A p-ADIC HERMITIAN MAASS LIFT

TOBIAS BERGER AND KRZYSZTOF KLOSIN

ABSTRACT. For K an imaginary quadratic field with discriminant —Dg and
associated quadratic Galois character x i, Kojima, Gritsenko and Krieg stud-
ied a Hermitian Maass lift of elliptic modular cusp forms of level Dg and
nebentypus xx via Hermitian Jacobi forms to Hermitian modular forms of
level one for the unitary group U(2,2) split over K. We generalize this (under
certain conditions on K and p) to the case of p-oldforms of level pDg and
character x . To do this, we define an appropriate Hermitian Maass space for
general level and prove that it is isomorphic to the space of special Hermitian
Jacobi forms. We then show how to adapt this construction to lift a Hida
family of modular forms to a p-adic analytic family of automorphic forms in
the Maass space of level p.

1. INTRODUCTION

Since the groundbreaking work of Hida [Hid86], there has been a lot of interest
in p-adic families of modular forms. While interesting in their own right, their use
was also instrumental in proving the Iwasawa Main conjecture for Q and totally
real fields [MW84, Wil90]. More recently, analogous p-adic families have been
studied for automorphic forms on higher-rank reductive algebraic groups, cf. e.g.,
[Tay88, Che04, Urb11l, ATP15]. Such families were used by Skinner and Urban to
prove the Iwasawa Main Conjecture for GL(2) [SU14].

In [Kaw10] Kawamura provides a construction of a p-adic family of Tkeda lifts
from GL(2) to GSp(2n) for modular forms of level one. One of the crucial elements
of his construction is the existence of a A-adic Shintani lifting (i.e., a p-adic family
of such lifts) proved by Stevens [Ste94], which associates a p-adic family of modular
forms of half-integer weight to a p-adic family of modular forms on GL(2) and relies
on interpolating the cycle integrals which express Fourier coefficients. When n = 2,
the Ikeda lift is the same as the Saito-Kurokawa lift. Kawamura’s result in [Kaw10]
generalized previous results on p-adic interpolations, in particular, by Guerzhoy
[Gue00], who proved a p-adic interpolation of an essential part of the Fourier ex-
pansion of the Saito-Kurokawa lift by using its construction as a combination of
the Shintani lifting with the Maass lifting of Jacobi forms to Siegel modular forms.

In this paper we study the Hermitian Maass lift, which associates an automorphic
form Fy on the quasi-split unitary group U(2,2) to a modular form f on GL(2), and
construct a suitable p-adic family of such lifts. Our construction is different from
that of [Gue00] and [Kaw10] as we now explain. On the one hand, as opposed to the
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Ikeda lift, the Fourier coefficients of Fy can be expressed explicitly by the Fourier
coefficients of f. This allows us to use the known interpolation properties of f to
interpolate F in a more direct fashion than is the case in [Kaw10]. However, two
major problems arise. As is well-known, not all Fourier coefficients of a modular
form of level prime to p depend p-adically analytically on the weight and the form
needs to be “p-stabilized” first to mitigate this problem. However, this procedure
produces a form f, of level divisible by p. Let —D be the discriminant of the
imaginary quadratic field K over which U(2,2) splits. We assume that K has class
number one. Then the only known constructions of the Maass lift [Koj82, Kri9dl,
Gri90, Tke08] are for f a cusp form of level D and character x g, the quadratic
character associated to the extension K/Q, thus not allowing us to lift f,. ([Gue00]
and [Kaw10] get around this issue by p-stabilising the full level lift of the underlying
oldform, see Remark 4.6 for a comparison to our approach.) This is one of the
reasons why we devote a major part of the paper to generalizing the Maass lifting
procedure to forms of level Dp. In fact, we restrict ourselves here to the subspace
of p-oldforms, which is both sufficient for our purposes (f, is old at p) and allows
us to reduce some of the proofs to the case of level D.

The second major problem arises from the fact that the family F in which f (or
more precisely f,) lives cannot be directly lifted to a family on U(2,2) by applying
the Maass lift to all the specializations of F. The obstacle lies in the fact that
the Maass lifting procedure “lifts” not f, but f, — f7, where f; is obtained from
fp by applying the complex conjugation to its Fourier coefficients, and complex
conjugation is not a p-adically continuous operation. We circumvent this problem
by essentially reversing the order of these operations. More precisely we construct
a different p-adic family F of modular forms on GL(2) whose specializations are
p-stabilizations of the forms f — f¢ which lie in the (analogue for the Hermitian
Maass lift of the Kohnen) plus-space of cusp forms of level Dp and character xx. We
show that these specializations can be lifted to a p-adic analytic family of Hermitian
Maass forms of level p, thus providing us with a version of a A-adic Hermitian Maass
lift. We achieve this by using local properties of the Galois representation attached
to the family F proved in [EPWO06]. Let us now explain the organization of the
paper in more detail.

Let K be as above and write Ok for the ring of integers of K. Let k be a
positive integer divisible by #0Oj. We begin the paper by proposing in section
2 a definition of the Maass space for automorphic forms on U(2,2) of weight &
and level ng) (N) for arbitrary integer N. We generalize the isomorphism between
so-called “special” Jacobi forms and the Maass space proved by [Hav95] Satz 7.6
from N = 1 to arbitrary N (see Theorem 2.8). This completes work on this in
[KM12] Proposition 2.2. We use similar arguments as [Ibul2] for the Maass lift
to Siegel modular forms, but in addition we prove surjectivity of the Hermitian
Maass lift onto the Maass space of Hermitian modular forms we defined. Section
3 studies some transformation properties of theta functions and proves that there
is an injective “descent” from the special Jacobi forms of level N to elliptic weight
k — 1 forms of level DN and character xg. Section 4 is devoted to constructing a
lifting from the plus-space of p-old forms (for p which splits in K) of weight k — 1
level Dp and character yx to the space of special Jacobi forms, which combined
with the results of section 2 give us the full Hermitian Maass lift. In section 5 we
prove the Hecke equivariance of the Maass space and discuss the descent of the
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Hecke operators for p-ordinary eigenforms. Finally in section 6 we study p-adic
families and construct a A-adic Maass lift.

Note that A-adic liftings can be used via pullback formulae to construct p-adic L-
functions (for Eisenstein series see e.g. [BS00, HLS05, EW14], for Saito-Kurokawa
lifting sketched in [Li09]). We plan to study the application of our A-adic Maass lift
in combination with the pullback formula of [Atol5] to the construction of p-adic
Rankin-Selberg L-functions in future work.

We would like to thank Olav Richter for providing us with a copy of the thesis
of Klaus Haverkamp.

2. THE MAASS SPACE AND THE JACOBI FORMS

Let K be an imaginary quadratic field of discriminant — Dy (i.e., K = Q(iv/Dk))

and class number one. Write O for the ring of integers of K, xx for the associated
quadratic character and D~ = \/?TK for the inverse different of K. Set U(n,n)

to be the Z-group scheme defined by

U(n,n) = {M € Resp,z GLay 0 | M [In _I”} M = Ln _In} },

where a +— @ is the automorphism induced by the non-trivial element of Gal(K/Q).
Here Resp/z denotes the Weil restriction of scalars and we will write I,, (resp. 0,,)
for the n x n identity matrix (resp. the n X n zero matrix). Write M,, for the
(additive) Z-group scheme of n x n matrices. For a positive integer N put

r{"(N) = { {é g} e Un,n)(Z)|C e NMn(O)} .

We reserve the notation I'g(V) for the standard congruence subgroup of SLa(Z)
whose elements have the lower-left entry divisible by N. This group is closely
related Fgl)(N ) as shown by Lemma 2.2.

Let S,, to be the Z-group scheme defined by S,, = {g € Resp,z M, )0 | g = ‘g}.
Note that S,,(Z) is the group of n x n hermitian matrices with entries in 0. We
set S, (Z)Y to be the lattice in S,,(Q) dual to the lattice S,,(Z), i.e., S)/(Z) = {g €
S, (Q) | tr (95,.(Z)) C Z}. Here tr : K — Q denotes the trace, i.e., tr(a) =a+a
and for future use we also introduce the norm N : K — Q given by N(a) = aa.
Since we will most frequently have a need to use Sy (Z) we will simply denote it by
S. One has

14

5= 8Y(Z) = {[t T’;] € My(K) | £ym € z,teD-l}.

For T € S we define €(T) := max{q € Z+|%T € S§}. A holomorphic function F
on the Hermitian upper half space

H, = {Z € M>(C)|(Z - 'Z)/(2i) > 0}
satisfying

A B

F((AZ+B)(CZ+ D) ') =det(CZ + D)*F(Z) for all v = {c D

| erfan

is called a Hermitian modular form of weight & and level N. We denote by My (N)
the C-space of all such forms. Set e[z] := €*™*. Any F € Mj(N) has a Fourier
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expansion
F(Z)= > Cp(T)eftrTZ].
TES,T>0
Let k be a positive integer such that #0* | k. We say that F' € My(N) is in
the Maass space M} (N) if there exists a function o}, : Z>9 — C satistying

Cr(T)= Y d"'ap(DkdetT/d?)
d€Z ,d|e(T)
ged(d,N)=1

foral T €S, T >0, T #05.

Remark 2.1. Note that in fact it is enough to define a}. on those positive integers
¢ which satisfy £ = —Dg N(u) (mod Df), where u runs over D=1 /0. Indeed, we
claim that every £ of the form Dy det T/d? = Dy det T'(e(T)/d)? (where ¢(T") = 1)
satisfies a congruence of the above type. This is so because for 77 € S, we have
—DgdetT" € DgN(D71/O) C Z/DkZ and clearly all squares in Z/DkZ are
norms of elements of D~1/0.

We will now recall from [KM12] Section 2.2 the definition of Hermitian Jacobi
forms with level. For this it will be useful to record the following lemma.

Lemma 2.2. For any matrizx M € U(1,1)(Z) there exists a matriz A € U(1,1)(Z)N
My (Z) = SLy(Z) and e € O* such that M = €A.

Proof. This follows directly from Hilfsatz 2 of [Gro78]. d

Let H denote the complex upper half-plane. For integers k& > 0 such that
#O* | k and m > 0, there is an action of the Jacobi group U(1,1)(Z) x O? (where
we write an element of U(1,1)(Z) as €A as in Lemma 2.2) on functions on H x C?
given by

+b ez ew
Al k[ caw at
Plk,m[€A] :=(cT + d) e[ Nartd|P\ertd er+d er+d

OlmA, 1] =e[m(N AT + Az + Aw)]p(T, 2 + AT + p, w + A7 + T0).

(2.1)

Remark 2.3. Note that the decomposition M = €A as in Lemma 2.2 is not unique,
but if €A = ¢/A’ are two different decompositions, then we must have ¢/ = —e and
A = —A'. Since #O* | k, i.e., in particular k is even, the action in (2.1) is
well-defined.

For integers k > 0 and m > 0, let Jj ., (N) denote the space of Jacobi forms of
weight k, index m and level N. Such forms ¢ are holomorphic functions on H x C?
required to satisfy the following conditions:

o ¢|pmled] = p for all A € To(N) C SLo(Z) and e € O and @[ [\, p] = ¢
for all A\, € O.

e For each M € SLo(Z), ¢|i,m[M] has a Fourier expansion (see e.g. [KM12]
p. 1953) of the form

(PemMrzw) = 3 Ml 2+ tul,

(€Z>¢,teD !
vN (t)<tm

where v € Z, depends on M (and equals 1 for M = I). For M = I, we
write ¢, (£, 1) := X (¢, ).
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For a positive integer m, define

a b
An(m) = { [Nc d} | a,b,¢,d € Z,ad — bcN = m,ged(a, N) = 1} .
Following [Ko0j82] we extend the action of SLo(Z) C U(1,1)(Z) on functions on
H x C? defined in (2.1) to that of GLy(R)™ (the plus indicates positive determinant)
by setting

cr+d er+d’ er+d € et +d

at +b vdet Sz vdet Sw tezw
<p|k7t[‘5’](7-72’w) =

} (et +d)™*

for any S = [Z Z} € GLy(R)™. For t = 1 we also write

ISk (T, 2, w) := @l [S](7, 2, w).
Define the index shifting operator
Vin : T t(N) = Tk me(N)
by
(Vi) (7, 2,w) := m*™! Yo

geTo(N\AN (m)

k,t[gD(T7 2, w)

Since ¢ is invariant under I'g(NN) we see that (Vi) (7, z, w) is well-defined.
For ¢ € Ji,1(N) we also define

B _ _
(Vo) (7, 2, w) := ¢,(0,0) —275 Q=p N+ > > dlelnr] |,
p|N neZy dn
ged(d,N)=1

where By, denotes the kth Bernoulli number.
The Fourier expansion of F' € Mj(N) can be rewritten as a Fourier-Jacobi
expansion as follows:

F(Z)= Z om(T, 2, w)e[mT*],

m=0
where
7= [T Z] € H,.
T

w

As in [Hav95] Satz 7.1 we have that the m-th Fourier-Jacobi coeflicients ¢,, lies in
Jem (N).

Proposition 2.4. If F' € M} (N), then it is uniquely determined by ;.

Remark 2.5. For the proof of Proposition 2.4 we adapt the arguments of section
3 of [Ko0j82] carried out for level one and K = Q(¢) to our more general situation.
We decided to include a detailed proof as the account in [Koj82] is very brief. We
also took the opportunity to correct a few small errors in [Koj82].
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Proof. We will show that the map F' + 1 defines an injection M} (N) < Ji 1(N).
Recall the Fourier and Fourier-Jacobi expansions

o 7)) = 3 aaefur]] 2]
_ i%(T,z,w)e[mT*}.

m=0
(e}
= v_DK]ESWithn,mEZ,046(’),Wehave
m
—Dx
detT = nm — Ial , hence T' > 0 if and only if all of the following are satisfied:
n,m € Zy and « 6 O is such that |a|?> < Dgnm. Because of this inequality the

0-th Fourier-Jacobi coefficient of F' € M} (V) picks out the terms for T = [8 8]

Note that if we write T' =

with n > 0 and, by using the Maass condition for n > 1, is given by

eo(T,2,w) = Cr(02) + af (0 E E d*elnr].
n=1 deZ dn
ged(d,N)=1

Furthermore this implies

F([; :D = Cp(0y) +ai(0 Z S d et

n=1 deZ, dln

ged(d,N)=1

0o 00
_ Dgnm — |af? T Zz
CES Y S (Bl forfr o]
n=1m=1 ac0 deZy
|a|?’<Dgnm d|n, d\m dla
ged(d,N)=1

Here and below by writing d | & we mean that d o € 0. As the 0-th Fourier-
Jacobi coefficient restricted to H is an elliptic modular form of weight k£ we can
identify it as a particular Eisenstein series of level N and deduce that

B
Cp(02) = — o (1 =" 1)ai(0).
pIN

This means that the 0s-th Fourier Jacobi coefficient coincides with Vp(¢1).
Using the Taylor expansion of the exponential we also get:

(2.2) )
e [trT [; ” oow ‘({;TK} [ —z’j@] e[nr + :nf*}

v1=0rv2=0

Define
Apy o (Fimym) = Z Z d"ag (Dxnm— |O‘|2> < o )Vl ( @ )”2
o ieZ. G WDr) \Sivbe)

acO
la|?<Dxnm d|n,d|m, d\
ged(d,N)=
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Note that as in [Koj82] one has that

(2.3)
. _ Y dla; 1 @/(—ivDgd)
Al,lm(F.n,m)— d ap (DKd@t([a/(Z\/md) mn/d2
acO d€Z+
|a|?’<Dxgnm dn,d|m,d|a
ged(d,N)=1

e . @ =
X .
(ivDK> (—ivDK)
On the other hand for s € Z, with s dividing ged(n, m, N(«)) one has

. [ Dxgnm —|al?

Ay, 0, (F:1,mn/s?) = Z afp (82
acO

la|?<Dgnm/s?

“(omz) (vme)
=Ay, 1, (F :mn/s*1).

Hence we get

. _ ktvitra—1 : 2
Ay vy (Fin,m) = E strnTe=r A, L, (F i 1,nm/s?).
s€Z
s|n,s|m
ged(s,N)=1

Finally using the function A4,, ,, we can write the Fourier expansion of F' as

(2.5)
T oz >
F ({w T*}) = z_:lgpm(r,z,w)e[mT ]
= Z Z Z Z AVl,VQ (F : n,m)(Qﬂ'zz)"l (27TZw)V2'7|6[nT]e[m7' ]
m=1n=1v1=0v2=0 V1:Vo:
Hence in particular
Pm(rz,w) =Y 3" N " Ay, 4, (F :n,m)(2miz)” (2miw)” V1!V2!e[nT].

Using this, let us compute V,,1. To do so, we note that a full set of coset repre-
sentatives of I'o(N) \ Ay (m) can be taken to be

{[A g] |A,B,DeZ+,ADm,0§B<D,gcd(A,N)1}.
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We have
(Vi) (7, 2,w) =m*~! Yo (#ilkag)(mzw)
gETo(N)\ AN (m)
_ _ AT+ B mz /mw _
k—1 k k
= D D
m Z Sol( D ) D ) D
AD=m
0<B<D
ged(A,N)=1
(26) 0o oo 00
=mtt > DY Y ) Awm(Fin)
n=1v1=0v2=0
0<B<D
ged(A,N)=1
. /mz v . ymw \ Y2
(QMT) (27”\/; ) nAr +nB
X e .
I/1!V2! D

Changing the order of summation and using the fact that for a fixed D and n one
has

o<5en D D ifD|n
we can re-write the above as

o0 oo o0

(Vi) (1, 2, w) =m*F~1 Z Z DD7* Z Z Ay vy (Fin, 1)

v1=0v2=0

d(AN) 1
(2.7) *bin
(2mi52)" (2mi2)" roar
X e .
Vl!V2! D

Note that for a fixed m one has

X r- 2y

gcd(AIN) L ged(m/D,N)=1n'€Zy
n

This change of summation gives us (we still keep A which is now defined to be
m/D):

(Vimer)(r,2,w) =m*=1 Y~ pl=* i i i Ay, o (F 2 D1’ 1)

D|m n’=1v1=0v2=0
ged(A,N)=1
(2rivp) " (2mipe w)
/
X o e[n' At
(2.8) e
= Y AN NN AL (F:D 1)

Alm n’/=1v1=0v2=0
ged(A,N)=1

(2miv5e )" (2miv5e)
X eln'Ar],

1/1!1/2!
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where in the last equality we combined m*~! with D'=F to yield A*~! and noted
that we can as well sum over A now defining D := m/A. This for N = 1 recovers
precisely the first equality in (3.6) in [Koj82], where Kojima’s d is m/a.

To compare with V,,,¢; we now calculate

(2.9)

N

(zmﬁ)yl (2m%)u2

1/1!1/2!

M2

e[nT]

i Ay 1y (F im,m)

2=0

i S skrraia (P T )

s€Zy
s|n,s|m
ged(s,N)=1

- vy - w 1}
(2%1\/%) (2772\/—m>
X
V1!I/2!

) -3
5

n=1rv1

-
N
Il
=
N

1

Mg

Ov

elnt].

Using, similarly as before, that for a fixed m one has

oo
n=1 s€Z, S€EZ4 n=sn’
s|n,s|m slm n'€Z.

we get that
(2.10)

slm
ged(s,N)=1
(2ri) " (2nicie)
m T —=
X vm vm e[n'sT]
1/1!1/2!
[e%s} e} o) e mn,
= 5D S DI SRLCITE I (RN
v1=0v2=0 s€Z n’'=1
gcd(zhlr\]l/)*l
. vmz \Vt mw
(i) (i)™
X e[n'sT].
l/1!V2!

Now redefining A := s and D = m/s, we get

S A TS S5 DHD DD o YN CRERRS

v1=0v2=0 A€Z n’'=1
Alm
(2.11) ged(A,N)=1

(2m@)m (27ri \@w)w ]

X
1/1!V2!
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Note that this is the same as (2.8). Hence we have proved that

om ( =, j’m) = (V) (7,2, )

and so ¢ indeed determines ¢,, for all m, and thus Proposition 2.4 is proved. [

Definition 2.6. Let J;"}”(NN) be the subspace of Ji,1(N) of special Jacobi forms
¢ whose Fourier coefficients ¢, (¢,t) only depend on ¢ — N (t).
Our goal now is to prove that the map from Mj(N) to Ji 1(N) defined in the

proof of Proposition 2.4 is an isomorphism to JZ%’leZ(N ). By generalizing Proposi-
tions 1.3 and 1.4 of [Hav95] to the case N > 1 we know:

Proposition 2.7. For D = 4,8 or for Dk =3 (mod 4) prime we have
T (N) = Jga(N).
(For other Dy these are not equal.)
The following theorem generalizes part of [Hav95] Satz 7.6 (who treats N = 1).
Theorem 2.8. We have an isomorphism J;7*(N) = M (N).

Proof. The proof of Proposition 2.4 shows that we have an injection of the right
hand side into the left hand side, i.e. a form in the Maass space is determined by
its first Fourier-Jacobi coefficient.

Given ¢ € Ji"7”(N), we claim that

w T*

o
T oz X X
212 10(|; 2]) = X 0o v oy € M),
m=0

(This is also stated in [KM12] Proposition 2.2 but we decided to give a proof
following [Ko0j82] for the convenience of the reader.) For convergence of this series
we argue as [Hav95] Satz 7.2 (or [Ibul2] Section 3.1). We claim that I(¢) has a
Fourier expansion with coefficients

B _
Cri)(02) = =, (0,0) 3 [[(1 ="
pIN
and
. Im t { t
k—
deZy ,d|e(T)
ged(d,N)=1

For this we follow the proof of [EZ85] Theorem 4.2 (7) and the explicit expression
for V,,, given in the proof of Proposition 2.4: For m > 1 we have

(V) ro o) = mi=t 30 3T kgL e T

d d
ad=m bmodd
ged(a,N)=1

SR D DD DI D D) s L

ad=m  bmodd 0E€Z o teD !
ged(a ):1 N(t)gf
bat _mz muw
= mFt N dah Yy co(lt)e[— +i= +t=—].
ad=m LEZ>¢,d|¢
ged(a,N)=1 -

teD~ L, N(t)<¢

mw, b

t——
d

Jel

d

]
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Now we eliminate all d’s and change variables by writing ¢ for ¢/d to get that the
above equals

Im —
k—1 tm
Z a Z o " ,te[lat + taz + taw).
alm KGZZO,tE'D71
ged(a,N)=1 N(t)<tm/a
Changing the order of summation and again changing variables by writing ¢ for af
and t for at we now get

Im t _
Z Z ak_lc(z,(—zl,f)e[h—i—tz—&—tw].
a®’a
0€Z5o,teD™!  ale(T)
N(t)<em gcd(a,N)=1
So, if we assume for the moment that I(¢) € My(N) this expression for the
Fourier expansion implies that I(¢) lies in the Maass space with the function aj( )
describing its Fourier coefficients given by
m t
s
The latter is well-defined since we assumed ¢ € J;"7”(N).
It now remains to prove that I(¢) € My (N). We first adapt the proof of [Kli59]
Satz 3 (in the Siegel case) and that of [Gro78] Satz 3 (principal congruence subgroup
in the Hermitian case) to prove the following:

(2.14) (g (DrdetT/d?) = cy(

Proposition 2.9. Féz)(N) is generated by matrices of the form

—
. [OU Uql} for U € GL2(0O), and
a 0 b 0
01 00 a b
*l. 0 4d o for L d] € To(N) C SLy(Z).
0 0 0 1

Proof. For a matrix S € Sz(Z) we will write I(S) := [0 I
2 Iz

I, 0
S I

T2 S} (translation by

S) and I'(S) := {

o
R(U) = [ OU Uol] (rotation by U). We need the following lemmas.

] (antitranslation by S§). Also, for U € GL3(O) we set

ay
Lemma 2.10. Let |“?| be the first column of an element of F((JZ)(N). Then there
C2
exists S € So(Z) such that
al ay
al as
=I(S
o () |,
ch Co

satisfies (ay,ah) == alO + abO = O.
Proof. Apply [Gro78] Korollar on p. 149 with n = 2 and q = O. O
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ai

Lemma 2.11. Leta = {
as

} be a column vector with ay,as € O satisfying (a1, as) =

O. Then there exists U € SLa(O) such that Ua = [(ﬂ .

Proof. Let x,y € O be such that za; + yas = 1. Then set U = [ 2 5} O
—az a;

Let us now prove Proposition 2.9. Let M € F(()2)(N). By Lemma 2.10 we can
find S € S3(Z) such that I(S)M has the first column whose top two entries aq, as
satisfy (a1,a2) = O. So by Lemma 2.11 we can multiply M on the left by some

R(U) to ensure that the first column of M starts of with [(1)
A B o 1 *
M = c pl€ U(2,2)(Z) we must have "AC € S3(Z). For A of the form 0 x

this forces the top left entry of C' to be in Z. Hence there exists S € S3(Z) such
1

} Furthermore, since

that I’(S)M has the first column of the form . Moreover, since the lower-left

0
0
block of M has all entries divisible by N we can take S with S =0 (mod N). So,
now we have

1 *x * =
_ 0 ap * bo
M= 0 0 % =
0 Co * do
with {(CIO ZO} € F(()l)(N ) (note that the zero above ¢y is a consequence of *AC
o do

being hermitian).
It follows from Lemma 2.2 and the above arguments that the group I‘éz)(N ) is
generated by I(.5),I'(S), R(U) and the subset © C FSQ) (N) of matrices of the form

1 x x =«
8 %0 I bf with [Zg Zg] € T'o(N). In fact, we only need to consider the set
0 Co * do
1 * *x *
. 0 a x b . .
®o of matrices M = 00 1 =« with all * equal to 0, as we can multiply on
0 ¢ x d
1 0 0 O
0 d 0 —=b .
the left by 00 1 0 to get M to be of the form I(S)R(U) for appropriate
0 — 0 a
10 0 0
. 0 a 0 b
S,U. Note that for any matrix of the form 00 = ol ™ must have z = 1
0 ¢ 0 d

since *tAD —tCB = I,.
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Now we show that we also do not need the translations I(S). It is enough to

1 0] |0 0] [0 1 0 w
show that we do not need I(5) forSGA.{{O O}’{O 1}’[1 O}’[w 0]}

for

[v-D if—D#1 mod4
i@ +v=D) if-~D=1 mod4,
as the rest of matrices in Sz(Z) are a Z-linear combination of elements of A.
Since I( {8 ﬂ) € ®g we clearly do not need {8 (1)] By using (7) in [Kl1i59]

with U a permutation matrix we see that I( [(1) 8}) = R(U)I( [8 (1)] YR(U)™1, so

we also do not need the first matrix in A. We have

o o ALl oo )

so we can again use (7) in [Kli59] to see that the third matrix in A is also not
needed, because this gives us

wly spry has Sp=nS oprds I

and we already know that the left hand side is generated by rotations and g and
also the last term on the right-hand side is. Finally, one has

e ) e A e

hence by the same argument as above we see that the fourth matrix in A is also
not needed. We can apply the same arguments to antitranslations (replacing A by
NA).

Lastly note that we can replace ®( with the second set of matrices in the state-
ment of Proposition 2.9 because

a 0 b 0 10 0 0
=101 0 0|54 [0 a 0 D
JcOdOJ |0 0 1 o)’
0 0 0 1 0 ¢ 0 d
0100
= (1 0 0 O (2)
where J = 00 0 1 eIy (N). O
0 010

Define I'; 1 (V) to be all the elements of Fé2) (N) whose last row is (0,0,0,1).
Since Vind € Jim (V) we get (as in [Hav95] Lemma 1.2 and (22)) that V;,,é|x[M]
for all M € T'y1(N). By considering the Fourier expansion of I(¢) we further see

L . J 0 |0 -1
that I(¢) is invariant under [02 J] for J = L 0 }
This allows us to deduce as in [Hav95] Satz 7.2 that I(¢) is invariant under el for

c € 0%, [6] (ﬂ and T'y,1(N), which in particular includes R(U) for U = {S ﬂ
2

—
As [Hav95] shows in the proof of Satz 7.2 matrices of the form [ OU Uofl} for
2
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U € GLy(O) can be generated by these, so we get by Proposition 2.9 that I(¢) is
invariant under FE)Q)(N ) and therefore I(¢) € My (N) as desired. O

3. SOME TRANSFORMATION PROPERTIES OF THE THETA FUNCTION

In this section we discuss the relationship between Jacobi forms of odd level N
and elliptic modular forms, which uses the so-called theta decomposition of Jacobi
forms. For later use we prove a result about the transformation property of the
theta functions occurring in this decomposition. To shorten notation in this section
we will write D for D.

3.1. Theta decomposition. For u € D~! define
ST, 2, W) 1= Z e[N(a)T + @z + aw).
acut+O

Consider a Jacobi form ¢ € J;’7”(N). Then its Fourier expansion can be written
as

(31) QO(T,Z,’LU) = Z fu(T)ﬂu(TazaU))a

ueD-1/O
where
(3.2) fulr) = > al,(O)eltr/D)
£>0

{=—DN (u)mod D

for af(D(m — N(u))) := cy(m,u). The latter is well-defined by the definition of
J,jie “(N) and the decomposition (3.1) is unique, since the 9, are linearly indepen-
dent as functions (z,w) — U, (7, z, w) for fixed 7 € H (see e.g. [Hav95] Proposition
5.1).

Lemma 3.1 ([Koj82] Lemma 2.1 (for Q(%)),[Shi75] Proposition 1.6). For ¢ =

[(cl Z} € SLy(Z) and u € D! we have

ﬁu'[ah = Z Mu,v(a)ﬁvv

veD~1/O
where
—i aly|? —yo—7v+d|v|? .
Moo = | 75 Truropeo € L] ife o0
7 sign(a)dy, qavelablul?] ifc=0.

If ¢> 0 and D | ¢ then
Mu,v(U) = 5u,dve[ab|u|2}XK(|d|)

Fix an ordering on D~1/0, a group with D elements. For o € SLa(Z) let M (o)
be the D x D matrix whose (u, v)-entry is M, (o) as defined above. Since ¢ is of
level N, it follows from Lemma 3.1 and from [Koj82] Lemma 2.2 (which is easily
reproven for level greater than one) that for o € T'o(N) we have

fu|k—10': Z Nu,v(o')fva

veD~1/O
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for the matrix N (o) = (N, (o)) defined by
EN(o)M (o) = Ip.
Here we use the notation

(Fhe10)(2) = (e + @)+ flo(:) or o = |

*

d] € GLy(R)™.

From this we can deduce the following:

Lemma 3.2 (Analogue of Corollary in section 4 of [Kri91] and Korollar 4.4 and
Satz 4.5 in [Hav95]). For u € D=1 we have

(1) fulg—1M = fyu, if M =1, mod DN,

(2) fu(r+1) = e[=N(u)]fu(r),

(3) folk—1 ]1[ (1) = 52y uen-1 /0l INN (v) + u + W] fu,
(4) folk—1M = xx(d) fo for M = [CCL Z} e Ly(ND).

Proof. The proofs are similar to those in [Kri91] and [Hav95]. We sketch the proof
of (iii) since it is the hardest. Note first that

1 0] _ 1 =N .,
ERT R
0 -1
where J = L 0} Now by Lemma 3.1 we have

Yo

11[J] = \/;li) Z Uy

veD-1/0

and

ollly i = e-vn .

Note that J~! = —J and by Lemma 3.1 the action of 0 = —I5 € SLy(Z) is given
by My, (o) = —0n,—k. Putting this together we obtain

wllly i = o5 X d-mN@IL

veD~1/O

= % Z e[-NN(v)] - \/_—% Z e[—ut — wv]d,

veD-1/0O weD-1/0

1
- BZU ueD—l/oe[_NN(v) + U + WYy,

We recall the following result about quadratic Gauss sums:

Lemma 3.3 ([Hav95] Lemma 0.4). Assume D is odd and coprime to an odd integer
N. Let a € Z be coprime to N. Then

% > e[a”]ﬂXK(N).

yEO/NO
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To relate the Jacobi modular forms to elliptic modular forms we make the fol-
lowing definition:

Definition 3.4. For N € Zx let

M (DN, xk):={f= Zan(f)q" € My_1(DN, xk) | an, = 0 whenever xx(n) = 1}.

At this point we can now generalize [Kri91] Proposition 4 and [Hav95] Proposi-
tion 5.6 to general odd level N:
Assume that ged(D, N) = 1. Then there exist w,y € Z such that Dw — Ny = 1,

and we define
W D y| |1 O|D vy
P=IDN Dw| [N 1||0 1|°

Proposition 3.5. Let D be prime. Assume N is odd. Then the mapping Ji1(N) —
M;" (DN, xk) given by

o= f= folk-1Wh
is an injective homomorphism. The Fourier coefficients of f satisfy

(3.3) ar(f) = z’“f}%)

where

Xk (N)ag (0),

ap(t) = #{u € D"'/O|DN(u) = —¢ mod D}.

Remark 3.6. For N =1 [Kri91] section 6 also proves surjectivity of the map. We
show in the proof of Theorem 4.4 that for N = p prime the map is surjective onto
the space of p-old cuspforms in M;" ,(Dp, Xr)-

Proof of Proposition 3.5. Using the argument from [Hav95] Satz 5.3 proving mod-
erate growth and Lemma 3.2 (and the fact that the involution induced by Wp
preserves My_1(DN, xk) by Proposition 1.1 in [AL78]) we can conclude that
F e Mk_l(DN,XK).

We now calculate the Fourier expansion of F'. Note that

Woim (o pul= v W Lo 1=[x b 1[5 1]

We first need to work out the effect of

1 0|1 oyl |1 Y |1 Y
=N 1|0 1| T |N Ny+1| " |N Dw
on ¥Jg: For this we use similar ideas to those in Shintani’s proof of [Shi75] Propo-

sition 1.6(ii): Since ged(N, D) = 1 note that v — vN induces an automorphism of
D~1/0. Applying this change of variable we get

—1 |72} e 2
My yn(0) = —— e|——|el—yv —7Fv +wND|v|*].
o) = oy o) etro =30+ wnvplep)

Since v € D' we have e[-y5 — Fv] = 1, and since VDD~ C O we also have
e[wD|v[?] = 1. By Lemma 3.3 we get

—1
dolloh = xx(N)—= > 9,
VD
veD-1/0O
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which implies that

f0|k710:XK(N)\/L5 S e
veD-L/O

and so

f<T>=fo|k71WD<T>=xK<N>% S (D),
veD-1/0

This implies the formula (3.3) for the Fourier coefficients of f. As we know from
[Kri91] 4 (5) on p. 670 that ap(¢) = 1+ xx(—¢) = 1 — xx(¢) we conclude from
this that f € M,j_l(DN, XK)-

As ¢ — f is a linear map of vector spaces it suffices for the injectivity to check
that the kernel is trivial. Suppose that f = fo|x—1Wp = 0. By (3.3) this means
that aj,(¢) = 0 whenever ap(f) # 0. By the definition of ap(£) these are the only

a,(¢) used in the definition of the f,, so the Jacobi form ¢ = 0. O

3.2. Key technical result in this section.

Proposition 3.7. Assume that D is prime (which implies D = —1 mod 4), p > 2
a split prime in K/Q. Note that this is equivalent to xx(p) = 1. Let # € O with
N(mw) =p. Then

-1
Mﬂ'u,ﬂ'v(o—) = Mu,v( |:]5 ?:| g |:p0 f[):|)
for all o € Ty(p).

Proof. Let 0 = [];Ic b}. Note that

RTEET

We consider three different cases:
(1) ¢=0
(2) (,D) =1
(3) ¢e>0and D |c
Case (1.) is straightforward: Lemma 3.1 tells us that
M 7o(0) = 8ign(a)Snu rave[ab|mul?].

L. P 0 pil 0 . 2
This is clearly equal to M, . ( 0 11%To 1 ) = sign(a)dy, qvelapblul?].

For Case (2.) we calculate by Lemma 3.1 that

—i 1 1
Muurs() = 2L e[ fahl? - om0 -+ dohl)|

\/Epc yeETU+O /pcO ¢
—i 1 [1 9 . T 2

= — = Z e |—(aly + 7mu|® = (v + 7u)70 — (v + wu)7wv + dp|v|?)
\/BPC’YEO/Z)CO ¢
—i 1 [1 70 1.

- T 3 e|mteprm T e )
\/EPCWEO/pcO pe a a

_ \%e[%(d—%)lvﬁﬂé > el;i’7+<m_7;v>ﬂ'

yeO /pcO
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a v
C a
a v
,fy_i_ u— —
c a

Lemma 3.8. For D = —1 mod 4, u,v € D!, ged(N,aD) = 1 we have

t oI [ O [ e oa |

YEO/NO +EO/NO

On the other hand, a similar calculation shows that

s 2= Gt e %

yeO/cO

|
i

So these would be equal if we can show that

2
1 a T 1
3.4 — — - — = -
(3.4) CZe[pC]wwa] DI

p ~yEO /pcO YO /cO

Proof. We first note that we can work modulo N in the argument of e [%} Since
ged(a, N) = 1 there exists a* € Z such that aa* =1 mod N, so

*

=aa*— =a*v mod N.

ISEIRST
ISHES]

It therefore suffices to prove the statement for a general element v € D~! and v = 0.
We take the Z-bases of O and D! as follows:

O=7+ %(1 +vV-D)Z

and

) 1 i
—Z+ -1+ —
vD 2( v D

\/% + (1 + ﬁ) for uq,us € Z we calculate that

D = )Z.

Writing v = w3

w=uvV/—DD* + %(1 +v/~DD*) mod N,

where DD* =1 mod N. Reordering terms we see that

1
5 (1 V=D)(u2D" + 20 D) + %(1 — D*) —wD* mod N.

If N is odd then 2 is invertible mod N, so we see that u is equivalent modulo N to
an element of 0. If N is even then DD* =1 mod N shows (together with D odd)
that D* is odd and we can make the same conclusion. By a change of variable the
sum is therefore equal to the right hand side of the statement of the Lemma. [

u

Following [Hav95] let us call the right hand side in the Lemma 3.8 :-G_p(a, N).
Since ad — pbc = 1 ensures that ged(a,pc) = 1 the Lemma shows that (3.4) is
equivalent to

1 1
3.5 —G_ =-G_ .
(35) Gop(@p0) = -G-p(a.o
For odd ¢ Lemma 3.3 shows that both sides are equals to xx(c) (recall that p > 2
and xk (p) = 1 by assumption).
For general ¢ we argue as follows: For ged(cy, c2) = 1 it is easy to see that

G_pla,cic2) = G_placy, c2)G_placa, cr).
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By factoring ¢ = 2°2p°rq with (¢, 2p) = 1 we can rewrite (3.5) as
1 1
—G_p(2%a,p* ' q)G_p(ap™®t'q,2%) = =G _p(27a,pq)G_p(ap™q,2°?).
pe c

Applying Lemma 3.3 for the Gauss sums with odd second argument we see that we

have reduced (3.5) to

G_p(apt'q,2°?) = G_p(ap™q,2).
This equality is true since

Goplep.2?) = Y eomhPl= Y. egmlmlPl= Y elg bl

veO /220 ye0/2°20 ye0/2°20

since p > 2 and |7|? = p.

For case (3.) we refer to the final part of Lemma 3.1: For D | ¢ the only terms
in the expression for M, (o) involving b,c or u are d, 4, and ablu|?®. So when
b changes to pb (and 7w to u, and 7v to v) the expressions for My (o) and

p 0] [pt 0
My, ( {O J o [ 0 1]) are equal. O

4. MAASS LIFT OF p-OLD PLUSFORMS

Assume that D = Dy is prime and p is split in K/Q. Set S,j_l(Dp, XK) to
be the subspace of M;_I(Dp, Xk) (cf. Definition 3.4) consisting of cusp forms.
The goal of this section is to prove the existence of a Maass lift for p-old forms in
S,j_l(Dp, Xr). This will allow us in section 6 to p-adically interpolate the Maass
lift of ordinary newforms in Sx_1(D, xk). In [Kri91] Krieg defines the Maass lift
for h € My_1(D, xx) by relating h — h® € M, (D, xk) to a Jacobi form (thereby
proving the surjectivity of the map in Proposition 3.5 for N = 1) and then invoking
Theorem 2.8 (again in the case N = 1) to associate a Hermitian Maass form.

We briefly recall the key step in the construction of the Maass lift of [Kri91]:
Given u € D! and g(1) = X, an(g)e[rn] € M, (D, xk) define (as in [Kri91]

6(1))
—iv/D

(4.1) Gu(T) = m eezzio ag(g)e[ér/D].

—¢=DN(u) mod D

Krieg proves in the theorem in section 6 of [Kri91] that
0g(T, 2, w) = Z gu(T)0u (7, 2, W)
uE'Dfl/OK

is a Jacobi form of weight &, index 1 and level SLy(Z), i.e., ¢4 € Ji 1(1).

For a p-oldform in S |(Dp,xx) we will now modify Krieg’s definition, but
before we do so, we collect some of the properties of the forms lying in the plus-
space in the following lemma.

Lemma 4.1. (1) If h € Sk_1(D,xK) is a normalized eigenform then g =
h — he belongs to S; (D, xk) and gli—1 [g (1)] belongs to S, (Dp, xk)-

(2) The space S,j_l(D,XK) is generated by h — h® for normalised eigenforms
h e Sk—l(D;XK)'
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(3) Any p-old form in S,j_l(Dp, XK) s of the form Ag1 + puga|k—1 {g ﬂ for
91,92 € Si (D, xk) and A\, € C.
Proof. (1) This follows from the following formula [Miy89] (4.6.17):
(4.2) an(h®) = an(h) = xx (n)an(h) for ged(n, D) = 1.

(2) Asin [Kri91] p.671 we use for this that S,_1 (D, xx) has a basis of newforms
hiy...hg, b, .. RS, hat1, .. hegp with h; # b for 1 < i < a and h; = hf
for a <4 < a+b. This implies the statement by [Miy89] Theorem 4.6.8(1),
similar to the following argument for the p-old plusforms.

(3) Let f € S,j 1(Dp, XK )P4 Then f = f1 + fo + f3 + f4, where f; €
@, Clhi — hg), fo € @2 Clhs + 15), f5 € B, Clhy — b1 [" 1],
fa € @a+b C(hi+hS)|k=1[" 1]. Set g = fo+ fs. We claim that the Fourier
coefficients a,(g) = 0 for all ged(n, D) = 1. By [Miy89] Theorem 4.6.8(1)
this implies that g = 0, which proves statement (3) of the lemma.

Consider first the case when xx(n) = 1. Then a,(g) = 0 since g =
f—=(fi+f3) €S, (Dp,xk) by assumption and (1).

If xx(n) = —1 then a,(f2) = 0 since an(h + k%) = 0 for any h €
Sk—1(D, xx) by (4.2). Write n = n'p” with ged(n/,p) = 1 and » > 0. If

r =0 (ie. ged(n,p) = 1) then an((h + h%)|r-1 {p J) =0andifr >1
then
an((h + h°)|k-1 [p 1]) = aprpr-1(h + h°),

(n/p) = xx(n) = —1.

which is zero again by (4.2) since xx(n'p"™1) = xx
= 0 whenever yx(n) = —1,

Since g = fo + f4 this shows that a,(g)
concluding the proof.
O

For a p-oldform in S,jfl(D]L Xx) we modify Krieg’s definition as follows:

Definition 4.2. For f = \g* + pg?|x_1 [0 (1)] with g', g2 € S;:_l(D,XK), e O

with N(7) = p and ¢¢, as in (4.1) we define (making use of the fact that multipli-
cation by 7 induces a bijection on D~1/0)

0
Fru = Mo+ 19ul1-1 {g J :

Proposition 4.3.

0f(T, z,w) 1= Z Ju(T)0u (T, 2, W) = Apgr (T, 2, w)+11 Z G2 (pT) (T, 2, W)
uweD~1/0O uweD-1/0

is a Jacobi form of weight k, index 1 and level p.

Proof. We need to check that for all o € T'y(p) we have

f7ru|k—10': Z Nﬂ'u‘n'v f‘n'v;

veD~1/0
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where the matrix N(o) = (Ny,(0)) is defined in section 3.1. It follows from
Proposition 3.7 that

Nm,m(a):Nuv”([g ?]U[p()l (1)D

for all o € T'g(p). The proof of the theorem in section 6 of [Kri91] (which can be
used here because the g’ are of level D) shows that

gi|k—10 = Z Nuv gv
veD~1/O

for all o € SLy(Z).
Now we calculate that for o € I'y(p)

0
Srulk=10 =Agrulk—10 + 1galk—1 {g 1] o

—1
0 0 0
=Ag;u|klo—+ugz|kl([g ol )[g )

SRR (NG P

veD-1/0 veD-1/0
= Y N <Ag — pgolk- 1[ OD
U, 7rv ™ v 0 1
veD-1/0O
O
Theorem 4.4. For f € S;" (Dp, xx)P~° there exists Fy € M (p) with
ar(f)

4.3 () =vD .
( ) aFf( ) ZGD(K)

We will refer to Fy as the Maass lift of f. Furthermore, the assignment f — Fy
defines an injective C-linear map from S;" | (Dp, xx )P~ to M} (p).

Remark 4.5. Due partly to the absence of an old/newform theory for Hermitian
forms it is non-trivial to extend the lift to p-oldforms. In particular, for f =

AL+ pg2 k1 [g (i)] our lift Fy(Z) does not equal AFy1(Z) + pF 2 (pZ) for the Fy;
defined by [Kri91].

Proof. The linearity of the map follows immediately from (4.3) because a,(f) is
linear in f. By Lemma 4.1 (3) the form f = A\g' + ug?[r_1 [g ﬂ with ¢!, ¢% €

S (D, xk). Since ¢; € Jy1(p) by Proposition 4.3, it follows from Theorem 2.8
that there exists a unique Maass form F; € M (p) corresponding to ¢.

To prove (4.3) we claim that it suffices to show that o, (¢) = \/Bz(;[,j({e))’ ie.,
to show that ¢y maps to f under the mapping of Proposition 3.5 (with N = p),
using that f lies in the plus-space. Indeed we note that by combining (2.14) with

the definition of oy, in section 3.1 we get for T = E 7;} that

. m ¢ R m o |t)?
(4.4) ap, (Ddet T/d?) = c,, (d2’ d> =a}, (D <d2 - d2)) ,
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We also note that it is enough to consider o, (¢) for £ = —DpN(u) (mod D)
because of Remark 2.1 and the fact that multiplication by the norm of an element
« € O prime to D induces a bijection on the set N(D~1/0).

We now calculate that analogous to (4.1) we have

—ivD
>

(45) FeulT) = o N

ag(f)eltr/D].

LeZ,,—¢=DpN(u) mod D

For this we express f, in terms of g using Definition 4.2 and utilize the “Fourier
expansion” of g, given by (4.1) to get that for £ = —DpN (u) mod D the coefficient
of e[¢T/D] in the expansion of fr, is

» Aag(g") Aag/p(9°)
vD <aD<—DpN<u>> * aD<—DN<u>>> '

By [Kri91] formula 4(5) we know that

an(6) = {1+><K(—z) Dt

0 D¢

Since ged(p, D) = 1, we see that D | DpN(u) if and only if D | DN(u). Also,
since p is split we have yx(p) = 1, so for all u € D~ we get ap(—DpN(u)) =
ap(—DN (u)), which proves (4.5).

On the other hand, since ¢ is a Jacobi form, we get a decomposition of ¢ as
n (3.1). Since such a decomposition is unique the f,s in section 3.1 coincide with
the fys considered in (4.5) which enter in the definition of ¢ (cf. Proposition 4.3).
Thus we have by (3.2) that

fu= > ag, ()eltr/D].
leZ
{=—DN (u)mod D

Comparing this with (4.5) then implies that for £ = —DpN(u) mod D we have

. ae(f)
2 (0)=—iVD | ———=t— ).
o0 =D (o)

The injectivity of the map from f to ¢y is clear since we showed that it is the
inverse to (the restriction to S;” | (Dp, xx )P~ of) the map from Proposition 3.5.
Combined with Theorem 2.8 this shows that the map f — F; must be injective.
This concludes the proof of the theorem. O

Remark 4.6. Our construction is very different from that of Kawamura in [Kaw10]
who, in the setting of the Maass lift to Siegel modular forms, produces an analogous
lift for Hecke eigenforms by p-stabilising the classical full level lift. As it is not
clear which p-stabilisation procedure to follow for Hermitan forms we chose this
more direct approach. Note that our construction allows us to lift any oldform
(as opposed to only eigenforms), i.e., is more in the spirit of Krieg [Kri91] and
corresponds to what Ikeda calls a ‘linearized’ lift - cf. [Ike08] sections 15 and 16
for full level version. However, if f € S,:r_l(Dp, X )P~° arises from an eigenform
h € Sk—1(D, xk), then it follows from Proposition 5.3 and Remark 5.4 that our
Maass lift F'y is indeed a Hecke eigenform (at least away from D) with eigenvalues
agreeing with those of the classical Maass lift studied by Krieg et al. of h away
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from p and D. The Maass lift is semi-ordinary at p provided that h is ordinary at
p (cf. section 5.3).

5. THE HECKE INVARIANCE

The goal of this section is to prove that the Maass space is invariant under the
action of certain Hecke operators. As before we assume that # Clg = 1, Dk is
prime and N is prime to Dg.

5.1. The good primes. Let p be a prime such that p { NDg. Consider F €
MF(N). A set of generators of the local Hecke algebra #,, at p is given in sections
4.1.1 and 4.1.2 of [Klo15]. Since this case is almost identical to the level 1 case, we
will not need the precise definitions here and instead refer the reader to [Klo15] for
details.

Proposition 5.1. For any T € H,, one has TF € Mj;(N).

Proof. In case when p is inert (resp. split) in K, the proof is just a simple modifi-
cation (consisting of making sure that the condition ged(d, N) = 1 can be inserted
in all the relevant spots) of the proof of Theorem 7 in [Kri91] (resp. of Theorem
5.10 in [Klo15]). O

5.2. The primes dividing N. Suppose p | N. In this section we will prove that
M (N) is invariant under the Hecke operator U, := FéQ)(N) diag(1, l,p,p)F(()Q) (N).
Here the situation turns out to be simpler than in the case of good primes, but
since to the best of our knowledge this case has never been specifically treated in
the literature, we will include the proof. Then

1 1 a b
2 1 2 2 1 b ¢
U, =T (N) (N =[] 1P
p p
a,c€EZ/pZ
p beO/pO p

If we write F'(Z) =Y 7vq Cr(T)e[tr TZ] € My, (N) for the Fourier expansion of
F, then we have B

(U,F)(2) =p™ 3" Cr(T) Y e{tr (T<Z+[‘Z f;Dpl]

T>0 a,c€EZ/pZ
beO/pO
(5.1) <ol .
=2k -1 a -1
=p ZC’F(T)e[trTZp ] Z e{trT[b C]p }
T>0 a,c€EZ/pZ

beO/pO
Writing T = {Z ::;] with n,m € Z and o € D! we see that the last sum equals

>

a,c€EZ/pZ
beO/pO

na + tr /q(ab) + me
p

0 otherwise.

_ {p4 if p | e(T)

Hence we conclude that

(5.2) Up Y Cr(T)eltr TZ] = p~2kT* >~ Cp(pT)e[tr TZ].

T>0 T>0
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Proposition 5.2. Suppose F € M} (N). Then U,F € M} (N).

Proof. Set G := U,F. Write G(Z) = 3 1+, Cq(T)e[tr TZ] for the Fourier expan-
sion of G. We need to show that there exists a function of @ Z>o — C such
that Co(T) =" aez, d"lak(Dk detT/d?). Write o} for the corresponding
dle(T
gcd(‘d,(Nizl
function for F. Then we have

(UpF)(Z) =p~ > " Cr(pT)eltr TZ]

T>0
=p N D" dFag (D det(pT) /d?)eltr TZ)
T>0 deZ,
(5.3) dle(pT)
ged(d,N)=1

=p N Y d"lag(p’ D det T/d?)e[tr TZ],
T>0 deZy
d|e(T)
ged(d,N)=1
where the last equality comes from the fact that e(pT) = pe(T) and since p | N,
the condition ged(d, N) = 1 forces the conditions d | e(pT) and d | €(T) to be

equivalent. We can thus set o, (x) := p~ 2ok (p?r). O

5.3. Maass lifts of ordinary eigenforms. If we use the “arithmetic” normaliza-
tion of the Hecke action and scale the slashing operator |,y by the additional factor
of uu(v)?*=*, then since p(diag(1,1,p,p)) = p, the factor p~2¥+4 in (5.2) will disap-
pear. Here p denotes the similitude homomorphism defined on GU(2,2). Fix an
embedding Q, — C. We call a newform h = 3. an(h)q" € Sk—1(Dx,xK)
p-ordinary if val,(ap(h)) = 0. If this is the case then the Hecke polynomial
X2 —a,(h)X +p"2x Kk (p) has two roots, one of which, say «, is a p-adic unit, while

the other, say f3, is not. Furthermore, the form f := (h—h¢)—5(h—h°)|k-1 [p 1]

lies in S;j,l(DKp, xx )P4, As usual one can define the classical “U,” operator

on Sk—1(Dgp, xk), which we denote here by U(p) to distinguish it from the U,
operator defined above, by setting U(p) >_0_ | ang™ := > ._; anpq™. This operator
preserves the plus-space if p is split in K/Q, while its square preserves it for all p.

From now on suppose p splits in K/Q. Let Fy € M} (p) be the Maass lift of f.
We record the following result.

Proposition 5.3. One has U(p)f = af and U,Fy = o*F¢ where U, is normalized
arithmetically.

Proof. The first assertion is a standard fact for forms defined in the same way
as f but with h in place of h — h°. Thus it remains true for f since a,(h®) =
x(p)ap(h) = ap(h) (cf. (4.2)). The second assertion follows from this, formula (4.3)
and the fact that af; (0) = O, (p%€) (cf. the last line of the proof of Proposition
5.2 combined with our “arithmetic normalization” of U,) as well as the fact that
ADk (ﬁ) = apg (pge). N

Remark 5.4. Proposition 5.3 can be seen as asserting that the Hermitian Hecke
operator U, ‘descends’ to the elliptic Hecke operator U(p)?. This is somewhat
analogous to the case of Siegel modular forms, where the U, operator descends to



A p-ADIC HERMITIAN MAASS LIFT 25

U(p) (i-e., no square) - this follows from combining Theorem 4.1 in [Ibul2] with
the work of Kohnen [Koh82] and Manickam et al. [MRV93] (we are grateful to
Jim Brown for providing us with these references). Furthermore, Theorems 5.18
and 5.19 in [Klol5] imply that Fy is also an eigenform for the Hecke algebras
H, for primes £t Dip and provide analogous ‘descent formulas’ for the standard
generators of these algebras (but we caution the reader that the notation used in
[Klo15] conflicts with ours - in particular U, in [Klo15] is different from our Up).

6. A p-ADIC INTERPOLATION OF THE MAASS LIFT

As before in this section we assume that K has class number one, that its dis-
criminant D = Dy is prime and we fix a prime p which splits in K. In this section
we write Ok for the ring of integers of K (since we reserve the notation O for a
p-adic ring as defined below). From now on we fix embeddings Q — Qp =~ C. Let
EC Qp be a sufficiently large finite extension of Q, and set O to be the valuation
ring of E. Set I' = 1+ pZ, and Ap := OJ[I']]. The p-adic cyclotomic character
¢ : Gq — Z, induces a canonical isomorphism Gal(Q/Q) =5 T, where Qo is the
unique Zy-extension of Q unramified away from p. Thus we can regard the tauto-
logical character I' — A5 as a character of Gq via the composite Gg — I' = Aj.
We will denote this composite by ¢«. We will write w for both the mod p cyclotomic
character and the associated Dirichlet character (Teichmiiller lift). For a positive
integer 7, a p"~'th root of unity ¢, and an integer m > 2 we define a continuous
O-algebra homomorphism

Um¢ iAo = Q,, 14+p—(1+p)" "

Let ko be a positive integer such that #0% | ko. Let fko—l € Sko—1(Dp, xK)
be a normalized Hecke eigenform new at D with fﬁrl # fko_l. We assume that
fko_l is p-ordinary, i.e., that its U(p)-eigenvalue is a p-adic unit.

By Theorem 1.4.1 of [Wil88] there exists a finite extension K of Frac(Ap) and
a primitive, normalized (i.e., ¢; = 1) I-adic Hecke eigenform F = 3 cnq" € I[[¢]]
of tame level D and character ¥ such that for some extension 1/,’6071 I — Qp of
Vko—1,1, O1e has

(6.1) Vip—1(F) =Y viy 1 (en)d" = fro-1-

Here I denotes the integral closure of Ap in K and ¥ := yxgw* 2. We recall that
such an F has the property that for almost all pairs (k,¢) and all extensions V,’C’C :
I— Qp of vy ¢ one has that V];((]:—) is a modular form of weight k, level Dp"and
character \I/wl_k'XC = who—k=1y K X¢- The Dirichlet character ¢ of conductor p” is
defined by mapping the image of 1+ p in (Z/p")* to (.

Note that we use a slightly different normalisation to that in [Wil88], whose spe-
cialisation maps v ¢ send 1+p to ((14p)¥=2 (cf. also the discussion in [BGNK10]
Remark 3.3). We also note that F is not necessarily a unique normalized primitive
I-adic eigenform with the property (6.1), but the Gal(X/Frac(Ao))-conjugacy class
of F is unique. In other words here we pick a member of this Galois conjugacy
which lifts fr,_1.

For k = ko (mod p — 1) - so that w* % = 1 - we have that v} ,(F) €
Sk—1(Dp, xk) is a normalized p-ordinary eigenform. As is well-known thanks to
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the work of Hida (cf. Theorem 2.1 in [Hid86] and also Theorem 6.1 in [BGNK10]),
one can associate to F a continuous (for the meaning of continuity in this context
cf. [Hid86], p. 557), absolutely irreducible Galois representation

pz: Gq — GL2(K)
which is unramified outside Np and for each prime ¢ 1 Np satisfies
det(1 — pz(Froby)X) =1 — ¢, X + (V1) (Froby) X 2.
In particular one has
(6.2) det pz = Wy

We will write V for the space of this representation.
As it follows from [Miy89] Theorem 4.6.17 that there are no ordinary newforms of

level Dp, for almost every k and every extension vj,_; of v_1 1 the form V]’Cfl(]:" ) is
a p-stabilization of an ordinary newform h,, =3 an(h,; )q" € Sk-1(D, xK)-
To ease notation, as before, we will write hj,_, instead of hy; . (the prime (here and
below) indicating that the form potentially depends on the choice of an extension

vy, of vg_1,1). We then define f;_, by
0
s = dhs = Bhsgiabn 5]

where g;,_; == hj,_; — (h},_1)° and B, = p*2/al,_, with o} _, the eigenvalue

of U(p) corresponding to v;,_,(F). In other words we go counter-clockwise on the
following diagram:

{Ul/c—l(]}) € Skfl(Dp7 XK)p_Old}u,’c,l {fllc—l € Sl:r—l(Dpv XK)p_Old}V,’c,l
pstabilizationT Tpstabilization
{hhey € Sk—1(Dyxx) by, ————{gh_1 =Ny — (M1)€ Sl_f‘——l(DaXK)}V;C_l

We will prove in Theorem 6.1 below that {f;_;},,  isindeed a p-adic analytic fam-
ily. (Note that it follows from Lemma 4.1 (1) that f_, belongs to S;" | (Dp, xx)-)
Let us remark here that since our construction of the Maass lift does not allow p? to
divide the level, we have to limit ourselves here to r = 1, i.e., ( = 1. This amounts
in essence to constructing a family only over Q,-points of the weight space, as
opposed to Qp-points.

Theorem 6.1. There exists a finite set A of k = ko (mod p — 1) and an I-adic
form F =3 bu(F)q™ € I[[q]] which has the property that for every n and every
k=ko (modp—1) with k & A, every extension vj,_, : 1 — Qp of vk—1,1 maps the
Fourier coefficient b, (F) to the nth Fourier coefficient of the form fi_, with f;_,
defined as above.

Proof. Fix k and write a,, for a,(h)._;), the nth Fourier coeflicient of h},_,. Let 3
be the root of X? — a, X + p*~2 which is not a p-adic unit. Then the nth Fourier
coefficient a,,(f},_,) of f;_; equals (an — @) — B(an/p —Grjp). Writing n = MD*p"



A p-ADIC HERMITIAN MAASS LIFT 27

with pD t M and using (4.2) we get

an(fo—1) =amapsay — xx (M)xx (p")am@psayr
—Blarapsay—1 — xx (M)xx (P" )Xk (P)ar@p=a,—1)
=anmlapr(ap: — xx(M)aps) — Bayr-1(ap: — xx (M)ap-)]

=ay(aps — xXx(M)aps)(apr — Bayr-1)

(6.3)

Note that aps(apr — Ba,r-1) is the Mp"-th Fourier coefficient of the p-stabilization

Vi (F) of Bj,_, ie., anr(apr — Bayr—1) = vh_ (Carpr)-
To deal with a$, we note that since the D-eigenvalue ap(hj,_,) of hj_, satisfies

(6.4) ap(hi_y)ap(hj,_,) = D"

by Theorem 4.6.17(1) in [Miy89], we see that condition (2) in Lemma 2.6.2 in
[EPWO6] is not satified for the height one prime corresponding to hj, ;. Hence by
that lemma we get that the quotient V/IpV is an (unramified) rank one I-module
on which Frobp acts via the eigenvalue of F at D. We denote this character by u
and we have u(Frobp) = ¢p. Set

b papr (F) := earpr (u(Frobp)® — XK(M)(kaU_Qu_l)(FrobD)S) el

The theorem now follows from (6.4) as («w*~2)(Frobp) specializes to D*~2 for
k=ko (mod p—1). O

From now on assume that p = 1 (mod #0j ) and assume that ko € {0,1,...,p—
2} such that #05 | ko. Then for every k = ko (mod p — 1) we will have #Oj; | k.

Lemma 6.2. Let d be an integer prime to p. There exists a power series Aq(T) €
Z,[[T)] such that Aq((1+ p)*F —1) = w(d)~*kd*~1.

Proof. This is stated on page 197 in [Hid93]. O

Theorem 6.3. Let ky be as above. Let F € I[[qg]] be the I-adic form in Theorem
6.1. There exists a finite set A of k = ko (mod p — 1) with the property that for
every M € S, there exists Cp.(M) € 1 such that for all k = ko (mod p — 1) with
k & A and all extensions v,y : 1T — Q,, of vx_11 one has that vj_,(Cp,(M)) is
the Mth Fourier coefficient of the Maass lift of vj,_,(F). Thus the formal power
series
Fri= Y Cry(M)q" €1[[q]
MeS
can be regarded as a I-adic Maass lift of the family F.

Proof. By Theorem 6.1 we know that b, (F) € I specializes under extension v},
to the nth Fourier coefficient of f;_,. Combining this with Theorem 4.4 we ob-

tain B, (F) := —i-Y2 b, (F) € I interpolating the values of the function O, -

ap(n) N
Set Aky.a(T) = w(d)*Ay(T) € Z,[[T]] and let Ak, q be the element of Z,[[I']]
corresponding to it under the isomorphism 7% + (14 p)¥ — 1. Set

Crr(M) = Z Ak, B det myaz (F).
deZ
d|e(M)
ged(d,p)=1
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