84] and [Wil90], general case is treated in an unpublished
work of Skinner). Assuming this bound we can apply Proposition 4.3 to conclude
that

1

e
·
∑
λ∈Π

mλ ≥ valp(#O/L(χ, 1− k)).

Remark 5.2. A similar result on higher Eisenstein congruences can also be proven
for modular forms over imaginary quadratic fields. In this case one also does not
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generally have principality of J , so Proposition 2.3 cannot be used and one only gets
the inequality from Theorem 2.1. For details we refer the reader to the upcoming
work of the first two authors [BK13].

Example 5.3 (Congruence primes for primitive forms). Let k ≥ 2, N ≥ 1 be
integers and write S for the C-space of elliptic modular forms of weight 2 and level
N . Let p ≥ 5 be a prime. Let f ∈ S be a primitive form, i.e. an eigenform
for the Hecke operators and a newform. Let f1, . . . , fr′ be eigenforms spanning the
subspace of S orthogonal to f under the Petersson inner product. Let f1, . . . , fr be a
maximal subset of the above (after possibly renumbering the fis) with the property
that no pair of the fis shares the same eigenvalues for all Hecke operators away from
primes ` | N . As in Section 3 we write $N for a uniformizer of the ring of integers
of the composition of all the coefficient fields, and eN for the ramification degree of
ON over Zp. Let $mi

N be the highest power of $N such that the Hecke eigenvalues
of f are congruent to fi modulo $mi

N for Hecke operators T` for all primes ` - N .
Let T0 (resp. TN

0 ) be the O-subalgebra acting on the space S0 =
⊕r

i=1 Cfi ⊕Cf
generated by the Hecke operators T` for ` - N (resp. for all `).

Assume now that f is ordinary at p and that the p-adic Galois representation
associated to f is residually absolutely irreducible when restricted to the absolute

Galois group of Q(
√

(−1)(p−1)/2p). Under some mild technical assumptions Hida
(see e.g. Theorem 5.20 and (Cg2) in [Hid00]) proved that the p-valuation of the
order of the congruence module C(TN

0 ) (as defined in Remark 4.2) equals the p-
valuation of #O/Lalg(1,Ad(f)), where Lalg(1,Ad(f)) denotes the algebraic part of
the value at s = 1 of the adjoint L-function attached to f (for details see [Hid00]).

By Proposition 4.3 we can conclude that

1

eN
·
r∑
i=1

mi ≥ valp(#C(T0)).

If including the operators T` for primes ` | N does not affect the depth of the
congruences, i.e., if #C(T0) = #C(TN

0 ) we also get

1

eN
·
r∑
i=1

mi ≥ valp(#(O/Lalg(1,Ad(f)))).

Example 5.4 (Congruences to Saito-Kurokawa lifts). Let k be an even positive
integer and let p > k as before be a fixed prime. Let f ∈ S2k−2(SL2(Z)) be a
newform and write Ff for the Saito-Kurokawa lift of f . Write S for the C-space
of Siegel cusp forms of weight k and full level. Then Ff ∈ S. Write SSK ⊂ S for
the subspace spanned by Saito-Kurokawa lifts. Let S0 = SSK ⊕ CFf , where SSK

is the orthogonal complement of SSK with respect to the standard Petersson inner
product on S. Set Σ = {p}. Let T0 be the (O-base change of the) quotient of the
standard Siegel Hecke algebra RΣ (away from p) acting on S0. Let λ0 be the Hecke
eigencharacter corresponding to Ff . Then T can be identified with the quotient of
RΣ acting on SSK and T/J measures congruences between the Hecke eigenvalues
corresponding to Ff and those corresponding to Siegel eigenforms which are not
Saito-Kurokawa lifts (cf. [Bro07] and [Bro11] for details).

From now on assume that f is ordinary at p and that the p-adic Galois repre-
sentation attached to f is residually absolutely irreducible. It has been shown by
Brown ([Bro11], Corollary 5.6) that under some mild assumptions the order of the
finite quotient T/J is bounded from below by the order of the quotientO/Lalg(k, f),
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where Lalg(k, f) denotes the algebraic part of the special value at k of the standard
L-function of f (for details see [loc.cit.]). Hence we can apply Proposition 4.3 to
conclude that

(5.1)
1

e
·
∑
λ∈Π

mλ ≥ valp(#O/Lalg(k, f)).

Since strong multiplicity one holds for forms in S, the elements of Π are in one-to-
one correspondence with eigenforms (up to scalar multiples) in SSK. So, (5.1) tells
us that the “depths” m of the (mod $m) congruences to Ff of the eigenforms in
SSK add up to no less than the $-adic valuation of the standard L-value of f at k.

Remark 5.5. There are several other situations where similar conclusions can be
drawn (for example in the context of congruences among automorphic forms on the
unitary group U(2, 2) and the CAP ideal [Klo09, Klo12] or the Yoshida congruences
on Sp4 [AK12]). Since the reasoning is verbatim to the examples listed above we
leave their formulation to the interested reader.
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