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Abstract. For K an imaginary quadratic field with discriminant −DK and

associated quadratic Galois character χK , Kojima, Gritsenko and Krieg stud-

ied a Hermitian Maass lift of elliptic modular cusp forms of level DK and
nebentypus χK via Hermitian Jacobi forms to Hermitian modular forms of

level one for the unitary group U(2, 2) split over K. We generalize this (under

certain conditions on K and p) to the case of p-oldforms of level pDK and
character χK . To do this, we define an appropriate Hermitian Maass space for

general level and prove that it is isomorphic to the space of special Hermitian

Jacobi forms. We then show how to adapt this construction to lift a Hida
family of modular forms to a p-adic analytic family of automorphic forms in

the Maass space of level p.

1. Introduction

Since the groundbreaking work of Hida [Hid86], there has been a lot of interest
in p-adic families of modular forms. While interesting in their own right, their use
was also instrumental in proving the Iwasawa Main conjecture for Q and totally
real fields [MW84, Wil90]. More recently, analogous p-adic families have been
studied for automorphic forms on higher-rank reductive algebraic groups, cf. e.g.,
[Tay88, Che04, Urb11, AIP15]. Such families were used by Skinner and Urban to
prove the Iwasawa Main Conjecture for GL(2) [SU14].

In [Kaw10] Kawamura provides a construction of a p-adic family of Ikeda lifts
from GL(2) to GSp(2n) for modular forms of level one. One of the crucial elements
of his construction is the existence of a Λ-adic Shintani lifting (i.e., a p-adic family
of such lifts) proved by Stevens [Ste94], which associates a p-adic family of modular
forms of half-integer weight to a p-adic family of modular forms on GL(2) and relies
on interpolating the cycle integrals which express Fourier coefficients. When n = 2,
the Ikeda lift is the same as the Saito-Kurokawa lift. Kawamura’s result in [Kaw10]
generalized previous results on p-adic interpolations, in particular, by Guerzhoy
[Gue00], who proved a p-adic interpolation of an essential part of the Fourier ex-
pansion of the Saito-Kurokawa lift by using its construction as a combination of
the Shintani lifting with the Maass lifting of Jacobi forms to Siegel modular forms.

In this paper we study the Hermitian Maass lift, which associates an automorphic
form Ff on the quasi-split unitary group U(2, 2) to a modular form f on GL(2), and
construct a suitable p-adic family of such lifts. Our construction is different from
that of [Gue00] and [Kaw10] as we now explain. On the one hand, as opposed to the
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Ikeda lift, the Fourier coefficients of Ff can be expressed explicitly by the Fourier
coefficients of f . This allows us to use the known interpolation properties of f to
interpolate Ff in a more direct fashion than is the case in [Kaw10]. However, two
major problems arise. As is well-known, not all Fourier coefficients of a modular
form of level prime to p depend p-adically analytically on the weight and the form
needs to be “p-stabilized” first to mitigate this problem. However, this procedure
produces a form fp of level divisible by p. Let −D be the discriminant of the
imaginary quadratic field K over which U(2, 2) splits. We assume that K has class
number one. Then the only known constructions of the Maass lift [Koj82, Kri91,
Gri90, Ike08] are for f a cusp form of level D and character χK , the quadratic
character associated to the extension K/Q, thus not allowing us to lift fp. ([Gue00]
and [Kaw10] get around this issue by p-stabilising the full level lift of the underlying
oldform, see Remark 4.6 for a comparison to our approach.) This is one of the
reasons why we devote a major part of the paper to generalizing the Maass lifting
procedure to forms of level Dp. In fact, we restrict ourselves here to the subspace
of p-oldforms, which is both sufficient for our purposes (fp is old at p) and allows
us to reduce some of the proofs to the case of level D.

The second major problem arises from the fact that the family F̃ in which f (or
more precisely fp) lives cannot be directly lifted to a family on U(2, 2) by applying

the Maass lift to all the specializations of F̃ . The obstacle lies in the fact that
the Maass lifting procedure “lifts” not fp but fp − f cp , where f cp is obtained from
fp by applying the complex conjugation to its Fourier coefficients, and complex
conjugation is not a p-adically continuous operation. We circumvent this problem
by essentially reversing the order of these operations. More precisely we construct
a different p-adic family F of modular forms on GL(2) whose specializations are
p-stabilizations of the forms f − f c which lie in the (analogue for the Hermitian
Maass lift of the Kohnen) plus-space of cusp forms of levelDp and character χK . We
show that these specializations can be lifted to a p-adic analytic family of Hermitian
Maass forms of level p, thus providing us with a version of a Λ-adic Hermitian Maass
lift. We achieve this by using local properties of the Galois representation attached
to the family F̃ proved in [EPW06]. Let us now explain the organization of the
paper in more detail.

Let K be as above and write OK for the ring of integers of K. Let k be a
positive integer divisible by #O×K . We begin the paper by proposing in section
2 a definition of the Maass space for automorphic forms on U(2, 2) of weight k

and level Γ
(2)
0 (N) for arbitrary integer N . We generalize the isomorphism between

so-called “special” Jacobi forms and the Maass space proved by [Hav95] Satz 7.6
from N = 1 to arbitrary N (see Theorem 2.8). This completes work on this in
[KM12] Proposition 2.2. We use similar arguments as [Ibu12] for the Maass lift
to Siegel modular forms, but in addition we prove surjectivity of the Hermitian
Maass lift onto the Maass space of Hermitian modular forms we defined. Section
3 studies some transformation properties of theta functions and proves that there
is an injective “descent” from the special Jacobi forms of level N to elliptic weight
k − 1 forms of level DN and character χK . Section 4 is devoted to constructing a
lifting from the plus-space of p-old forms (for p which splits in K) of weight k − 1
level Dp and character χK to the space of special Jacobi forms, which combined
with the results of section 2 give us the full Hermitian Maass lift. In section 5 we
prove the Hecke equivariance of the Maass space and discuss the descent of the
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Hecke operators for p-ordinary eigenforms. Finally in section 6 we study p-adic
families and construct a Λ-adic Maass lift.

Note that Λ-adic liftings can be used via pullback formulae to construct p-adic L-
functions (for Eisenstein series see e.g. [BS00, HLS05, EW14], for Saito-Kurokawa
lifting sketched in [Li09]). We plan to study the application of our Λ-adic Maass lift
in combination with the pullback formula of [Ato15] to the construction of p-adic
Rankin-Selberg L-functions in future work.

We would like to thank Olav Richter for providing us with a copy of the thesis
of Klaus Haverkamp.

2. The Maass space and the Jacobi forms

LetK be an imaginary quadratic field of discriminant−DK (i.e., K = Q(i
√
DK))

and class number one. Write O for the ring of integers of K, χK for the associated
quadratic character and D−1 = O√

−DK
for the inverse different of K. Set U(n, n)

to be the Z-group scheme defined by

U(n, n) :=

{
M ∈ ResO/Z GL2n/O | tM

[
−In

In

]
M =

[
−In

In

]}
,

where a 7→ a is the automorphism induced by the non-trivial element of Gal(K/Q).
Here ResO/Z denotes the Weil restriction of scalars and we will write In (resp. 0n)
for the n × n identity matrix (resp. the n × n zero matrix). Write Mn for the
(additive) Z-group scheme of n× n matrices. For a positive integer N put

Γ
(n)
0 (N) :=

{[
A B
C D

]
∈ U(n, n)(Z) | C ∈ NMn(O)

}
.

We reserve the notation Γ0(N) for the standard congruence subgroup of SL2(Z)
whose elements have the lower-left entry divisible by N . This group is closely

related Γ
(1)
0 (N) as shown by Lemma 2.2.

Let Sn to be the Z-group scheme defined by Sn = {g ∈ ResO/ZMn/O | g = tg}.
Note that Sn(Z) is the group of n × n hermitian matrices with entries in O. We
set Sn(Z)∨ to be the lattice in Sn(Q) dual to the lattice Sn(Z), i.e., S∨n (Z) = {g ∈
Sn(Q) | tr (gSn(Z)) ⊂ Z}. Here tr : K → Q denotes the trace, i.e., tr (a) = a + a
and for future use we also introduce the norm N : K → Q given by N(a) = aa.
Since we will most frequently have a need to use S∨2 (Z) we will simply denote it by
S. One has

S := S∨2 (Z) =

{[
` t
t m

]
∈M2(K) | `,m ∈ Z, t ∈ D−1

}
.

For T ∈ S we define ε(T ) := max{q ∈ Z+| 1qT ∈ S}. A holomorphic function F

on the Hermitian upper half space

H2 := {Z ∈M2(C)|(Z − tZ)/(2i) > 0}

satisfying

F ((AZ +B)(CZ +D)−1) = det(CZ +D)kF (Z) for all γ =

[
A B
C D

]
∈ Γ

(2)
0 (N)

is called a Hermitian modular form of weight k and level N . We denote byMk(N)
the C-space of all such forms. Set e[z] := e2πiz. Any F ∈ Mk(N) has a Fourier
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expansion

F (Z) =
∑

T∈S,T≥0

CF (T )e[tr TZ].

Let k be a positive integer such that #O× | k. We say that F ∈ Mk(N) is in
the Maass space M∗k(N) if there exists a function α∗F : Z≥0 → C satisfying

CF (T ) =
∑

d∈Z+,d|ε(T )
gcd(d,N)=1

dk−1α∗F (DK detT/d2)

for all T ∈ S, T ≥ 0, T 6= 02.

Remark 2.1. Note that in fact it is enough to define α∗F on those positive integers
` which satisfy ` ≡ −DKN(u) (mod DK), where u runs over D−1/O. Indeed, we
claim that every ` of the form DK detT/d2 = DK detT ′(ε(T )/d)2 (where ε(T ′) = 1)
satisfies a congruence of the above type. This is so because for T ′ ∈ S, we have
−DK detT ′ ⊂ DKN(D−1/O) ⊂ Z/DKZ and clearly all squares in Z/DKZ are
norms of elements of D−1/O.

We will now recall from [KM12] Section 2.2 the definition of Hermitian Jacobi
forms with level. For this it will be useful to record the following lemma.

Lemma 2.2. For any matrix M ∈ U(1, 1)(Z) there exists a matrix A ∈ U(1, 1)(Z)∩
M2(Z) = SL2(Z) and ε ∈ O× such that M = εA.

Proof. This follows directly from Hilfsatz 2 of [Gro78]. �

Let H denote the complex upper half-plane. For integers k > 0 such that
#O× | k and m ≥ 0, there is an action of the Jacobi group U(1, 1)(Z)nO2 (where
we write an element of U(1, 1)(Z) as εA as in Lemma 2.2) on functions on H×C2

given by

ϕ|k,m[εA] :=(cτ + d)−ke

[
−m czw

cτ + d

]
ϕ

(
aτ + b

cτ + d
,

εz

cτ + d
,

εw

cτ + d

)
ϕ|m[λ, µ] :=e[m(N(λ)τ + λz + λw)]ϕ(τ, z + λτ + µ,w + λτ + µ).

(2.1)

Remark 2.3. Note that the decomposition M = εA as in Lemma 2.2 is not unique,
but if εA = ε′A′ are two different decompositions, then we must have ε′ = −ε and
A = −A′. Since #O× | k, i.e., in particular k is even, the action in (2.1) is
well-defined.

For integers k > 0 and m ≥ 0, let Jk,m(N) denote the space of Jacobi forms of
weight k, index m and level N . Such forms ϕ are holomorphic functions on H×C2

required to satisfy the following conditions:

• ϕ|k,m[εA] = ϕ for all A ∈ Γ0(N) ⊂ SL2(Z) and ε ∈ O× and ϕ|m[λ, µ] = ϕ
for all λ, µ ∈ O.
• For each M ∈ SL2(Z), ϕ|k,m[M ] has a Fourier expansion (see e.g. [KM12]

p. 1953) of the form

(ϕ|k,m[M ])(τ, z, w) =
∑

`∈Z≥0,t∈D−1

νN(t)≤`m

cMϕ (`, t)e[
`

ν
τ + tz + tw],

where ν ∈ Z+ depends on M (and equals 1 for M = I2). For M = I2 we
write cϕ(`, t) := cMϕ (`, t).
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For a positive integer m, define

∆N (m) :=

{[
a b
Nc d

]
| a, b, c, d ∈ Z, ad− bcN = m, gcd(a,N) = 1

}
.

Following [Koj82] we extend the action of SL2(Z) ⊂ U(1, 1)(Z) on functions on
H×C2 defined in (2.1) to that of GL2(R)+ (the plus indicates positive determinant)
by setting

ϕ|k,t[S](τ, z, w) := ϕ

(
aτ + b

cτ + d
,

√
detSz

cτ + d
,

√
detSw

cτ + d

)
e

[
− tczw

cτ + d

]
(cτ + d)−k

for any S =

[
a b
c d

]
∈ GL2(R)+. For t = 1 we also write

ϕ|[S]k(τ, z, w) := ϕ|k,1[S](τ, z, w).

Define the index shifting operator

Vm : Jk,t(N)→ Jk,mt(N)

by

(Vmϕ)(τ, z, w) := mk−1
∑

g∈Γ0(N)\∆N (m)

(ϕ|k,t[g])(τ, z, w).

Since ϕ is invariant under Γ0(N) we see that (Vmϕ)(τ, z, w) is well-defined.
For ϕ ∈ Jk,1(N) we also define

(V0ϕ)(τ, z, w) := cϕ(0, 0)

−Bk2k

∏
p|N

(1− pk−1) +
∑
n∈Z+

∑
d|n

gcd(d,N)=1

dk−1e[nτ ]

 ,

where Bk denotes the kth Bernoulli number.
The Fourier expansion of F ∈ Mk(N) can be rewritten as a Fourier-Jacobi

expansion as follows:

F (Z) =

∞∑
m=0

ϕm(τ, z, w)e[mτ∗],

where

Z =

[
τ z
w τ∗

]
∈ H2.

As in [Hav95] Satz 7.1 we have that the m-th Fourier-Jacobi coefficients ϕm lies in
Jk,m(N).

Proposition 2.4. If F ∈M∗k(N), then it is uniquely determined by ϕ1.

Remark 2.5. For the proof of Proposition 2.4 we adapt the arguments of section
3 of [Koj82] carried out for level one and K = Q(i) to our more general situation.
We decided to include a detailed proof as the account in [Koj82] is very brief. We
also took the opportunity to correct a few small errors in [Koj82].
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Proof. We will show that the map F 7→ ϕ1 defines an injectionM∗k(N) ↪→ Jk,1(N).
Recall the Fourier and Fourier-Jacobi expansions

F

([
τ z
w τ∗

])
=

∑
T∈S,T≥0

CF (T )e

[
tr T

[
τ z
w τ∗

]]

=

∞∑
m=0

ϕm(τ, z, w)e[mτ∗].

Note that if we write T =

[
n α√

−DK

− α√
−DK

m

]
∈ S with n,m ∈ Z, α ∈ O, we have

detT = nm − |α|
2

DK
, hence T ≥ 0 if and only if all of the following are satisfied:

n,m ∈ Z+ and α ∈ O is such that |α|2 ≤ DKnm. Because of this inequality the

0-th Fourier-Jacobi coefficient of F ∈ M∗k(N) picks out the terms for T =

[
n 0
0 0

]
with n ≥ 0 and, by using the Maass condition for n ≥ 1, is given by

ϕ0(τ, z, w) = CF (02) + α∗F (0)

∞∑
n=1

∑
d∈Z+,d|n

gcd(d,N)=1

dk−1e[nτ ].

Furthermore this implies

F

([
τ z
w τ∗

])
= CF (02) + α∗F (0)

∞∑
n=1

∑
d∈Z+,d|n

gcd(d,N)=1

dk−1e[nτ ]

+

∞∑
n=1

∞∑
m=1

∑
α∈O

|α|2≤DKnm

∑
d∈Z+

d|n,d|m,d|α
gcd(d,N)=1

dk−1α∗F

(
DKnm− |α|2

d2

)
e

[
tr T

[
τ z
w τ∗

]]
.

Here and below by writing d | α we mean that d−1α ∈ O. As the 0-th Fourier-
Jacobi coefficient restricted to H is an elliptic modular form of weight k we can
identify it as a particular Eisenstein series of level N and deduce that

CF (02) = −Bk
2k

∏
p|N

(1− pk−1)α∗F (0).

This means that the 02-th Fourier Jacobi coefficient coincides with V0(ϕ1).
Using the Taylor expansion of the exponential we also get:

e

[
tr T

[
τ z
w τ∗

]]
=e

[
w

α

i
√
DK

]
e

[
z

α

−i
√
DK

]
e[nτ +mτ∗]

=

∞∑
ν1=0

∞∑
ν2=0

(
α

i
√
DK

)ν1 ( α

−i
√
DK

)ν2
(2πiw)ν1(2πiz)ν2

1

ν1!ν2!
e[nτ +mτ∗]

(2.2)

Define

Aν1,ν2(F : n,m) =
∑
α∈O

|α|2≤DKnm

∑
d∈Z+

d|n,d|m,d|α
gcd(d,N)=1

dk−1α∗F

(
DKnm− |α|2

d2

)(
α

i
√
DK

)ν1 ( α

−i
√
DK

)ν2
.
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Note that as in [Koj82] one has that

(2.3)

Aν1,ν2(F : n,m) =
∑
α∈O

|α|2≤DKnm

∑
d∈Z+

d|n,d|m,d|α
gcd(d,N)=1

dk−1α∗F

(
DK det

([
1 α/(−i

√
DKd)

α/(i
√
DKd) mn/d2

]))

×
(

α

i
√
DK

)ν1 ( α

−i
√
DK

)ν2
.

On the other hand for s ∈ Z+ with s dividing gcd(n,m,N(α)) one has

Aν1,ν2(F : 1,mn/s2) =
∑
α∈O

|α|2≤DKnm/s
2

α∗F

(
DKnm− |α|2

s2

)

×
(

α

i
√
DK

)ν1 ( α

−i
√
DK

)ν2
=Aν1,ν2(F : mn/s2, 1).

(2.4)

Hence we get

Aν1,ν2(F : n,m) =
∑
s∈Z+

s|n,s|m
gcd(s,N)=1

sk+ν1+ν2−1Aν1,ν2(F : 1, nm/s2).

Finally using the function Aν1,ν2 we can write the Fourier expansion of F as

F

([
τ z
w τ∗

])
=

∞∑
m=1

ϕm(τ, z, w)e[mτ∗]

=

∞∑
m=1

∞∑
n=1

∞∑
ν1=0

∞∑
ν2=0

Aν1,ν2(F : n,m)(2πiz)ν1(2πiw)ν2
1

ν1!ν2!
e[nτ ]e[mτ∗].

(2.5)

Hence in particular

ϕm(τ, z, w) =

∞∑
n=1

∞∑
ν1=0

∞∑
ν2=0

Aν1,ν2(F : n,m)(2πiz)ν1(2πiw)ν2
1

ν1!ν2!
e[nτ ].

Using this, let us compute Vmϕ1. To do so, we note that a full set of coset repre-
sentatives of Γ0(N) \∆N (m) can be taken to be{[

A B
D

]
| A,B,D ∈ Z+, AD = m, 0 ≤ B < D, gcd(A,N) = 1

}
.
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We have

(Vmϕ1)(τ, z, w) =mk−1
∑

g∈Γ0(N)\∆N (m)

(ϕ1|k,1g)(τ, z, w)

=mk−1
∑

AD=m
0≤B<D

gcd(A,N)=1

D−kϕ1

(
Aτ +B

D
,

√
mz

D
,

√
mw

D

)
D−k

=mk−1
∑

AD=m
0≤B<D

gcd(A,N)=1

D−k
∞∑
n=1

∞∑
ν1=0

∞∑
ν2=0

Aν1,ν2(F : n, 1)

×

(
2πi
√
mz
D

)ν1 (
2πi
√
mw
D

)ν2
ν1!ν2!

e

[
nAτ + nB

D

]
.

(2.6)

Changing the order of summation and using the fact that for a fixed D and n one
has ∑

0≤B<D

e

[
nB

D

]
=

{
0 if D - n
D if D | n

we can re-write the above as

(Vmϕ1)(τ, z, w) =mk−1
∞∑
n=1

∑
AD=m

gcd(A,N)=1
D|n

DD−k
∞∑
ν1=0

∞∑
ν2=0

Aν1,ν2(F : n, 1)

×

(
2πi
√
mz
D

)ν1 (
2πi
√
mw
D

)ν2
ν1!ν2!

e

[
nAτ

D

]
.

(2.7)

Note that for a fixed m one has
∞∑
n=1

∑
AD=m

gcd(A,N)=1
D|n

=
∑
D|m

gcd(m/D,N)=1

∑
n=Dn′

n′∈Z+

This change of summation gives us (we still keep A which is now defined to be
m/D):

(Vmϕ1)(τ, z, w) =mk−1
∑
D|m

gcd(A,N)=1

D1−k
∞∑
n′=1

∞∑
ν1=0

∞∑
ν2=0

Aν1,ν2(F : Dn′, 1)

×

(
2πi
√
mz
D

)ν1 (
2πi
√
mw
D

)ν2
ν1!ν2!

e [n′Aτ ]

=
∑
A|m

gcd(A,N)=1

Ak−1
∞∑
n′=1

∞∑
ν1=0

∞∑
ν2=0

Aν1,ν2(F : Dn′, 1)

×

(
2πi
√
mz
D

)ν1 (
2πi
√
mw
D

)ν2
ν1!ν2!

e [n′Aτ ] ,

(2.8)



A p-ADIC HERMITIAN MAASS LIFT 9

where in the last equality we combined mk−1 with D1−k to yield Ak−1 and noted
that we can as well sum over A now defining D := m/A. This for N = 1 recovers
precisely the first equality in (3.6) in [Koj82], where Kojima’s d is m/a.

To compare with Vmϕ1 we now calculate

ϕm

(
τ,

z√
m
,
w√
m

)
=

∞∑
n=1

∞∑
ν1=0

∞∑
ν2=0

Aν1,ν2(F : n,m)

(
2πi z√

m

)ν1 (
2πi w√

m

)ν2
ν1!ν2!

e[nτ ]

=

∞∑
n=1

∞∑
ν1=0

∞∑
ν2=0

∑
s∈Z+

s|n,s|m
gcd(s,N)=1

sk+ν1+ν2−1A
(
F :

mn

s2
, 1
)

×

(
2πi z√

m

)ν1 (
2πi w√

m

)ν2
ν1!ν2!

e[nτ ].

(2.9)

Using, similarly as before, that for a fixed m one has

∞∑
n=1

∑
s∈Z+

s|n,s|m

=
∑
s∈Z+

s|m

∑
n=sn′

n′∈Z+

we get that

ϕm

(
τ,

z√
m
,
w√
m

)
=

∞∑
ν1=0

∞∑
ν2=0

∑
s∈Z+

s|m
gcd(s,N)=1

∞∑
n′=1

sk+ν1+ν2−1Aν1,ν2

(
F :

mn′

s
, 1

)

×

(
2πi z√

m

)ν1 (
2πi w√

m

)ν2
ν1!ν2!

e[n′sτ ]

=

∞∑
ν1=0

∞∑
ν2=0

∑
s∈Z+

s|m
gcd(s,N)=1

∞∑
n′=1

sk+ν1+ν2−1Aν1,ν2

(
F :

mn′

s
, 1

)

×

(
2πi

√
mz

(m/s)

)ν1 (
2πi

√
mw

(m/s)

)ν2
ν1!ν2!

s−ν1−ν2e[n′sτ ].

(2.10)

Now redefining A := s and D = m/s, we get

ϕm

(
τ,

z√
m
,
w√
m

)
=

∞∑
ν1=0

∞∑
ν2=0

∑
A∈Z+

A|m
gcd(A,N)=1

∞∑
n′=1

Ak−1Aν1,ν2 (F : Dn′, 1)

×

(
2πi
√
mz
D

)ν1 (
2πi
√
mw
D

)ν2
ν1!ν2!

e[n′Aτ ].

(2.11)
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Note that this is the same as (2.8). Hence we have proved that

ϕm

(
τ,

z√
m
,
w√
m

)
= (Vmϕ1)(τ, z, w)

and so ϕ1 indeed determines ϕm for all m, and thus Proposition 2.4 is proved. �

Definition 2.6. Let J spez
k,1 (N) be the subspace of Jk,1(N) of special Jacobi forms

ϕ whose Fourier coefficients cϕ(`, t) only depend on `−N(t).

Our goal now is to prove that the map from M∗k(N) to Jk,1(N) defined in the
proof of Proposition 2.4 is an isomorphism to J spez

k,1 (N). By generalizing Proposi-

tions 1.3 and 1.4 of [Hav95] to the case N ≥ 1 we know:

Proposition 2.7. For DK = 4, 8 or for DK ≡ 3 (mod 4) prime we have

J spez
k,1 (N) = Jk,1(N).

(For other DK these are not equal.)

The following theorem generalizes part of [Hav95] Satz 7.6 (who treats N = 1).

Theorem 2.8. We have an isomorphism J spez
k,1 (N) ∼=M∗k(N).

Proof. The proof of Proposition 2.4 shows that we have an injection of the right
hand side into the left hand side, i.e. a form in the Maass space is determined by
its first Fourier-Jacobi coefficient.

Given φ ∈ J spez
k,1 (N), we claim that

(2.12) I(φ)

([
τ z
w τ∗

])
:=

∞∑
m=0

(Vmφ)(τ, z
√
m,w

√
m)e[mτ∗] ∈M∗k(N).

(This is also stated in [KM12] Proposition 2.2 but we decided to give a proof
following [Koj82] for the convenience of the reader.) For convergence of this series
we argue as [Hav95] Satz 7.2 (or [Ibu12] Section 3.1). We claim that I(φ) has a
Fourier expansion with coefficients

CI(φ)(02) = −cϕ(0, 0)
Bk
2k

∏
p|N

(1− pk−1)

and

(2.13) CI(φ)(T ) =
∑

d∈Z+,d|ε(T )
gcd(d,N)=1

dk−1cφ(
`m

d2
,
t

d
) for T =

[
` t
t m

]
≥ 0, T 6= 02.

For this we follow the proof of [EZ85] Theorem 4.2 (7) and the explicit expression
for Vm given in the proof of Proposition 2.4: For m ≥ 1 we have

(Vmφ)(τ, z
√
m,w

√
m) = mk−1

∑
ad=m

gcd(a,N)=1

∑
bmodd

d−kφ(
aτ + b

d
,
mz

d
,
mw

d
)

= mk−1
∑
ad=m

gcd(a,N)=1

∑
bmodd

d−k
∑

`∈Z≥0,t∈D−1

N(t)≤`

cφ(`, t)e[
`aτ

d
+ t

mz

d
+ t

mw

d
]e[
`b

d
]

= mk−1
∑
ad=m

gcd(a,N)=1

d1−k
∑

`∈Z≥0,d|`
t∈D−1,N(t)≤`

cφ(`, t)e[
`aτ

d
+ t

mz

d
+ t

mw

d
].
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Now we eliminate all d’s and change variables by writing ` for `/d to get that the
above equals ∑

a|m
gcd(a,N)=1

ak−1
∑

`∈Z≥0,t∈D−1

N(t)≤`m/a

cφ(
`m

a
, t)e[`aτ + taz + taw].

Changing the order of summation and again changing variables by writing ` for a`
and t for at we now get∑

`∈Z≥0,t∈D−1

N(t)≤`m

∑
a|ε(T )

gcd(a,N)=1

ak−1cφ(
`m

a2
,
t

a
)e[`τ + tz + tw].

So, if we assume for the moment that I(φ) ∈ Mk(N) this expression for the
Fourier expansion implies that I(φ) lies in the Maass space with the function α∗I(φ)

describing its Fourier coefficients given by

(2.14) α∗I(φ)(DKdetT/d2) = cφ(
`m

d2
,
t

d
).

The latter is well-defined since we assumed φ ∈ J spez
k,1 (N).

It now remains to prove that I(φ) ∈Mk(N). We first adapt the proof of [Kli59]
Satz 3 (in the Siegel case) and that of [Gro78] Satz 3 (principal congruence subgroup
in the Hermitian case) to prove the following:

Proposition 2.9. Γ
(2)
0 (N) is generated by matrices of the form

•
[
tU 0
0 U−1

]
for U ∈ GL2(O), and

•


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 for

[
a b
c d

]
∈ Γ0(N) ⊂ SL2(Z).

Proof. For a matrix S ∈ S2(Z) we will write I(S) :=

[
I2 S
02 I2

]
(translation by

S) and I ′(S) :=

[
I2 02

S I2

]
(antitranslation by S). Also, for U ∈ GL2(O) we set

R(U) :=

[
tU 0
0 U−1

]
(rotation by U). We need the following lemmas.

Lemma 2.10. Let


a1

a2

c1
c2

 be the first column of an element of Γ
(2)
0 (N). Then there

exists S ∈ S2(Z) such that 
a′1
a′2
c′1
c′2

 := I(S)


a1

a2

c1
c2


satisfies (a′1, a

′
2) := a′1O + a′2O = O.

Proof. Apply [Gro78] Korollar on p. 149 with n = 2 and q = O. �
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Lemma 2.11. Let a =

[
a1

a2

]
be a column vector with a1, a2 ∈ O satisfying (a1, a2) =

O. Then there exists U ∈ SL2(O) such that Ua =

[
1
0

]
.

Proof. Let x, y ∈ O be such that xa1 + ya2 = 1. Then set U =

[
x y
−a2 a1

]
. �

Let us now prove Proposition 2.9. Let M ∈ Γ
(2)
0 (N). By Lemma 2.10 we can

find S ∈ S2(Z) such that I(S)M has the first column whose top two entries a1, a2

satisfy (a1, a2) = O. So by Lemma 2.11 we can multiply M on the left by some

R(U) to ensure that the first column of M starts of with

[
1
0

]
. Furthermore, since

M =

[
A B
C D

]
∈ U(2, 2)(Z) we must have tAC ∈ S2(Z). For A of the form

[
1 ∗
0 ∗

]
this forces the top left entry of C to be in Z. Hence there exists S ∈ S2(Z) such

that I ′(S)M has the first column of the form


1
0
0
0

. Moreover, since the lower-left

block of M has all entries divisible by N we can take S with S ≡ 0 (mod N). So,
now we have

M =


1 ∗ ∗ ∗
0 a0 ∗ b0
0 0 ∗ ∗
0 c0 ∗ d0


with

[
a0 b0
c0 d0

]
∈ Γ

(1)
0 (N) (note that the zero above c0 is a consequence of tAC

being hermitian).

It follows from Lemma 2.2 and the above arguments that the group Γ
(2)
0 (N) is

generated by I(S), I ′(S), R(U) and the subset D ⊂ Γ
(2)
0 (N) of matrices of the form

1 ∗ ∗ ∗
0 a0 ∗ b0
0 0 ∗ ∗
0 c0 ∗ d0

 with

[
a0 b0
c0 d0

]
∈ Γ0(N). In fact, we only need to consider the set

D0 of matrices M =


1 ∗ ∗ ∗
0 a ∗ b
0 0 1 ∗
0 c ∗ d

 with all ∗ equal to 0, as we can multiply on

the left by


1 0 0 0
0 d 0 −b
0 0 1 0
0 −c 0 a

 to get M to be of the form I(S)R(U) for appropriate

S,U . Note that for any matrix of the form


1 0 0 0
0 a 0 b
0 0 x 0
0 c 0 d

 we must have x = 1

since tAD − tCB = I2.
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Now we show that we also do not need the translations I(S). It is enough to

show that we do not need I(S) for S ∈ A :=

{[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]
,

[
0 ω
ω 0

]}
for

ω =

{√
−D if−D 6≡ 1 mod 4

1
2 (1 +

√
−D) if−D ≡ 1 mod 4,

as the rest of matrices in S2(Z) are a Z-linear combination of elements of A.

Since I(

[
0 0
0 1

]
) ∈ D0 we clearly do not need

[
0 0
0 1

]
. By using (7) in [Kli59]

with U a permutation matrix we see that I(

[
1 0
0 0

]
) = R(U)I(

[
0 0
0 1

]
)R(U)−1, so

we also do not need the first matrix in A. We have[
1 1
0 1

] [
0 0
0 1

] [
1 0
1 1

]
=

[
0 1
1 0

]
+

[
1 0
0 1

]
,

so we can again use (7) in [Kli59] to see that the third matrix in A is also not
needed, because this gives us

R(

[
1 1
0 1

]
)I(

[
0 0
0 1

]
)R(

[
1 0
1 1

]
) = I(

[
0 1
1 0

]
)I(

[
1 0
0 1

]
),

and we already know that the left hand side is generated by rotations and D0 and
also the last term on the right-hand side is. Finally, one has[

1 ω
0 1

] [
0 0
0 1

] [
1 0
ω 1

]
=

[
0 ω
ω 0

]
+

[
ωω 0
0 0

]
+

[
0 0
0 1

]
,

hence by the same argument as above we see that the fourth matrix in A is also
not needed. We can apply the same arguments to antitranslations (replacing A by
NA).

Lastly note that we can replace D0 with the second set of matrices in the state-
ment of Proposition 2.9 because

J̃


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 J̃−1 =


1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d

 ,

where J̃ =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∈ Γ
(2)
0 (N). �

Define Γ2,1(N) to be all the elements of Γ
(2)
0 (N) whose last row is (0, 0, 0, 1).

Since Vmφ ∈ Jk,m(N) we get (as in [Hav95] Lemma 1.2 and (22)) that Vmφ|k[M ]
for all M ∈ Γ2,1(N). By considering the Fourier expansion of I(φ) we further see

that I(φ) is invariant under

[
J 02

02 J

]
for J =

[
0 −1
1 0

]
.

This allows us to deduce as in [Hav95] Satz 7.2 that I(φ) is invariant under εI4 for

ε ∈ O×,

[
J 02

02 J

]
and Γ2,1(N), which in particular includes R(U) for U =

[
ε λ
0 1

]
.

As [Hav95] shows in the proof of Satz 7.2 matrices of the form

[
tU 02

02 U−1

]
for



14 TOBIAS BERGER AND KRZYSZTOF KLOSIN

U ∈ GL2(O) can be generated by these, so we get by Proposition 2.9 that I(φ) is

invariant under Γ
(2)
0 (N) and therefore I(φ) ∈Mk(N) as desired. �

3. Some transformation properties of the theta function

In this section we discuss the relationship between Jacobi forms of odd level N
and elliptic modular forms, which uses the so-called theta decomposition of Jacobi
forms. For later use we prove a result about the transformation property of the
theta functions occurring in this decomposition. To shorten notation in this section
we will write D for DK .

3.1. Theta decomposition. For u ∈ D−1 define

ϑu(τ, z, w) :=
∑

a∈u+O
e[N(a)τ + az + aw].

Consider a Jacobi form ϕ ∈ J spez
k,1 (N). Then its Fourier expansion can be written

as

(3.1) ϕ(τ, z, w) =
∑

u∈D−1/O

fu(τ)ϑu(τ, z, w),

where

(3.2) fu(τ) :=
∑
`≥0

`≡−DN(u)modD

α∗ϕ(`)e[`τ/D]

for α∗ϕ(D(m − N(u))) := cϕ(m,u). The latter is well-defined by the definition of

J spez
k,1 (N) and the decomposition (3.1) is unique, since the ϑu are linearly indepen-

dent as functions (z, w) 7→ ϑu(τ, z, w) for fixed τ ∈ H (see e.g. [Hav95] Proposition
5.1).

Lemma 3.1 ([Koj82] Lemma 2.1 (for Q(i)),[Shi75] Proposition 1.6). For σ =[
a b
c d

]
∈ SL2(Z) and u ∈ D−1 we have

ϑu|[σ]1 =
∑

v∈D−1/O

Mu,v(σ)ϑv,

where

Mu,v(σ) =

{
−i
c
√
D

∑
γ∈u+O/cO e

[
a|γ|2−γv−γv+d|v|2

c

]
if c 6= 0

sign(a)δu,ave[ab|u|2] if c = 0.

If c > 0 and D | c then

Mu,v(σ) = δu,dve[ab|u|2]χK(|d|).

Fix an ordering on D−1/O, a group with D elements. For σ ∈ SL2(Z) let M(σ)
be the D ×D matrix whose (u, v)-entry is Mu,v(σ) as defined above. Since ϕ is of
level N , it follows from Lemma 3.1 and from [Koj82] Lemma 2.2 (which is easily
reproven for level greater than one) that for σ ∈ Γ0(N) we have

fu|k−1σ =
∑

v∈D−1/O

Nu,v(σ)fv,
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for the matrix N(σ) = (Nu,v(σ)) defined by

tN(σ)M(σ) = ID.

Here we use the notation

(f |k−1σ)(z) = (cz + d)1−kf(σ(z)) for σ =

[
∗ ∗
c d

]
∈ GL2(R)+.

From this we can deduce the following:

Lemma 3.2 (Analogue of Corollary in section 4 of [Kri91] and Korollar 4.4 and
Satz 4.5 in [Hav95]). For u ∈ D−1 we have

(1) fu|k−1M = fu, if M ≡ I2 mod DN ,
(2) fu(τ + 1) = e[−N(u)]fu(τ),

(3) f0|k−1

[
1 0
N 1

]
= 1

D

∑
v,u∈D−1/Oe[NN(v) + uv + uv]fu,

(4) f0|k−1M = χK(d)f0 for M =

[
a b
c d

]
∈ Γ0(ND).

Proof. The proofs are similar to those in [Kri91] and [Hav95]. We sketch the proof
of (iii) since it is the hardest. Note first that[

1 0
N 1

]
= J

[
1 −N
0 1

]
J−1,

where J =

[
0 −1
1 0

]
. Now by Lemma 3.1 we have

ϑ0|1,1[J ] =
−i√
D

∑
v∈D−1/O

ϑv

and

ϑv|[
[
1 −N
0 1

]
]1 = e[−NN(v)]ϑv.

Note that J−1 = −J and by Lemma 3.1 the action of σ = −I2 ∈ SL2(Z) is given
by Mh,k(σ) = −δh,−k. Putting this together we obtain

ϑ0|[
[

1 0
N 1

]
]1 =

i√
D

∑
v∈D−1/O

e[−NN(v)]ϑv|[J ]1

=
i√
D

∑
v∈D−1/O

e[−NN(v)] ·

 −i√
D

∑
u∈D−1/O

e[−uv − uv]ϑu


=

1

D

∑
v,u∈D−1/O

e[−NN(v) + uv + uv]ϑu.

�

We recall the following result about quadratic Gauss sums:

Lemma 3.3 ([Hav95] Lemma 0.4). Assume D is odd and coprime to an odd integer
N . Let a ∈ Z be coprime to N . Then

1

N

∑
γ∈O/NO

e

[
a
|γ|2

N

]
= χK(N).
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To relate the Jacobi modular forms to elliptic modular forms we make the fol-
lowing definition:

Definition 3.4. For N ∈ Z≥0 let

M+
k−1(DN,χK) := {f =

∑
n

an(f)qn ∈Mk−1(DN,χK) | an = 0 whenever χK(n) = 1}.

At this point we can now generalize [Kri91] Proposition 4 and [Hav95] Proposi-
tion 5.6 to general odd level N :

Assume that gcd(D,N) = 1. Then there exist w, y ∈ Z such that Dw−Ny = 1,
and we define

WD :=

[
D y
DN Dw

]
=

[
1 0
N 1

] [
D y
0 1

]
.

Proposition 3.5. Let D be prime. Assume N is odd. Then the mapping Jk,1(N)→
M+
k−1(DN,χK) given by

ϕ 7→ f := f0|k−1WD

is an injective homomorphism. The Fourier coefficients of f satisfy

(3.3) a`(f) = i
aD(`)√
D

χK(N)α∗ϕ(`),

where

aD(`) = #{u ∈ D−1/O|DN(u) ≡ −` mod D}.

Remark 3.6. For N = 1 [Kri91] section 6 also proves surjectivity of the map. We
show in the proof of Theorem 4.4 that for N = p prime the map is surjective onto
the space of p-old cuspforms in M+

k−1(Dp, χK).

Proof of Proposition 3.5. Using the argument from [Hav95] Satz 5.3 proving mod-
erate growth and Lemma 3.2 (and the fact that the involution induced by WD

preserves Mk−1(DN,χK) by Proposition 1.1 in [AL78]) we can conclude that
F ∈Mk−1(DN,χK).

We now calculate the Fourier expansion of F . Note that

WD :=

[
D y
DN Dw

]
=

[
1 0
N 1

] [
D y
0 1

]
=

[
1 0
N 1

] [
1 y
0 1

] [
D 0
0 1

]
.

We first need to work out the effect of

σ =

[
1 0
N 1

] [
1 y
0 1

]
=

[
1 y
N Ny + 1

]
=

[
1 y
N Dw

]
on ϑ0: For this we use similar ideas to those in Shintani’s proof of [Shi75] Propo-
sition 1.6(ii): Since gcd(N,D) = 1 note that v 7→ vN induces an automorphism of
D−1/O. Applying this change of variable we get

M0,vN (σ) =
−i√
DN

∑
γ∈O/NO

e

[
|γ|2

N

]
e[−γv − γv + wND|v|2].

Since v ∈ D−1 we have e[−γv − γv] = 1, and since
√
DD−1 ⊂ O we also have

e[wD|v|2] = 1. By Lemma 3.3 we get

ϑ0|[σ]1 = χK(N)
−i√
D

∑
v∈D−1/O

ϑv,
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which implies that

f0|k−1σ = χK(N)
i√
D

∑
v∈D−1/O

fv,

and so

f(τ) = f0|k−1WD(τ) = χK(N)
i√
D

∑
v∈D−1/O

fv(Dτ).

This implies the formula (3.3) for the Fourier coefficients of f . As we know from
[Kri91] 4 (5) on p. 670 that aD(`) = 1 + χK(−`) = 1 − χK(`) we conclude from
this that f ∈M+

k−1(DN,χK).
As ϕ 7→ f is a linear map of vector spaces it suffices for the injectivity to check

that the kernel is trivial. Suppose that f = f0|k−1WD = 0. By (3.3) this means
that α∗ϕ(`) = 0 whenever aD(`) 6= 0. By the definition of aD(`) these are the only
α∗ϕ(`) used in the definition of the fu, so the Jacobi form ϕ = 0. �

3.2. Key technical result in this section.

Proposition 3.7. Assume that D is prime (which implies D ≡ −1 mod 4), p > 2
a split prime in K/Q. Note that this is equivalent to χK(p) = 1. Let π ∈ O with
N(π) = p. Then

Mπu,πv(σ) = Mu,v(

[
p 0
0 1

]
σ

[
p−1 0
0 1

]
)

for all σ ∈ Γ0(p).

Proof. Let σ =

[
a b
pc d

]
. Note that[

p 0
0 1

]
σ

[
p−1 0
0 1

]
=

[
a pb
c d

]
.

We consider three different cases:

(1) c = 0
(2) (c,D) = 1
(3) c > 0 and D | c

Case (1.) is straightforward: Lemma 3.1 tells us that

Mπu,πv(σ) = sign(a)δπu,πave[ab|πu|2].

This is clearly equal to Mu,v(

[
p 0
0 1

]
σ

[
p−1 0
0 1

]
) = sign(a)δu,ave[apb|u|2].

For Case (2.) we calculate by Lemma 3.1 that

Mπu,πv(σ) =
−i√
D

1

pc

∑
γ∈πu+O/pcO

e

[
1

pc
(a|γ|2 − γπv − γπv + dp|v|2)

]

=
−i√
D

1

pc

∑
γ∈O/pcO

e

[
1

pc
(a|γ + πu|2 − (γ + πu)πv − (γ + πu)πv + dp|v|2)

]

=
−i√
D

1

pc

∑
γ∈O/pcO

e

[
1

pc
(a

∣∣∣∣γ + πu− πv

a

∣∣∣∣2 + (d− 1

a
)p|v|2)

]

=
−i√
D
e[

1

c
(d− 1

a
)|v|2)] · 1

pc

∑
γ∈O/pcO

e

[
a

pc

∣∣∣∣γ +

(
πu− πv

a

)∣∣∣∣2
]
.
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On the other hand, a similar calculation shows that

Mu,v(

[
a pb
c d

]
) =

−i√
D
e[

1

c
(d− 1

a
)|v|2)] · 1

c

∑
γ∈O/cO

e

[
a

c

∣∣∣∣γ +

(
u− v

a

)∣∣∣∣2
]
.

So these would be equal if we can show that

(3.4)
1

pc

∑
γ∈O/pcO

e

[
a

pc

∣∣∣∣γ + πu− πv

a

∣∣∣∣2
]

=
1

c

∑
γ∈O/cO

e

[
a

c

∣∣∣∣γ +

(
u− v

a

)∣∣∣∣2
]
.

Lemma 3.8. For D ≡ −1 mod 4, u, v ∈ D−1, gcd(N, aD) = 1 we have

1

N

∑
γ∈O/NO

e

[
a

N

∣∣∣∣γ +

(
u− v

a

)∣∣∣∣2
]

=
1

N

∑
γ∈O/NO

e
[ a
N
|γ|2
]
.

Proof. We first note that we can work modulo N in the argument of e
[

1
N ·
]
. Since

gcd(a,N) = 1 there exists a∗ ∈ Z such that aa∗ ≡ 1 mod N , so

v

a
= aa∗

v

a
≡ a∗v mod N.

It therefore suffices to prove the statement for a general element u ∈ D−1 and v = 0.
We take the Z-bases of O and D−1 as follows:

O = Z +
1

2
(1 +

√
−D)Z

and

D−1 =
i√
D

Z +
1

2
(1 +

i√
D

)Z.

Writing u = u1
i√
D

+ u2

2 (1 + i√
D

) for u1, u2 ∈ Z we calculate that

u ≡ u1

√
−DD∗ +

u2

2
(1 +

√
−DD∗) mod N,

where DD∗ ≡ 1 mod N . Reordering terms we see that

u ≡ 1

2
(1 +

√
−D)(u2D

∗ + 2u1D
∗) +

u2

2
(1−D∗)− u1D

∗ mod N.

If N is odd then 2 is invertible mod N , so we see that u is equivalent modulo N to
an element of O. If N is even then DD∗ ≡ 1 mod N shows (together with D odd)
that D∗ is odd and we can make the same conclusion. By a change of variable the
sum is therefore equal to the right hand side of the statement of the Lemma. �

Following [Hav95] let us call the right hand side in the Lemma 3.8 1
NG−D(a,N).

Since ad − pbc = 1 ensures that gcd(a, pc) = 1 the Lemma shows that (3.4) is
equivalent to

(3.5)
1

pc
G−D(a, pc) =

1

c
G−D(a, c).

For odd c Lemma 3.3 shows that both sides are equals to χK(c) (recall that p > 2
and χK(p) = 1 by assumption).

For general c we argue as follows: For gcd(c1, c2) = 1 it is easy to see that

G−D(a, c1c2) = G−D(ac1, c2)G−D(ac2, c1).
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By factoring c = 2e2pepq with (q, 2p) = 1 we can rewrite (3.5) as

1

pc
G−D(2e2a, pep+1q)G−D(apep+1q, 2e2) =

1

c
G−D(2e2a, pepq)G−D(apepq, 2e2).

Applying Lemma 3.3 for the Gauss sums with odd second argument we see that we
have reduced (3.5) to

G−D(apep+1q, 2e2) = G−D(apepq, 2e2).

This equality is true since

G−D(•p, 2e2) =
∑

γ∈O/2e2O

e[
•p
2e2
|γ|2] =

∑
γ∈O/2e2O

e[
•

2e2
|πγ|2] =

∑
γ∈O/2e2O

e[
•

2e2
|γ|2]

since p > 2 and |π|2 = p.
For case (3.) we refer to the final part of Lemma 3.1: For D | c the only terms

in the expression for Mu,v(σ) involving b, c or u are δu,dv and ab|u|2. So when
b changes to pb (and πu to u, and πv to v) the expressions for Mπu,πv(σ) and

Mu,v(

[
p 0
0 1

]
σ

[
p−1 0
0 1

]
) are equal. �

4. Maass lift of p-old plusforms

Assume that D = DK is prime and p is split in K/Q. Set S+
k−1(Dp, χK) to

be the subspace of M+
k−1(Dp, χK) (cf. Definition 3.4) consisting of cusp forms.

The goal of this section is to prove the existence of a Maass lift for p-old forms in
S+
k−1(Dp, χK). This will allow us in section 6 to p-adically interpolate the Maass

lift of ordinary newforms in Sk−1(D,χK). In [Kri91] Krieg defines the Maass lift
for h ∈Mk−1(D,χK) by relating h− hc ∈M+

k−1(D,χK) to a Jacobi form (thereby
proving the surjectivity of the map in Proposition 3.5 for N = 1) and then invoking
Theorem 2.8 (again in the case N = 1) to associate a Hermitian Maass form.

We briefly recall the key step in the construction of the Maass lift of [Kri91]:
Given u ∈ D−1 and g(τ) =

∑
n an(g)e[τn] ∈ M+

k−1(D,χK) define (as in [Kri91]
6(1))

(4.1) gu(τ) =
−i
√
D

aD(−DN(u))

∑
`∈Z≥0

−`≡DN(u) mod D

a`(g)e[`τ/D].

Krieg proves in the theorem in section 6 of [Kri91] that

ϕg(τ, z, w) :=
∑

u∈D−1/OK

gu(τ)ϑu(τ, z, w)

is a Jacobi form of weight k, index 1 and level SL2(Z), i.e., ϕg ∈ Jk,1(1).
For a p-oldform in S+

k−1(Dp, χK) we will now modify Krieg’s definition, but
before we do so, we collect some of the properties of the forms lying in the plus-
space in the following lemma.

Lemma 4.1. (1) If h ∈ Sk−1(D,χK) is a normalized eigenform then g :=

h− hc belongs to S+
k−1(D,χK) and g|k−1

[
p 0
0 1

]
belongs to S+

k−1(Dp, χK).

(2) The space S+
k−1(D,χK) is generated by h − hc for normalised eigenforms

h ∈ Sk−1(D,χK).
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(3) Any p-old form in S+
k−1(Dp, χK) is of the form λg1 + µg2|k−1

[
p 0
0 1

]
for

g1, g2 ∈ S+
k−1(D,χK) and λ, µ ∈ C.

Proof. (1) This follows from the following formula [Miy89] (4.6.17):

(4.2) an(hc) = an(h) = χK(n)an(h) for gcd(n,D) = 1.

(2) As in [Kri91] p.671 we use for this that Sk−1(D,χK) has a basis of newforms
h1, . . . ha, h

c
1, . . . h

c
a, ha+1, . . . ha+b with hi 6= hci for 1 ≤ i ≤ a and hi = hci

for a < i ≤ a+ b. This implies the statement by [Miy89] Theorem 4.6.8(1),
similar to the following argument for the p-old plusforms.

(3) Let f ∈ S+
k−1(Dp, χK)p−old. Then f = f1 + f2 + f3 + f4, where f1 ∈⊕a

i=1 C(hi − hci ), f2 ∈
⊕a+b

i=1 C(hi + hci ), f3 ∈
⊕a

i=1 C(hi − hci )|k−1 [ p 1 ],

f4 ∈
⊕a+b

i=1 C(hi+hci )|k−1 [ p 1 ]. Set g = f2 +f4. We claim that the Fourier
coefficients an(g) = 0 for all gcd(n,D) = 1. By [Miy89] Theorem 4.6.8(1)
this implies that g = 0, which proves statement (3) of the lemma.

Consider first the case when χK(n) = 1. Then an(g) = 0 since g =
f − (f1 + f3) ∈ S+

k−1(Dp, χK) by assumption and (1).
If χK(n) = −1 then an(f2) = 0 since an(h + hc) = 0 for any h ∈

Sk−1(D,χK) by (4.2). Write n = n′pr with gcd(n′, p) = 1 and r ≥ 0. If

r = 0 (i.e. gcd(n, p) = 1) then an((h + hc)|k−1

[
p

1

]
) = 0 and if r ≥ 1

then

an((h+ hc)|k−1

[
p

1

]
) = an′pr−1(h+ hc),

which is zero again by (4.2) since χK(n′pr−1) = χK(n/p) = χK(n) = −1.
Since g = f2 + f4 this shows that an(g) = 0 whenever χK(n) = −1,
concluding the proof.

�

For a p-oldform in S+
k−1(Dp, χK) we modify Krieg’s definition as follows:

Definition 4.2. For f = λg1 + µg2|k−1

[
p 0
0 1

]
with g1, g2 ∈ S+

k−1(D,χK), π ∈ O

with N(π) = p and giu as in (4.1) we define (making use of the fact that multipli-
cation by π induces a bijection on D−1/O)

fπu := λg1
πu + µg2

u|k−1

[
p 0
0 1

]
.

Proposition 4.3.

ϕf (τ, z, w) :=
∑

u∈D−1/O

fu(τ)ϑu(τ, z, w) = λϕg1(τ, z, w)+µ
∑

u∈D−1/O

g2
u(pτ)ϑπu(τ, z, w)

is a Jacobi form of weight k, index 1 and level p.

Proof. We need to check that for all σ ∈ Γ0(p) we have

fπu|k−1σ =
∑

v∈D−1/O

Nπu,πv(σ)fπv,
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where the matrix N(σ) = (Nu,v(σ)) is defined in section 3.1. It follows from
Proposition 3.7 that

Nπu,πv(σ) = Nu,v

([
p 0
0 1

]
σ

[
p−1 0
0 1

])
for all σ ∈ Γ0(p). The proof of the theorem in section 6 of [Kri91] (which can be
used here because the gi are of level D) shows that

giu|k−1σ =
∑

v∈D−1/O

Nu,v(σ)giv

for all σ ∈ SL2(Z).
Now we calculate that for σ ∈ Γ0(p)

fπu|k−1σ =λg1
πu|k−1σ + µg2

u|k−1

[
p 0
0 1

]
σ

=λg1
πu|k−1σ + µg2

u|k−1

([
p 0
0 1

]
σ

[
p 0
0 1

]−1
)[

p 0
0 1

]
=λ

∑
v∈D−1/O

Nπu,v(σ)g1
v + µ

∑
v∈D−1/O

Nu,v

([
p 0
0 1

]
σ

[
p−1 0
0 1

])
g2
v |k−1

[
p 0
0 1

]

=
∑

v∈D−1/O

Nπu,πv(σ)

(
λg1

πv − µg2
v |k−1

[
p 0
0 1

])
.

�

Theorem 4.4. For f ∈ S+
k−1(Dp, χK)p−old there exists Ff ∈M∗k(p) with

(4.3) α∗Ff
(`) =

√
D
a`(f)

iaD(`)
.

We will refer to Ff as the Maass lift of f . Furthermore, the assignment f 7→ Ff
defines an injective C-linear map from S+

k−1(Dp, χK)p−old to M∗k(p).

Remark 4.5. Due partly to the absence of an old/newform theory for Hermitian
forms it is non-trivial to extend the lift to p-oldforms. In particular, for f =

λg1 +µg2|k−1

[
p 0
0 1

]
our lift Ff (Z) does not equal λFg1(Z) +µFg2(pZ) for the Fgi

defined by [Kri91].

Proof. The linearity of the map follows immediately from (4.3) because a`(f) is

linear in f . By Lemma 4.1 (3) the form f = λg1 + µg2|k−1

[
p 0
0 1

]
with g1, g2 ∈

S+
k−1(D,χK). Since ϕf ∈ Jk,1(p) by Proposition 4.3, it follows from Theorem 2.8

that there exists a unique Maass form Ff ∈M∗k(p) corresponding to ϕf .

To prove (4.3) we claim that it suffices to show that α∗ϕf
(`) =

√
D a`(f)
iaD(`) , i.e.,

to show that ϕf maps to f under the mapping of Proposition 3.5 (with N = p),
using that f lies in the plus-space. Indeed we note that by combining (2.14) with

the definition of α∗ϕf
in section 3.1 we get for T =

[
` t
t m

]
that

(4.4) α∗Ff
(D detT/d2) = cϕf

(
`m

d2
,
t

d

)
= α∗ϕf

(
D

(
`m

d2
− |t|

2

d2

))
.
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We also note that it is enough to consider α∗ϕf
(`) for ` ≡ −DpN(u) (mod D)

because of Remark 2.1 and the fact that multiplication by the norm of an element
α ∈ O prime to D induces a bijection on the set N(D−1/O).

We now calculate that analogous to (4.1) we have

(4.5) fπu(τ) =
−i
√
D

aD(−DpN(u))

∑
`∈Z+,−`≡DpN(u) mod D

a`(f)e[`τ/D].

For this we express fu in terms of giu using Definition 4.2 and utilize the “Fourier
expansion” of giu given by (4.1) to get that for ` ≡ −DpN(u) mod D the coefficient
of e[`τ/D] in the expansion of fπu is

−i
√
D

(
λa`(g

1)

aD(−DpN(u))
+

λa`/p(g
2)

aD(−DN(u))

)
.

By [Kri91] formula 4(5) we know that

aD(`) =

{
1 + χK(−`) D - `
0 D | `.

Since gcd(p,D) = 1, we see that D | DpN(u) if and only if D | DN(u). Also,
since p is split we have χK(p) = 1, so for all u ∈ D−1 we get aD(−DpN(u)) =
aD(−DN(u)), which proves (4.5).

On the other hand, since ϕf is a Jacobi form, we get a decomposition of ϕf as
in (3.1). Since such a decomposition is unique the fus in section 3.1 coincide with
the fus considered in (4.5) which enter in the definition of ϕf (cf. Proposition 4.3).
Thus we have by (3.2) that

fu =
∑
`∈Z+

`≡−DN(u)modD

α∗ϕf
(`)e[`τ/D].

Comparing this with (4.5) then implies that for ` ≡ −DpN(u) mod D we have

α∗ϕf
(`) = −i

√
D

(
a`(f)

aD(−DpN(u))

)
.

The injectivity of the map from f to ϕf is clear since we showed that it is the
inverse to (the restriction to S+

k−1(Dp, χK)p−old of) the map from Proposition 3.5.
Combined with Theorem 2.8 this shows that the map f 7→ Ff must be injective.
This concludes the proof of the theorem. �

Remark 4.6. Our construction is very different from that of Kawamura in [Kaw10]
who, in the setting of the Maass lift to Siegel modular forms, produces an analogous
lift for Hecke eigenforms by p-stabilising the classical full level lift. As it is not
clear which p-stabilisation procedure to follow for Hermitan forms we chose this
more direct approach. Note that our construction allows us to lift any oldform
(as opposed to only eigenforms), i.e., is more in the spirit of Krieg [Kri91] and
corresponds to what Ikeda calls a ‘linearized’ lift - cf. [Ike08] sections 15 and 16
for full level version. However, if f ∈ S+

k−1(Dp, χK)p−old arises from an eigenform
h ∈ Sk−1(D,χK), then it follows from Proposition 5.3 and Remark 5.4 that our
Maass lift Ff is indeed a Hecke eigenform (at least away from D) with eigenvalues
agreeing with those of the classical Maass lift studied by Krieg et al. of h away
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from p and D. The Maass lift is semi-ordinary at p provided that h is ordinary at
p (cf. section 5.3).

5. The Hecke invariance

The goal of this section is to prove that the Maass space is invariant under the
action of certain Hecke operators. As before we assume that # ClK = 1, DK is
prime and N is prime to DK .

5.1. The good primes. Let p be a prime such that p - NDK . Consider F ∈
M∗k(N). A set of generators of the local Hecke algebra Hp at p is given in sections
4.1.1 and 4.1.2 of [Klo15]. Since this case is almost identical to the level 1 case, we
will not need the precise definitions here and instead refer the reader to [Klo15] for
details.

Proposition 5.1. For any T ∈ Hp, one has TF ∈M∗k(N).

Proof. In case when p is inert (resp. split) in K, the proof is just a simple modifi-
cation (consisting of making sure that the condition gcd(d,N) = 1 can be inserted
in all the relevant spots) of the proof of Theorem 7 in [Kri91] (resp. of Theorem
5.10 in [Klo15]). �

5.2. The primes dividing N . Suppose p | N . In this section we will prove that

M∗k(N) is invariant under the Hecke operator Up := Γ
(2)
0 (N) diag(1, 1, p, p)Γ

(2)
0 (N).

Here the situation turns out to be simpler than in the case of good primes, but
since to the best of our knowledge this case has never been specifically treated in
the literature, we will include the proof. Then

Up = Γ
(2)
0 (N)


1

1
p

p

Γ
(2)
0 (N) =

⊔
a,c∈Z/pZ
b∈O/pO

Γ
(2)
0 (N)


1 a b

1 b c
p

p

 .
If we write F (Z) =

∑
T≥0 CF (T )e[tr TZ] ∈Mk(N) for the Fourier expansion of

F , then we have

(UpF )(Z) =p−2k
∑
T≥0

CF (T )
∑

a,c∈Z/pZ
b∈O/pO

e

[
tr

(
T (Z +

[
a b

b c

])
p−1

]

=p−2k
∑
T≥0

CF (T )e[tr TZp−1]
∑

a,c∈Z/pZ
b∈O/pO

e

[
tr T

[
a b

b c

]
p−1

](5.1)

Writing T =

[
n α
α m

]
with n,m ∈ Z and α ∈ D−1 we see that the last sum equals

∑
a,c∈Z/pZ
b∈O/pO

e

[
na+ trK/Q(αb) +mc

p

]
=

{
p4 if p | ε(T )

0 otherwise.

Hence we conclude that

(5.2) Up
∑
T≥0

CF (T )e[tr TZ] = p−2k+4
∑
T≥0

CF (pT )e[tr TZ].
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Proposition 5.2. Suppose F ∈M∗k(N). Then UpF ∈M∗k(N).

Proof. Set G := UpF . Write G(Z) =
∑
T≥0 CG(T )e[tr TZ] for the Fourier expan-

sion of G. We need to show that there exists a function α∗G : Z≥0 → C such
that CG(T ) =

∑
d∈Z+

d|ε(T )
gcd(d,N)=1

dk−1α∗G(DK detT/d2). Write α∗F for the corresponding

function for F . Then we have

(UpF )(Z) =p−2k+4
∑
T≥0

CF (pT )e[tr TZ]

=p−2k+4
∑
T≥0

∑
d∈Z+

d|ε(pT )
gcd(d,N)=1

dk−1α∗F (DK det(pT )/d2)e[tr TZ]

=p−2k+4
∑
T≥0

∑
d∈Z+

d|ε(T )
gcd(d,N)=1

dk−1α∗F (p2DK detT/d2)e[tr TZ],

(5.3)

where the last equality comes from the fact that ε(pT ) = pε(T ) and since p | N ,
the condition gcd(d,N) = 1 forces the conditions d | ε(pT ) and d | ε(T ) to be
equivalent. We can thus set α∗G(x) := p−2k+4α∗F (p2x). �

5.3. Maass lifts of ordinary eigenforms. If we use the “arithmetic” normaliza-
tion of the Hecke action and scale the slashing operator |kγ by the additional factor
of µ(γ)2k−4, then since µ(diag(1, 1, p, p)) = p, the factor p−2k+4 in (5.2) will disap-
pear. Here µ denotes the similitude homomorphism defined on GU(2, 2). Fix an
embedding Qp ↪→ C. We call a newform h =

∑∞
n=1 an(h)qn ∈ Sk−1(DK , χK)

p-ordinary if valp(ap(h)) = 0. If this is the case then the Hecke polynomial
X2−ap(h)X+pk−2χK(p) has two roots, one of which, say α, is a p-adic unit, while

the other, say β, is not. Furthermore, the form f := (h−hc)−β(h−hc)|k−1

[
p

1

]
lies in S+

k−1(DKp, χK)p−old. As usual one can define the classical “Up” operator
on Sk−1(DKp, χK), which we denote here by U(p) to distinguish it from the Up
operator defined above, by setting U(p)

∑∞
n=1 anq

n :=
∑∞
n=1 anpq

n. This operator
preserves the plus-space if p is split in K/Q, while its square preserves it for all p.

From now on suppose p splits in K/Q. Let Ff ∈ M∗k(p) be the Maass lift of f .
We record the following result.

Proposition 5.3. One has U(p)f = αf and UpFf = α2Ff where Up is normalized
arithmetically.

Proof. The first assertion is a standard fact for forms defined in the same way
as f but with h in place of h − hc. Thus it remains true for f since ap(h

c) =
χ(p)ap(h) = ap(h) (cf. (4.2)). The second assertion follows from this, formula (4.3)
and the fact that α∗UpFf

(`) = α∗Ff
(p2`) (cf. the last line of the proof of Proposition

5.2 combined with our “arithmetic normalization” of Up) as well as the fact that
aDK

(`) = aDK
(p2`). �

Remark 5.4. Proposition 5.3 can be seen as asserting that the Hermitian Hecke
operator Up ‘descends’ to the elliptic Hecke operator U(p)2. This is somewhat
analogous to the case of Siegel modular forms, where the Up operator descends to
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U(p) (i.e., no square) - this follows from combining Theorem 4.1 in [Ibu12] with
the work of Kohnen [Koh82] and Manickam et al. [MRV93] (we are grateful to
Jim Brown for providing us with these references). Furthermore, Theorems 5.18
and 5.19 in [Klo15] imply that Ff is also an eigenform for the Hecke algebras
H` for primes ` - DKp and provide analogous ‘descent formulas’ for the standard
generators of these algebras (but we caution the reader that the notation used in
[Klo15] conflicts with ours - in particular Up in [Klo15] is different from our Up).

6. A p-adic interpolation of the Maass lift

As before in this section we assume that K has class number one, that its dis-
criminant D = DK is prime and we fix a prime p which splits in K. In this section
we write OK for the ring of integers of K (since we reserve the notation O for a
p-adic ring as defined below). From now on we fix embeddings Q ↪→ Qp

∼= C. Let

E ⊂ Qp be a sufficiently large finite extension of Qp and set O to be the valuation
ring of E. Set Γ = 1 + pZp and ΛO := O[[Γ]]. The p-adic cyclotomic character

ε : GQ → Z×p induces a canonical isomorphism Gal(Q∞/Q)
∼−→ Γ, where Q∞ is the

unique Zp-extension of Q unramified away from p. Thus we can regard the tauto-
logical character Γ→ Λ×O as a character of GQ via the composite GQ → Γ→ Λ×O.
We will denote this composite by ι. We will write ω for both the mod p cyclotomic
character and the associated Dirichlet character (Teichmüller lift). For a positive
integer r, a pr−1th root of unity ζ, and an integer m ≥ 2 we define a continuous
O-algebra homomorphism

νm,ζ : ΛO → Qp, 1 + p 7→ ζ(1 + p)m−1.

Let k0 be a positive integer such that #O×K | k0. Let f̃k0−1 ∈ Sk0−1(Dp, χK)

be a normalized Hecke eigenform new at D with f̃ ck0−1 6= f̃k0−1. We assume that

f̃k0−1 is p-ordinary, i.e., that its U(p)-eigenvalue is a p-adic unit.
By Theorem 1.4.1 of [Wil88] there exists a finite extension K of Frac(ΛO) and

a primitive, normalized (i.e., c1 = 1) I-adic Hecke eigenform F̃ =
∑
n cnq

n ∈ I[[q]]

of tame level D and character Ψ such that for some extension ν′k0−1 : I → Qp of
νk0−1,1, one has

(6.1) ν′k0−1(F̃) :=
∑
n

ν′k0−1(cn)qn = f̃k0−1.

Here I denotes the integral closure of ΛO in K and Ψ := χKω
k0−2. We recall that

such an F̃ has the property that for almost all pairs (k, ζ) and all extensions ν′k,ζ :

I → Qp of νk,ζ one has that ν′k,ζ(F̃) is a modular form of weight k, level Dprand

character Ψω1−kχζ = ωk0−k−1χKχζ . The Dirichlet character χζ of conductor pr is
defined by mapping the image of 1 + p in (Z/pr)× to ζ.

Note that we use a slightly different normalisation to that in [Wil88], whose spe-
cialisation maps νk,ζ send 1 +p to ζ(1 +p)k−2 (cf. also the discussion in [BGNK10]

Remark 3.3). We also note that F̃ is not necessarily a unique normalized primitive
I-adic eigenform with the property (6.1), but the Gal(K/Frac(ΛO))-conjugacy class

of F̃ is unique. In other words here we pick a member of this Galois conjugacy
which lifts f̃k0−1.

For k ≡ k0 (mod p − 1) - so that ωk0−k ≡ 1 - we have that ν′k−1(F̃) ∈
Sk−1(Dp, χK) is a normalized p-ordinary eigenform. As is well-known thanks to
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the work of Hida (cf. Theorem 2.1 in [Hid86] and also Theorem 6.1 in [BGNK10]),

one can associate to F̃ a continuous (for the meaning of continuity in this context
cf. [Hid86], p. 557), absolutely irreducible Galois representation

ρF̃ : GQ → GL2(K)

which is unramified outside Np and for each prime q - Np satisfies

det(1− ρF̃ (Frobq)X) = 1− cqX + (Ψι)(Frobq)X
2.

In particular one has

(6.2) det ρF̃ = Ψι.

We will write V for the space of this representation.
As it follows from [Miy89] Theorem 4.6.17 that there are no ordinary newforms of

level Dp, for almost every k and every extension ν′k−1 of νk−1,1 the form ν′k−1(F̃) is
a p-stabilization of an ordinary newform hν′k−1

=
∑
n an(hν′k−1

)qn ∈ Sk−1(D,χK).

To ease notation, as before, we will write h′k−1 instead of hν′k−1
(the prime (here and

below) indicating that the form potentially depends on the choice of an extension
ν′k−1 of νk−1,1). We then define f ′k−1 by

f ′k−1 := g′k−1 − β′k−1g
′
k−1|k−1

[
p 0
0 1

]
,

where g′k−1 := h′k−1 − (h′k−1)c and β′k−1 := pk−2/α′k−1 with α′k−1 the eigenvalue

of U(p) corresponding to ν′k−1(F̃). In other words we go counter-clockwise on the
following diagram:

{ν′k−1(F̃) ∈ Sk−1(Dp, χK)p−old}ν′k−1
{f ′k−1 ∈ S

+
k−1(Dp, χK)p−old}ν′k−1

{h′k−1 ∈ Sk−1(D,χK)}ν′k−1

p−stabilization

OO

// {g′k−1 := h′k−1 − (h′k−1)c ∈ S+
k−1(D,χK)}ν′k−1

p−stabilization

OO

We will prove in Theorem 6.1 below that {f ′k−1}ν′k−1
is indeed a p-adic analytic fam-

ily. (Note that it follows from Lemma 4.1 (1) that f ′k−1 belongs to S+
k−1(Dp, χK).)

Let us remark here that since our construction of the Maass lift does not allow p2 to
divide the level, we have to limit ourselves here to r = 1, i.e., ζ = 1. This amounts
in essence to constructing a family only over Qp-points of the weight space, as

opposed to Qp-points.

Theorem 6.1. There exists a finite set A of k ≡ k0 (mod p − 1) and an I-adic
form F =

∑
n bn(F)qn ∈ I[[q]] which has the property that for every n and every

k ≡ k0 (mod p− 1) with k 6∈ A, every extension ν′k−1 : I→ Qp of νk−1,1 maps the
Fourier coefficient bn(F) to the nth Fourier coefficient of the form f ′k−1 with f ′k−1

defined as above.

Proof. Fix k and write an for an(h′k−1), the nth Fourier coefficient of h′k−1. Let β

be the root of X2 − apX + pk−2 which is not a p-adic unit. Then the nth Fourier
coefficient an(f ′k−1) of f ′k−1 equals (an−an)−β(an/p−an/p). Writing n = MDspr
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with pD -M and using (4.2) we get

an(f ′k−1) =aMaDsapr − χK(M)χK(pr)aMaDsapr

−β(aMaDsapr−1 − χK(M)χK(pr−1)χK(p)aMaDsapr−1)

=aM [apr (aDs − χK(M)aDs)− βapr−1(aDs − χK(M)aDs)]

=aM (aDs − χK(M)aDs)(apr − βapr−1)

(6.3)

Note that aM (apr − βapr−1) is the Mpr-th Fourier coefficient of the p-stabilization

ν′k−1(F̃) of h′k−1, i.e., aM (apr − βapr−1) = ν′k−1(cMpr ).

To deal with asD we note that since the D-eigenvalue aD(h′k−1) of h′k−1 satisfies

(6.4) aD(h′k−1)aD(h′k−1) = Dk−2

by Theorem 4.6.17(1) in [Miy89], we see that condition (2) in Lemma 2.6.2 in
[EPW06] is not satified for the height one prime corresponding to h′k0−1. Hence by
that lemma we get that the quotient V/IDV is an (unramified) rank one I-module

on which FrobD acts via the eigenvalue of F̃ at D. We denote this character by µ
and we have µ(FrobD) = cD. Set

bMDspr (F) := cMpr (µ(FrobD)s − χK(M)(ιωk0−2µ−1)(FrobD)s) ∈ I.

The theorem now follows from (6.4) as (ιωk0−2)(FrobD) specializes to Dk−2 for
k ≡ k0 (mod p− 1). �

From now on assume that p ≡ 1 (mod #O×K) and assume that k0 ∈ {0, 1, . . . , p−
2} such that #O×K | k0. Then for every k ≡ k0 (mod p− 1) we will have #O×K | k.

Lemma 6.2. Let d be an integer prime to p. There exists a power series Ad(T ) ∈
Zp[[T ]] such that Ad((1 + p)k − 1) = ω(d)−kdk−1.

Proof. This is stated on page 197 in [Hid93]. �

Theorem 6.3. Let k0 be as above. Let F ∈ I[[q]] be the I-adic form in Theorem
6.1. There exists a finite set A of k ≡ k0 (mod p − 1) with the property that for
every M ∈ S, there exists CFF (M) ∈ I such that for all k ≡ k0 (mod p − 1) with
k 6∈ A and all extensions ν′k−1 : I → Qp of νk−1,1 one has that ν′k−1(CFF (M)) is
the M th Fourier coefficient of the Maass lift of ν′k−1(F). Thus the formal power
series

FF :=
∑
M∈S

CFF (M)qM ∈ I[[q]]

can be regarded as a I-adic Maass lift of the family F .

Proof. By Theorem 6.1 we know that bn(F) ∈ I specializes under extension ν′k−1

to the nth Fourier coefficient of f ′k−1. Combining this with Theorem 4.4 we ob-

tain Bn(F) := −i
√
D

aD(n)bn(F) ∈ I interpolating the values of the function α∗Ff
.

Set Ak0,d(T ) := ω(d)k0Ad(T ) ∈ Zp[[T ]] and let Ãk0,d be the element of Zp[[Γ]]
corresponding to it under the isomorphism T k 7→ (1 + p)k − 1. Set

CFF (M) :=
∑
d∈Z+

d|ε(M)
gcd(d,p)=1

Ak0,dBDK detM/d2(F).

�
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BS00. S. Böcherer and C.-G. Schmidt, p-adic measures attached to Siegel modular forms,

Ann. Inst. Fourier (Grenoble) 50 (2000), no. 5, 1375–1443.

Che04. G. Chenevier, Familles p-adiques de formes automorphes pour GLn, J. Reine Angew.
Math. 570 (2004), 143–217.

EPW06. M. Emerton, R. Pollack, and T. Weston, Variation of Iwasawa invariants in Hida

families, Invent. Math. 163 (2006), no. 3, 523–580.
EW14. E. Eischen and X. Wan, p-adic Eisenstein series and L-functions of certain cusp forms

on definite unitary groups, Preprint (2014), http://arxiv.org/pdf/1404.7153.pdf.

EZ85. M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55,
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