AN R=T7 THEOREM FOR IMAGINARY QUADRATIC FIELDS

TOBIAS BERGER! AND KRZYSZTOF KLOSIN?

ABSTRACT. We prove the modularity of certain residually reducible p-adic Ga-
lois representations of an imaginary quadratic field assuming the uniqueness
of the residual representation. We obtain an R = 1" theorem using a new com-
mutative algebra criterion that might be of independent interest. To apply the
criterion one needs to show that the quotient of R by its ideal of reducibility
is cyclic Artinian of order no greater than the order of the congruence mod-
ule T/J, where J is an Eisenstein ideal in the local Hecke algebra T. The
inequality is proven by applying the Main conjecture of Iwasawa Theory for
Hecke characters and using a result of [Ber09]. This strengthens our previ-
ous result [BK09] to include the cases of an arbitrary p-adic valuation of the
L-value, in particular, cases where R is not a discrete valuation ring. As a
consequence we show that the Eisenstein ideal is principal and that T is a
complete intersection.

1. INTRODUCTION

Let K be a number field and p : Gal(K/K) — GL2(Q,,) a continuous irreducible
representation. It has been a subject of much interest and effort lately to deter-
mine which such Galois representations are modular, i.e., which such p’s have their
L-function equal to an L-function of an automorphic representation of GL2(Ak).
Since the ground-breaking work of Wiles there has been a lot of progress in an-
swering this question [Wil95, TW95, BCDT01, SW97, Fuj99, SW99, SW01, Tay02,
Kis07].

This article is a continuation of our efforts to prove the modularity of continuous
representations of Gal(K/K) for K an imaginary quadratic field. This case is
substantially different from other situations for which modularity has been proven so
far since the associated symmetric space is a hyperbolic 3-manifold, so in particular
tools from algebraic geometry are not available.

In a previous paper [BK09] we proved modularity of irreducible Galois repre-
sentations of an imaginary quadratic K (in the minimal case) when the residual
representation po (i.e., the composite of p with the map Z, — F, after choosing an
integral lattice in the space of p) is reducible under an additional condition that a
certain L-value associated to the determinant of p has small p-adic valuation. As
we showed in [BKO09] this condition implies that the universal deformation ring of
po is a discrete valuation ring. This article removes this condition.

We achieve this by developing a new commutative algebra criterion to prove “R =
T” theorems, applicable also in other situations (see Remark 1.2 and the discussion
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at the end of Section 6.4). For this fix a reducible, non-semisimple residual two-
dimensional Galois representation and study its minimal ordinary deformations
with corresponding universal deformation ring R and universal deformation pg.
Following [BC06, Cal06] we define the ideal of reducibility Ire to be the smallest
ideal I in R such that tr(pr) mod I is the sum of two characters.

Assuming that there is only one (up to isomorphism) non-split extension of the
two characters (in either order) which are the constituents of the semisimplification
of the residual representation [BC06, Cal06] prove that I, is principal. In this case
our new commutative algebra criterion allows us to prove that R is isomorphic to
T, a Hecke algebra, provided that R/ is a cyclic Artinian module and its order is
no greater than the order of T/.J for J an Eisenstein ideal of T (see Proposition 6.9
and Theorem 6.10). Lower bounds for the order of T/.J have been proven in many
cases starting with Mazur and Wiles [MW84]. For our case of imaginary quadratic
fields we refer to [Ber09] which bounds val,(#T/J) from below by the p-valuation
(say n) of a Hecke L-value. Since we can rule out non-trivial reducible infinitesimal
deformations by the uniqueness of our residual representation the cyclicity of R/Ie
and an upper bound for its p-order (which again equals n) can be obtained using
the Main Conjecture for Hecke characters of imaginary quadratic fields, proven by
Rubin.

There are several consequences of the R = T theorem for both the Hecke alge-
bra and the universal deformation ring. On the one hand the principality of the
reducibility ideal implies that the Eisenstein ideal is also principal. On the other
hand using our knowledge of the structure of the universal deformation ring we con-
clude that the Hecke algebra is a complete intersection (Corollary 6.14). Finally,
the lower bound on the size of the Hecke congruence module translates under the
isomorphism R = T into a statement about cyclicity of a certain Galois group and
the existence of certain reducible deformations (Corollary 6.16).

To give a more precise account, let ¢ be the non-trivial automorphism of F', and
let p > 3 be a prime split in the extension F/Q. Fix embeddings F — Q — Q,, —
C. Let Fy be the maximal extension of F' unramified outside a finite set of places
¥ and put Gy = Gal(Fy;/F). Suppose F is a finite field of characteristic p and that
Xo : Gy, — F* is anticyclotomic (in general a weaker assumption of ¥-admissibility
is enough - see Section 3) character ramified at the places dividing p. Suppose also
that po : Gy — GL2(F) is a continuous representation of the form

(L1) oo = ((1) X)

and having scalar centralizer. In [BK09] we proved that under certain conditions
on xo and X the residual representation pg is unique up to isomorphism. We recall
the relevant details in Section 3.

Following Mazur [Maz97] we study ordinary deformations of py. Let O be the
ring of integers in a finite extension of Q,. An O-deformation of p, is a local com-
plete Noetherian O-algebra A with residue field F and maximal ideal m4 together
with a strict equivalence class of continuous representations p : Gy, — GL2(A) sat-
istying po = p mod m4. An ordinary deformation is a deformation that satisfies

~ (X1 *
p|D“:<0 Xz)
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for q | p, where x;|;, = €* with integers k; > ko depending on q and € is the
p-adic cyclotomic character. Here Dy and I; denote the decomposition group and
the inertia group of q | p.

A part of our approach rests on studying possible reducible deformations of pg
and showing that there are indeed not “too many” of those. As we have already
shown in [BKO09] the uniqueness of py itself implies that there are no non-trivial
reducible infinitesimal deformations of py. In the current paper we go further and
carefully study reducible deformations of py to other Artinian local rings.

To exhibit modular irreducible deformations we apply the cohomological congru-
ences of [Ber09] and the Galois representations constructed by Taylor et al. using
the strengthening of Taylor’s result in [BH07]. We also make use of a result of
Urban [Urb05] who proves that pr|p, is ordinary at q | p if 7 is ordinary at q. This
together with the non-existence of a non-trivial reducible infinitesimal deformation
implies the existence of an (J-algebra surjection

(1.2) R— T,

where R is the universal ¥-minimal deformation ring (cf. Definition 4.8) and T is
a Hecke algebra acting on cuspidal automorphic forms of GL2(A r) of weight 2 and
fixed level.

Remark 1.1. As we remarked already in [BK09] the approach of [SW97] (where
an analogous problem is studied for representations of Gal(Q/Q)) breaks down in
the imaginary quadratic case because of the non-existence of an ordinary reducible
characteristic 0 deformation (cf. [BK09], Corollary 5.22). In [BK09] we assumed
that the p-valuation of a Hecke L-value was small such that by the Main Conjec-
ture there were even no reducible deformations to any Artinian rings larger than
the residue field, which implied that the ideal of reducibility I, of the universal
deformation ring R was maximal. This simplified the proof of “R =T, because it
follows from the results of Bellaiche-Chenevier [BC06] and Calegari [Cal06] that if
R surjects onto a characteristic 0 ring (in our case T) and the ideal I} is maximal,
then R is a discrete valuation ring.

In this paper we exploit that in all cases there is, in fact, a surjection R/ —
T/J by the definitions of the Eisenstein ideal J and the ideal of reducibility .
By finding bounds on the orders of both sides we show that this map must be an
isomorphism. Indeed, if we write n for the w-valuation® of a normalised Hecke
L-value (for a Hecke character that gives rise to xo in (1.1)), then the order of the
congruence module T/J is bounded from below by #O/w" by the full result of
[Ber09]. On the deformation side we first bound the dimension of R in Section
5.1 by using the filtration of adpg by 1-dimensional pieces, similar to a calculation
in [SW97]. Strengthening an argument of [BK09] and using a result of Urban
we show in Section 5.2 that the Main Conjecture of Iwasawa Theory implies that
there are no reducible ordinary deformations to O/w™ for m > n. Together with
the non-existence of non-trivial reducible infinitesimal deformations this implies
that R/I,e = O/w™ for m < n (see Proposition 6.5). We therefore have that
the surjection R/l — T/J is an isomorphism, from which we deduce (using our
commutative algebra criterion - Proposition 6.9) that R = T in Theorem 6.10.
using the principality of I,e.

LHere w denotes a uniformizer of O.
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Remark 1.2. As suggested to us by Frank Calegari our commutative algebra
criterion allows one to replace the condition p||B, k-2 from [Cal06] Theorem 2.3
by p | By k-2, which proves an R = T result for certain residually reducible
representations of Gq. More precisely, if T denotes the (classical) cuspidal Hecke
algebra of weight 2 and level I'; (p) generated by Ty for £ # p, write J the maximal
ideal of T containing 7, — 1 — ¢~ for all ¢ # p. Under the assumption that the
x!~*-eigenspace (where y : Gq — Z, denotes the p-adic cyclotomic character) of
the class group of Q((p) is cyclic, Calegari considers deformations of the unique

non-split representation
— 1 *
p= <0 Xkl) mod p

with p unramified over Q((,). He requires that the deformations p be unramified
outside p, of determinant yw*~2, where w is the Teichmiiller lift of y mod p, and
such that the restriction of p to Gal(Q,,/L) arises as a generic fiber of a finite flat
group scheme over the ring of integers of L. Here L stands for the completion at p of
the maximal real subfield of Q((,). If one denotes by R the corresponding universal
deformation ring, the arguments of our Sections 5.2 and 6.1 can be adapted, using
[Cal06] Lemmas 4.2 and 4.5 and the Main conjecture proven by Mazur and Wiles
[MW&4], to prove the cyclicity and an upper bound for R/l in terms of the p-
valuation of the relevant Bernoulli number. The lower bound by the same number
on the size of the quotient of T'; by the Eisenstein ideal generated by T, —1—/¢*~! for
all £ # p is stated, for example, as Proposition 5.1 in [SW97]. By the commutative
algebra criterion (Proposition 6.9) we can therefore conclude R = T}.

The authors would like to thank Frank Calegari, Gaétan Chenevier, Haruzo Hida
and Ravi Ramakrishna for helpful discussions and comments.

2. NOTATION AND TERMINOLOGY

2.1. Galois groups. Let F' be an imaginary quadratic extension of Q of discrimi-
nant dp # 3,4 and p > 3 a rational prime which splits in F'. We fix once and for all
a prime p of F' lying over p and write p for the prime of F' such that (p) = pOp = pp.
Let Clp denote the class group of F. We assume that p { # Clp and that any prime
q | dr satisfies ¢ Z £1 (mod p).

For a field K write G ¢ for the Galois group Gal(K /K). If K is a finite extension
of Q for some rational prime ¢, we write O (respectively wk, and F) for the
ring of integers of K (respectively for a uniformizer of K, and Ok /wrOk).

If K D F is a number field, Ok will denote its ring of integers. If q is a place
of K, we write K for the completion of K with respect to the absolute value | - |4
determined by q and set Ok q = Ok, (if q is archimedean, we set O o = K,). We
also write wq for a uniformizer of Ky, B, for the maximal ideal of Ok 4, and kq
for its residue field.

Fix once and for all compatible embeddings iy : F' — F and Fqy < C, for every
prime q of F', so we will often regard elements of Fq as complex numbers without
explicitly mentioning it. If w is a place of K C F, it determines a place v of F,
and we always regard K, as a subfield of F, as determined by the embedding i,.
This also allows us to identify Gk, with the decomposition group Dy C Gk of a
place ¥ of F. We will denote that decomposition group by D,. Abusing notation



AN R =7 THEOREM 5

somewhat we will denote the image of D, in any quotient of G also by Dg. We
write I C Dy for the inertia group.

Let X be a finite set of places of K. Then Ky will denote the maximal Galois
extension of K unramified outside the primes in ¥. We also write Gy, for Gp,,.
Moreover, for a positive integer n, denote by u,, the group of nth roots of unity.

2.2. Hecke characters. For a number field K, denote by Ak the ring of ade-
les of K and set A = Aq. By a Hecke character of K we mean a continuous
homomorphism

AKX\ Ax - C*.
For a place q of K write \(%) for the restriction of A to K and A(>®) for the restriction
of A to [[,1o, Kq- The latter will be called the infinity type of A. We also usually

write A(wwy) to mean A% (zz,). Given A there exists a unique ideal f) of K largest
with respect to the following property: A(®)(z) = 1 for every finite place q of K
and z € lef,q such that x — 1 € fAOk 4. The ideal fy is called the conductor of A.
If K = F, there is only one archimedean place, which we will simply denote by oco.
For a Hecke character A of F, one has A(*)(z) = 2™z" with m,n € R. If m,n € Z,
we say that A is of type (Ag). We always assume that our Hecke characters are of
type (Ap). Write L(s, A) for the Hecke L-function of \.

Let A be a Hecke character of infinity type z® (%)b with conductor prime to p.
Assume a,b € Z and a > 0 and b > 0. Put
LA8(0,)) := Qo2 ( 2n >bF(a+b) L(0,\)
) N \/E ) )
where () is a complex period. In most cases, this normalization is integral, i.e., lies
in the integer ring of a finite extension of F,. See [Ber08] Theorem 3 for the exact
statement. Put

qloo

Lalg(O, A if valp(Lalg(O, A)>0
1 otherwise.

L™(0,)) = {

For z € C we write Z for the complex conjugate of z. The action of complex
conjugation extends to an automorphism of A} and we will write Z for the image
of x € A} under that automorphism.

For a Hecke character A of F', we denote by A¢ the Hecke character of F' defined
by A¢(z) = A(T).

2.3. Galois representations. For a field K and a topological ring R, by a Galois
representation we mean a continuous homomorphism p: Gxg — GL,(R). If n =1
we usually refer to p as a Galois character. We write K (p) for the fixed field of ker p
and call it the splitting field of p. If p is a Galois character and M is an R-module,
we denote by M(p) the R[Gk]-module M with the G g-action given by p. If K
is a number field and q is a finite prime of K with inertia group I; we say that
p is unramified at q if p|;, = 1. If ¥ is a finite set of places of K such that p is
unramified at all v € ¥, then p can be regarded as a representation of Gg,,.

Let E be a finite extension of Q,. Every Galois representation p : Gg — GL,,(E)
can be conjugated (by an element M € GL,(E)) to a representation py : Gg —
GL,(Og). We denote by p,, : Gk — GL,(Fg) its reduction modulo wrOg. It
is sometimes called a residual representation of p. The isomorphism class of its
semisimplification p%; is independent of the choice of M and we simply write p*®.
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Let € : G — Z, denote the p-adic cyclotomic character. For any subgroup
G C Gp we will also write € for €|i. Our convention is that the Hodge-Tate weight
of e at pis 1.

Let A be a Hecke character of F of type (Ap) and X = {q | pfa}. We define
(following Weil) a p-adic Galois character

Ap :GZ)\ _>F;<

associated to A by the following rule: For a finite place q { pfx of F, put A, (Frob,) =
ip(i! (A(wwq))) where Frob, denotes the arithmetic Frobenius at q. It takes values
in the integer ring of a finite extension of Fj.

Definition 2.1. For a topological ring R we call a Galois representation p : Gy —
GL2(R) ordinary if
o~ [(X1o¥
p|Dq - <0 XZ)

for q | p, where x;|r, = €** with integers ki > k> depending on q.

2.4. Automorphic representations of Ay and their Galois representations.
Set G = Resy/q GL2. For K an open compact subgroup of G(Ay), denote by
S2(K r) the space of cuspidal automorphic forms of G(A) of weight 2, right-invariant
under K (for more details see Section 3.1 of [Urb95]). For % a finite order Hecke
character write S, (Ks,) for the forms with central character . This is isomor-

phic as a G(Af)-module to P W}Iff for automorphic representations m of a certain
infinity type (see Theorem 2.2 below) with central character ¢». Here m¢ denotes
the restriction of 7 to GL2(Af) and W;(f stands for the K y-invariants.

For ¢ € G(Ay) we have the usual Hecke action of [K;gKy] on So(Ky) and
S2(Kyf,1). For primes q such that the vth component of Ky is GLy(Op,») we

define T, = [K [wq Ky].

|

Combining the work of Taylor, Harris, and Soudry with results of Friedberg-
Hoffstein and Laumon/Weissauer, one can show the following (see [BHO7] for gen-
eral case of cuspforms of weight k):

Theorem 2.2 ([BHO7] Theorem 1.1). Given a cuspidal automorphic represen-
tation m of GLa2(Ap) with ws isomorphic to the principal series representation

corresponding to
o) () (]
t2 [t 2

and cyclotomic central character ¢ (i.e., ¥° =), let ¥, denote the set consisting
of the places of F lying above p, the primes where w or w° is ramified, and the
primes ramified in F/Q.

Then there exists a finite extension E of F,, and a Galois representation

Pr - GZW — GLZ (E)

such that if q € X, then py is unramified at q and the characteristic polynomial
of px(Frobg) is 2® — aq(m)z + Y(wq)(#kq), where aq(m) is the Hecke eigenvalue
corresponding to Ty. Moreover, p, is absolutely irreducible.
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Urban studied in [Urb98] the case of ordinary automorphic representations 7, and
together with results in [Urb05] on the Galois representations attached to ordinary
Siegel modular forms showed:

Theorem 2.3 (Corollary 2 of [Urb05]). Let q be a prime of F' lying over p. If m is
unramified at q and ordinary at q, i.e., |aq(m)|q = 1, then the Galois representation
pr ts ordinary at q. Moreover

~ ‘I’l *
p7T|Dq - \:[12 )

where Wa|7, =1 and V1|, = det pr|1, = €.

We conjecture that the assumption on the central character, inherent to the
method of proof of Theorem 2.2, is not necessary (see also [CD06] Conjecture 3.2).

Conjecture 2.4. Let m be a cuspidal automorphic representation as in Theorem
2.2 but without the assumption on the central character. Then the representation
pr exists as above and the conclusion of Theorem 2.3 remains valid for it.

Definition 2.5. Let E be a finite extension of F} and p : Gz — GL2(E) a Galois
representation for a finite set of places ¥. We say that p is modular if there exists
a cuspidal automorphic representation 7 as in Theorem 2.2, such that p = p,
(possibly after enlarging E).

From now on we fix a finite extension E of F}, which we assume to be sufficiently
large (see Section 4.2 and Remark 4.5, where this condition is made more precise).
To simplify notation we put O := O, F = Fp and w = wg.

3. UNIQUENESS OF A RESIDUAL (GALOIS REPRESENTATION

Let p = pp as before be a split prime. Let ¥ be a finite set of finite primes of F’
containing p. In this paper we will be studying deformations of a certain class of
residual Galois representations which we now describe.

From now on let

pPo : GZ — GLz(F)
be a Galois representation satisfying both of the following conditions:
(Red): po = 1 ; } for a Galois character xg : Gy — F*;
0
(Sc): po has scalar centralizer.

Definition 3.1. We will say that a Galois character yo : Gy — F* is X-admissible
if
(1) xo is ramified at p and at p;
(2) if g € X, then either o is ramified at q or xo(Frobg) # (#k,)*! (as elements
of F);
(3) dimp(H' (G, F(xo))) = dimp(H'(Gx,F(xg 1)) = L.

Remark 3.2. It follows from the global Euler characteristic formula ([Mil06] The-
orem 5.1), that the cohomology spaces in condition (3) of Definition 3.1 are at least
one-dimensional.

An important consequence of Y-admissibility of x¢ is the uniqueness of py up to
isomorphism. We record this fact as a proposition.
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Proposition 3.3. Suppose p' : Gy, — GL2(F) is a Galois representation satisfying
condition (Red) and (Sc) for a X-admissible character xo. Then p' = po.

Proof. As pg and p’ correspond to non-zero elements in Extg (6 (1,x0) = H'(Gx,Fp(xgh)),
the proposition follows from condition (3) in Definition 3.1. O

We will be interested in studying deformations of a representation py satisfying
conditions (Red) and (Sc) for a X-admissible character xo.

Let us shortly explain the significance of these assumptions to the deformation
problem we study in the coming sections. Condition (Sc) is necessary to ensure
that the deformation functor studied in the following sections is representable.
The assumption that yo is Y-admissible is crucial for our method. On the one
hand Proposition 3.3 guarantees that modular Galois representations which we
construct (and which are defined only up to semisimplification) are deformations of
po- On the other hand, Y-admissibility of x( is essential for ensuring that the ideal
of reducibility of the universal deformation is principal, which is crucial for our
commutative algebra criterion (Proposition 6.9) that we use to prove modularity of
Y-minimal deformations of py (Theorem 6.10).

We will now formulate some conditions (see Theorem 3.5 below) that ensure -
admissibility of a Galois character (for details see [BK09], Section 3). At the same
time we want to emphasize that there is no reason why every X-admissible character
should satisfy all of these conditions, however, it is in the context of Theorem 3.5
that we were able to construct examples of ¥-admissible characters (see Remark 3.7
below). Also, it is only under condition (3) of Theorem 3.5 that one can relate (by
twisting, see [Ber09] Lemma 8) to cusp forms with cyclotomic character for which
one knows how to attach Galois representations to automorphic forms on GLy(A )
by Theorem 2.2. Conjecturally, however, this condition should be unnecessary (see
Conjecture 2.4).

Definition 3.4. Let R be a commutative ring, J C R an ideal, M a free R-module
and N a submodule of M. We will say that IV is saturated with respect to J if

N={meM|mJCN}

Let xo : Gs — F* be a Galois character. Let S, be the set of primes of F'(xo)
lying over p. Write My, for [[ cg (1 + %Bv) and Ty, for its torsion submodule.

The quotient M,, /T, is a free Z,-module of finite rank. Let &, be the closure
in M, /Ty, of the image of &, ,, the group of units of the ring of integers of F'(xo)
which are congruent to 1 modulo every prime in S,,.

In [BK09] the authors proved the following theorem (see Theorem 3.5 and the
proof of Corollary 3.6 in [loc. cit.]).

Theorem 3.5. Let xo : Gy — F* be a Galois character. Assume that xo satisfies
all of the following conditions:
(1) xo is ramified at p;
(2) if q € X, then either xo is ramified at q or xo(Frobg) # (#kq)*' (as
elements of F);
(3) xo is anticyclotomic, i.e., Xo(coc) = xo(o)™! for every o € Gy and c the
generator of Gal(F/Q);
(4) the Z,-submodule &, C M, /Ty, is saturated with respect to the ideal pZ,,
(5) The xg ' -eigenspace of the p-part of Clp(y,) 18 trivial.
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Then xo s X-admissible.

Remark 3.6. Note that conditions (1) and (3) of Theorem 3.5 imply that xo is
also ramified at p. Observe that o satisfies conditions (1)-(5) of Theorem 3.5 if and
only if so does x,'. Indeed, conditions (1)-(4) in Theorem 3.5 are invariant under
taking the inverse. Moreover, since xo is anticyclotomic, the extension F'(xo)/Q is
Galois, hence the g !_eigenspace of the p-part of Cl F(xo) Vanishes if and only if the
Xo-¢eigenspace does.

Remark 3.7. Condition (4) in Theorem 3.5 implies that every € € £,, which is a
pth power of an element of M, /T, must be a pth power of an element of £,,. In
particular the map
EXO ®z, Fp - (MXO /TXO) ¥z, FP

is injective. One way to check condition (4) in practice is to compute the p-part C
of the class group of F'(xo)(up) as a Gal(F (xo0)(¢p)/F(x0))-module. In particular,
if w denotes the character of Gal(F(xo)(1p)/F(xo0)) giving the action on p,, then
Kummer theory implies that Condition (4) is satisfied if the w-part of C' is trivial.
In [BK09], Section 6, the authors exhibited an example of a Galois representation
whose mod w-reduction satisfied conditions (Red) and (Sc) for a Galois character
satisfying conditions (1)-(5) of Theorem 3.5.

4. DEFORMATIONS OF po

In this section we will fix a residual representation pg arising as the reduction
of modular Galois representations p : Gx — GL3(O) and define a deformation
problem.

4.1. Eisenstein congruences. Let ¢1,¢2 be two Hecke characters with infinity
types (;5&00) (2) = 2z and ¢g°°) (2) = z7L. Put v = ¢1¢2.

Denote by & the finite set of places where both ¢; are ramified, but ¢ is unram-
ified. Write 9t; for the conductor of ¢;. For an ideal 91 in Op and a finite place q
of F' put Mg = NOF,q. We define

Kl(‘)’tq):{<z 2>€GL2(0F7q)|a—1,cEO mod‘ﬂq},

and

U'(My) = {k € GLy(Orq) | det(k) =1 mod 9, }.
Now put
(41) Kf = H Ul(SﬁLq) H Kl((gﬁ19ﬁ2)q) C G(Af)

q€S 9¢S

From now on, let ¥ be a finite set of places of F' containing
Sp = {q | MMM} U {q | pdr}-

We denote by T(X) the O-subalgebra of Endo(S2(Kf,7v)) generated by the
Hecke operators T, for all places q ¢ . Following [Tay88] (p. 107) we define idem-
potents e, and e, commuting with each other and with T(X) acting on Sz(Ky,7).
They are characterized by the property that any element h € X := eyep S2(Ky,7)
which is an eigenvector for T, and Tj satisfies |ay(h)|, = |ag(h)|, = 1, where ay,(h)
(resp. ap(h)) is the Ty-eigenvalue (resp. Tj-eigenvalue) corresponding to h. Let
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T°'d (%) denote the quotient algebra of T(X) obtained by restricting the Hecke
operators to X.
Let J(X) C T(X) be the ideal generated by

{Tq — ¢1(wq) - #kq — ¢2(wq) | 9 € 1}
Definition 4.1. Denote by m(X) a maximal ideal of T°"(¥) containing the image

of J(X). We set Ty := T(X)yx). Moreover, set Jy := J(X)Tx. We refer to Jyx
as the Eisenstein ideal of Ty.

Theorem 4.2 ([Ber05], Theorem 6.3, [Ber09] Theorem 14). Let ¢ be an unramified
Hecke character of infinity type ¢(°°) (z) = 2>. There exist Hecke characters ¢, ¢o
with ¢1/¢2 = ¢ such that their conductors are divisible only by ramified primes or
inert primes not congruent to £1 mod p and such that

#(Tx/Js) > #(0O/(L™(0,9))).

Proof. [Ber09] Theorem 14 states this inequality for the Hecke algebra T(X). How-
ever, the Eisenstein cohomology class used in the proof of [Ber09] Theorem 14 is
ordinary because by [Ber08] Lemma 9 its Tj-eigenvalue (resp. Tj-eigenvalue) is the
p-adic unit poy(p) + @2(p) (resp. pp1(p) + ¢2(p)). Therefore one can prove the
statement for the ordinary cuspidal Hecke algebra. O

Remark 4.3. If ¢ is unramified then ¢pe is anticyclotomic (see [Ber09] Lemma
1). The condition on the conductor of the auxiliary character ¢, together with our

assumption on the discriminant of F' therefore ensure that for xo = ¢y€ conditions
(1)-(3) of Theorem 3.5 are automatically satisfied for ¥ = Sg.

The assumption on the ramification of ¢ can be relaxed. For example, Propo-
sition 16 and Theorem 28 of [Ber08] and Proposition 9 and Lemma 11 of [Ber09]
imply the following:

Theorem 4.4. Let ¢y, ¢2 be as at the start of this section with p { #(OFp /9 M2) ™.
Assume both My and My are coprime to (p) and the conductor of ¢ := ¢1/d2 and

divisible only by primes split in F/Q. Suppose % € O. If the torsion part of
H?(Sk,,Zy) is trivial, where

Sk, = G(Q)\G(A)/KU(2)C*

then
#(Tx/Jx) > #(O/(L™(0,¢1/$2))).

Remark 4.5. In fact, by replacing Z, by the appropriate coeflicient system, the
result is true for characters ¢, ¢» of infinity type zz=™ and ™!, respectively,
for m > 0. For Theorems 4.2 and 4.4, the field E needs to contain the values of the
finite parts of ¢; and ¢o as well as L*(0, ¢y /¢2).

We will from now on assume that we are either in the situation of Theorem 4.2
or 4.4 and fix the characters ¢, 2 and ¢ = ¢ /¢o, with corresponding conditions
on the set ¥ and definitions of Ky, Ty, and Jy;. We also assume from now on that
val,(L"(0,¢)) > 0, however our main result (Theorem 6.13) remains vacuously
true when L"*(0, ¢) is a p-adic unit (see Remark 5.10). Put xo = ¢pe and assume
that yo is X-admissible. If we are in the situation of Theorem 4.4 then suppose
also that 91, and M, are not divisible by any primes q such that #k; =1 mod p.
(This last assumption is only used in the proof of Theorem 4.9.)
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4.2. Definition of py. Write
K
SZ(Kf;'Y)m(E) = @ Ty !

wells
for a finite set IIy of ordinary cuspidal automorphic representations with central
character -, such that ﬂ';{f # 0. The set IIy is non-empty by Theorem 4.2 under
our assumption that val,(L"*(0, ¢)) > 0.

Let 7 € IIy. Let pr : Gy, — GLy(E) be the Galois representation attached to 7
by Conjecture 2.4 (This is another point where we assume that E is large enough).
If we assume that ¢¢ = ¢ then the condition on the central character in Theorem
2.2 can be satisfied (after possibly twisting with a finite character), see [Ber09]
Lemma 8, so we do not need to refer to Conjecture 2.4 in this case.

The representation p, is unramified at all q ¢ Sy, and satisfies

tr pr (Frobg) = aq(m)

and
det pr (Frobg) = y(wq) - #(kq).

By definition, Ty injects into [, .y Endo (w¥7). Since T, acts on 7 by multi-
plication by aq(m) € O the Hecke algebra Ty embeds, in fact, into B = [[, ¢y, O
(in particular Ty has no Z-torsion).

Observe that (tr p;(0))zengy € Tx C B for all 0 € Gx. This follows from the
Chebotarev Density Theorem and the continuity of p, (note that Ty is a finite
O-algebra).

Fix m € Ily for the rest of this subsection. Define p!. := p, ® ¢2_7'1]. Then p!.
satisfies

tr p! (Frobq) =1+ (¢pe€)(Frobg) (mod w) forq ¢ S,
and
det pfe = -y € = Bpe.
By choosing a suitable lattice A one can ensure that p/. has image inside GL3(O).
The Chebotarev Density Theorem and the Brauer-Nesbitt Theorem imply that

(7.)* = 1@ gye.
By Theorem 2.2 p!. is irreducible, and by Theorem 2.3 p!_ is ordinary so a stan-

dard argument (see e.g. Proposition 2.1 in [Rib76]) shows the lattice A may be
chosen in such a way that p! is not semi-simple and

1 *
4.2 o= - _
(1.2 =" 5
and is ordinary. We put
(4.3) P0 = Pr-

Note that the isomorphism class of pg is in fact independent of the choice of 7 € IIy,
by Proposition 3.3.

Remark 4.6. The representation pg satisfies conditions (Red) and (Sc) of Section
3. The fact that p! is ordinary combined with (4.2) implies that

. o= G,
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Note that in fact (4.4) together with condition (2) in Definition 3.1 implies that the
extension F'(po)/F(xo) is unramified away from p.

Remark 4.7. In Remark 4.6 of [BK09] we pointed out that the extension F(pg)/F (xo)
under the conditions of Theorem 3.5 is totally ramified at p, so, in particular, there
exists T € I, such that

po(T) = [1 ﬂ .

This implies that no twist of pp by a character is invariant under ¢ € Gal(F/Q)
and so no character twists of py arise from base change. However, we would like
to withdraw our additional statement in Remark 4.6 of [BK09] (and corresponding
remark in Section 4.6 of [Ber09]) that this implies that (twists of) deformations of pg
cannot arise from base change. The Gx-invariant lattice in E? that we consider need
not be invariant under complex conjugation. In fact, Hida proved in [Hid82] the
existence of deformations of a twist of py for anticyclotomic characters x¢ starting
from congruences of CM forms over Q.

4.3. Deformation problem. Recall that (p) = pp is split. Let X, ¢, xo and pp be
as above. Recall that we have assumed that x¢ is ¥-admissible and have shown in
Section 4.2 that po satisfies conditions (Red) and (Sc) of Section 3. Hence by Propo-
sition 3.3, po is unique up to isomorphism. By (4.4) the extension F'(po)/F (xo)
splits at p. In this section we study deformations of pg.

Denote the category of local complete Noetherian (-algebras with residue field
F by LCN(E). An O-deformation of pg is a pair consisting of A € LCN(E) and a
strict equivalence class of continuous representations p : Gy — GL3(A) such that
po = p (mod my), where my4 is the maximal ideal of A. As is customary we will
denote a deformation by a single member of its strict equivalence class. Note that
the Hodge-Tate weights of ¢pe are —1 at p and +1 at p.

Following [SW97] we make the following definition:

Definition 4.8. We say that an O-deformation p : Gy — GL2(A) of pg is X-
minimal if p is ordinary,

det p = dye,
and for all primes q € ¥ such that #kq =1 (mod p) one has

=)
pIq_ ¢p|Iq :

Note that by our assumption on the conductor of ¢, we in fact have ¢,|, = 1 for
q as above. Also the ordinarity condition means in this case that

~ |1 %
plr, = L

~ € *
p|IF: 1 .

Note that po satisfies all the conditions in Definition 4.8. Since pp has a scalar
centralizer and Y-minimality is a deformation condition in the sense of [Maz97],
there exists a universal deformation ring which we will denote by Rs € LCN(E),
and a universal ¥-minimal O-deformation ps, o : Gz — GL2(Rsx) such that for ev-
ery A € LCN(E) there is a one-to-one correspondence between the set of O-algebra

and
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maps Ry — A (inducing identity on F) and the set of Y-minimal deformations
p: Gy — GLy(A) of po.

The arguments from Section 4.2 together with the uniqueness of py (Proposition
3.3 - recall that we are all the time assuming that xo is ¥-admissible) can now be
reinterpreted as:

Theorem 4.9. For any w € Iy, there is an O-algebra homomorphism r, : Ry, — O
inducing p'..

Proof. The only property left to be checked is ¥-minimality. This is clear since
pr is unramified away from Sg, and no q € Sy satisfies #kq = 1 (mod p) by
construction (if we are in the case of Theorem 4.2) or assumption (in the case of
Theorem 4.4). O

The next three propositions were proved in [BK09] (see Propositions 5.4, 5.5 and
Lemma 5.6 in [loc. cit.]).

Proposition 4.10. There does not exist any non-trivial upper-triangular X-minimal
deformation of po to GL2(F[x]/2?).

Proposition 4.11. The universal deformation ring Rx is generated as an O-
algebra by traces.

Proposition 4.12. The image of the map Ry, — []
18 TE.

reity O given by  — (rz(z))x

Corollary 4.13. There exists a surjective O-algebra homomorphism r : Ry — Ty.

Proof. This is a direct consequence of Proposition 4.12. (I

5. GALOIS COHOMOLOGY CALCULATIONS

In this section we bound the Krull dimension of the universal deformation ring
Ry, via its tangent space. We conclude that Ry is a quotient of O[[X]], which will
later allow us to prove that Ry is a complete intersection (see Corollary 6.14). We
also study reducible deformations of py to O/w".

5.1. The Krull dimension of Ry is less than 3. Let py be as in Section 4 and
let U be the representation space for pp. Then U is a two-dimensional F-vector
space with a Gy-stable filtration

0 g Z’{l g Z/{,
where U is the 1-dimensional F-vector space on which Gy acts trivially. The

quotient Us = U /U, is a 1-dimensional F-vector space on which Gy acts via xp.
Let W = adpy = Hompg (U, U) be the adjoint representation, and let

WS = {feW: fU) C U, f(U) = 0}.

Recall that po splits when restricted to Iy (cf. (4.4)). Define the Iz-submodule
WLt — (£ € Wi f(U) C Us, f(Us) = 0}.

For q € X let

HY(I,, /W5 if q=1p,

HY (I, W/WSehty if q =1,

HY(I,;,W) if #kq =1 mod p,

0 otherwise.
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Define the following Selmer group:
Hy,(F,W) = ker(H' (Gx, W) = P H,).
qeS
Proposition 5.1.
dimp Hy, (F, W) < 1.

Proof. We proceed in a similar manner to the proof of Proposition 3.1 in [SW97]
Section 3. Let 3; C X comprise those primes in ¥ such that #k; = 1 mod p,
together with p and p. Let Wi = Hompg (Us,U), and let Wy = Homp (U;,U). There
is a commutative diagram of G'z-modules

0 Wi w Wy 0

|l

0——F —— W/Wl—— W, ——0

having exact rows. Similarly, we have a commutative diagram of I;-modules

0 Wy w Wy 0
0—— W) —— W/WSebt — s F—— 0

having exact rows. (The third vertical arrow is induced by a splitting of the ex-
act sequence for W, as Iz-modules below.) Together these induce the following
commutative diagram of cohomology groups:

0—— H' (G, W) —— H'(Gx, W) —— H' (G, W2) ,

| I I

0 X Dyex, Hi—— Y
where
X:Hl(IpaF)® @ Hl(Lth)
a€Xi\{p}
and

Y=H'(zF)e @ H' ;W)
aeXi\{p}
Note that the rows in the diagram are exact. Indeed, the only thing to check is the
exactness on the left, which can be verified easily by observing that the H%-terms
form a short exact sequence in each of the cases. Hence by the snake lemma there
is an exact sequence

0 — ker(a) — ker(8) = Hy(F,W) — ker(y).

We claim now that ker(a) = 0 so that ker(8) < ker(y). First observe that W, fits
into the short exact sequence

0 WSl 5w Lo
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Since Wi = py ® X it is clear that Wlo ¥ = (0 and hence the associated long exact
cohomology sequence yields the exact sequence

0= F = HY (Gs, W5 = HY (G, W) 2D 1Y (G, F).

Since W3¢ = F(x, '), it follows from the ¥-admissibility of X, that the second

arrow is surjective. Hence H'(f) is injective.

Lemma 5.2.
ker(a) < ker(H'(Gx,F) = €P H'(I,,F))) = 0.
qEX:

Proof. Consider the following diagram

HY(Gs, W) s Gy, B

J/Ot J¢5—@q621resq

!
X ? @qezl Hl(IQ)F)

where f’ is the identity on H!(I,,F) and is induced by f on the rest of the compo-
nents. By definitions of the maps involved it is clear that the diagram is commuta-
tive. Since H!'(f) is injective as observed above, if ¢ € ker «, its image must lie in
ker ¢, hence the inclusion of the kernels in the statement of the lemma follows. Now
consider ¢ € ker ¢, i.e., ¢ is unramified at all ¢ € ¥;. But since F is a p-power order
abelian group, we see that ¢ is also unramified at all ¢ € ¥;. Hence it is unramified
everywhere. Since H!(Gy;, F) = Hom(Gy, F) and by our assumption p { #Clp it is
clear that ¢ = 0. O

Similarly, W» fits into the short exact sequence
0—F — W, - Hom(U;,Us) = F(xo) — 0.
The associated long exact cohomology sequence yields the commutative diagram
H'(Gs,F)—— HY(Gx, W) —— H'(Gx,F(x0))
Jfl lv Jﬁ
Dqes, H (L3, F): Y Dics\ 53 H' (La, F(x0))
having exact rows. As above we see that ker(f;) = 0 and therefore

ker(y) = ker(fs) € H(Gx,F(xo)).

Since the character yo is L-admissible we have that dimg H'(Gy;, F(x0)) = 1. This
concludes the proof of Proposition 5.1. O

Proposition 5.3. We have
Hy(F,ad’ po) = Hom(mp,, /(m};, + wRy), F) = Homo_ae(Ry, F[z]/2?).

Proof. See for example [dS97], Theorem 15 which together with Lemma 5.4 yields
the Proposition. O

Lemma 5.4. Hy is the cohomological condition corresponding to ordinarity atp of
an infinitesimal deformation, i.e., a deformation to GL2(F[X]/X?).
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Proof. Let p be an infinitesimal deformation of py with det(p) = ¥ = xo. Write
p(9)po(9) ™" =1+ ecy(g).

Then ¢ defines a 1-cocycle with values in adopo. For g € I, we have for a suitable
basis (with respect to which pg splits and p is lowertriangular)

et )

so the image of [c,] in Hy is zero, as desired. Conversely, if this condition is satisfied
then p|r is lower-triangular , hence so is p|p_ and p is ordinary at p. (]

Corollary 5.5. We have Ry = O[[X]]/I for an ideal I.

Proof. This is an application of Nakayama, see e.g. [dS97] Theorem 15 or [Til96],
Lemma 5.1. Note that we have HL(F,adpy) = Hx(F,ad’ py) since p { # Clp by
our assumption. (I

5.2. No reducible deformation beyond p-valuation of L-value. Set ¥ := ¢pe
and write ¥, for ¥ mod w” with r > 0. Note that Gal(F(¥)/F) =T x A with
['=Z, and A a finite abelian group. Assume p{#A. Set xo := ¥|a.

For a finite abelian extension K of F' write M (K) for the maximal abelian pro-
p-extension of K unramified away from the primes lying over p. For a character
¢ : Gal(K/F) = O* write M(K), for the maximal abelian pro-p-extension of
K unramified away from the primes lying over p such that Gal(K/F) acts on
Gal(M (K),/K) via ¢~'.

Lemma 5.6. Any X-minimal uppertriangular deformation p, of po to O/w"” must
have the form

Proof. We will prove this by induction on r. It is true for r = 1, so assume this
holds for r = k. So, we can write

1+aw® b
[
where @ : Gy, — F is a group homomorphism (the group operation on F being
addition). Arguing as in the proof of Proposition 5.4 of [BK09] we see that a can
only be ramified at p and p. Ordinarity at p (respectively at p) forces pry1ls,
(respectively pgy1]r;) to have a free O/w*!-submodule (respectively quotient)
on which I, (respectively Iy) acts trivially. This together with the fact that xo
is ramified at p and at p easily imply that a|;, = afr, = 0. Finally, using the
assumption that p t # Clp we conclude that o = 0. Since det ppr1 = Upi1, we get
d=Tpi. O

Pk+1 =

Write e for the ramification index of O over Z,. Note that the exponent of O/w"
is p["/€1 where for a real number «, [«] denotes the smallest integer n > . By a
slight abuse of terminology we will say that a deformation p of pg is upper-triangular
if there exists a member of the strict equivalence of p that is upper-triangular.

Lemma 5.7. Suppose there exists a X-minimal uppertriangular deformation p, of
po to GLo(O/w™). Then there ezists a surjective map of groups

Gal(M (F(¥,))y, /F(¥,)) - Z/pl"/*l.



AN R =7 THEOREM 17

Proof. Consider the b-entry of p, as a function b : Gy — O/w". Suppose that
the restriction b|gai(#(p,)/F(w,)) € @O/w"O. This means that the mod w reduc-
tion of b is zero after we split ¥,., so that F(py) C F(¥,), but this is impos-
sible as F'(pg)/F is non-abelian. So, we get that blga(r(p,)/F(v,)) &€ wO/w"O.
Hence Gal(F(p,)/F(¥,)) has a cyclic quotient of order pl"/¢l. Since F(p,) C
M(F(¥,)y,), we are done. O

Write L®(0, ¢) = uw™, where u is a unit. One has val,(w) = 1/e. We also have
for any z € O, that val,(z) = £ val (z).
Remark 5.8. Note that we have the following sequence of equalities:

n[0:Zp]

(5.1) #O/L™Y0,¢) = #0/w" =p~ = = ptiFFel =
valo, (L (0,¢))[F:F

val, (L (0,6))[0:Z,]

=p Pl=p

Proposition 5.9. Let n be as above. There is no upper-triangular X-minimal
deformation ppi1 : Gx — GL2(O/w™ ).

Proof. Suppose p,,+1 exists. By Lemma 5.7 there exists an element

x € Gal(M(F(¥ni1))w, . /F(¥Yni1))

of order p!("+1/¢l. Note that since p{ #A, the character Yo is the Teichmiiller lift
of a character with values in F*. Let Fy be the smallest subfield F, C Fy C F
such that the image of (the reduction of) Yo is contained in F(. Let O be the
corresponding extension of Z,, i.e., Z, C Oy C O. Note that we can assume

without loss of generality that Oy is unramified over Z,. By Lemma 5.6, p,41 :
Gy, = GL2(O/w™) has the form

P (0) = {1 mb%] '

Let y € A be a generator (note that A is cyclic as a group isomorphic to a sub-
group of F). Then it is easy to see that x,'(y*)b(z) are all elements of order
p/(ntV/el "and they generate a subgroup H of b(Gal(F(pny1)/F(¥,41)) of order
(pl(ntD/el)[Fo:Fp] — (pl(n+1)/e1)[O0:Zs] _ the last equality is true because Oy /Z,, is
unramified. (This subgroup still has exponent only pl(?+1)/¢l))

Now we have

(H ®z, 0)% = (H ®z, Oy 0, 0)% = (H ®z, 0p)% ©0, O,
and hence
(5.2)
#(H @7, O = (H(H @z, 00)W0)| OO 2 (#H) O] = plr/ll07] =
pl(WAD/ElelFF] 5 (0t DIFFp] — ) f et
But the group H can be regarded as a subgroup of Gal(F(pp+1)/F(¥pt1)). We

have F(pnt+1) C M(F(¥,41))w, hence we arrive at a contradiction by Theorem
5.11 below. O

Remark 5.10. Note that the proof of Proposition 5.9 is valid also for n = 0. Hence
it shows that in the case when L*(0, ¢) is a p-adic unit, pp as in Section 3 is not
Y-minimal.
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This implies that when n = 0 Theorem 6.13 remains vacuously true, since con-
dition (5) in that theorem can never be satisfied.

Theorem 5.11. One has
#(Gal(M(F (V1)) g /F(Upp1)) @ O)0 < #0O/L™(0, ) = #(O/=™).

Proof. One estimates the order of the left hand side by relating it to the Selmer
group of a Hecke character. Using standard methods one can bound the order of
the latter from above by the L-value applying the main conjecture proven by Rubin.
For details see Lemma 5.14 and 5.15 of [BK09], where this is done for n = 1. The
proofs of both of these lemmas generalize easily to arbitrary . ]

6. RZ =Ty

In this section we will prove the main result which asserts that the surjection in
Corollary 4.13 is an isomorphism. As a consequence we obtain a result on mod-
ularity of Galois representations and deduce some properties of the Hecke algebra
and cyclicity of a certain Galois group. As in Section 5.2 in what follows we assume
that pt #A. As before, throughout this section we assume that yo is X-admissible.

6.1. The ideal of reducibility. We briefly recall some general facts about Eisen-
stein representations from Section 3 of [Cal06] and Section 2 of [BCO06]: Let (R, mpg, F)
be a local p-adically complete ring. Let G be a topological group and consider a
continuous representation p : G — GL2(R) such that tr (p) mod mg is the sum of
two distinct characters 7; : G — F*,i = 1,2. Moreover, assume that

dimp EXtits,F[G] (11,72) = dimp EXtéts,F[G] (1o, 71) = 1.

Definition 6.1. The ideal of reducibility of R is the smallest ideal I of R such that
tr (p) mod I is the sum of two characters. We will denote the ideal of reducibility
of Ry, by Ir..

Proposition 6.2. The ideal I, is principal.

Proof. See [Cal06], Proof of Lemma 3.4. This uses in a crucial way condition (3)
of Y-admissibility of xo (see Definition 3.1). O

Theorem 6.3 (Urban). Let (R,mpg,F) be a local Artinian ring. Let p1, p2, and
p be three representations of a topological group G with coefficients in R (with p
having image in GL,,(R)). Assume the following are true:
e p and p1 @ pa have the same characteristic polynomials;
o The mod mg-reductions p; and py of p1 and pa respectively are absolutely
irreducible and non-isomorphic;
e The mod mpg-reduction p of p is indecomposable and the subrepresentation
of p is isomorphic to p; .
Then there exists g € GLy, (R) such that

_|m(h) * —1
ph) =g [ h)] g
forallh € G.
Proof. This is Theorem 1 in [Urb99]. O



AN R =7 THEOREM 19

Corollary 6.4. Let R € LCN(E) and suppose p : Gy — GL2(R) is a X-minimal
deformation of pg. Let I C R be an ideal such that R/I € LCN(E) and is an Artin
ring. Then I contains the ideal of reducibility of R if and only if p mod I is an
upper-triangular deformation of po to GLo(R/I).

Proof. If pmod I is isomorphic to an upper-triangular deformation of pg to GLy(R/I),
then clearly tr p mod I is a sum of two characters (which are distinct, since they
must reduce to xp and 1 modulo mg), so I contains the ideal of reducibility. The
converse is an easy consequence of Theorem 6.3. O

Proposition 6.5. Assume n = valg,(L"*(0,¢)) > 0. Then one has Ry /L,e =
O/w" where 0 < r < n.

Proof. Write S for Ry /I,e. Then S is a local complete ring. Moreover, by Corol-
lary 5.5 we have that S is a quotient of O[[X]], and hence Rs/wRyx (and thus
S/wS) is a quotient of F[[X]]. But F[[X]] is a dvr, so S/wS = F[[X]]/X™ for
some m € Zy U {oo}. (By F[[X]]/X we mean F[[X]].) We will first show that
m = 1. Suppose m # 1. Then Homp_aiz(Ryx, S/wS) contains at least two el-
ements - the map Ry — F — S/wS and the surjection Ry — S/wS. These
two elements give rise to two distinct elements in Homo_a1g( Ry, F[X]/X?), the
trivial one and the surjection Ry — S/wS — F[X]/X?. By the definition of Ry
there is a one-to-one correspondence between the deformations to F[X]/X? and el-
ements of Homo _aje(Ry, F[X]/X?). The trivial element corresponds to the trivial
deformation to F[X]/X?, i.e., with image contained in GL2(F), which is clearly
upper-triangular. However, the deformation corresponding to the surjection must
also be upper-triangular by Corollary 6.4 since ker(Ryx — S/wS — F[X]/X?) con-
tains I and F[X]/X? is Artinian. But we know by Proposition 4.10 that po does
not admit any non-trivial ¥-minimal upper-triangular deformations to F[X]/X?.
Hence we must have m = 1.

Thus by the complete version of Nakayama’s Lemma ([Eis95], Exercise 7.2) we
know that S is generated (as a O-module) by one element. So S = O/w"” with
r € Z; U {oo}. Finally we must have 0 < r < n, r # oo since by Corollary 6.4 if
r > mn orr = 0o, then there would be an upper-triangular Y¥-minimal deformation
of po to O/w™ ", which is impossible by Proposition 5.9. (]

Remark 6.6. Note that the fact that S is a quotient of O[[X]] is actually not
necessary for the proof of Proposition 6.5. Indeed, it suffices to know that S (and
hence S/wS) is topologically finitely generated as an O-algebra. It is an easy fact
that then S/wS = F if and only if S/wS has no quotient isomorphic to F[X]/ X2

Corollary 6.7. Let n = val, (L**(0,¢)) > 0. Suppose there ezists m € Iy, such
that tr pl. (Frobq) = 1 + (¢pe)(Froby) mod w" for all q ¢ . Write ry,,, for the
composite Ry, — O — O/w™ (the first arrow being rr). Then I = kerry p.

Proof. By the definition of the ideal of reducibility we have I, C kerr, ,. But, by
Proposition 6.5, Rx/I;e = O/w” for 0 < r < n, so we have O/w"” = Ry /I;e —
Rs/kerr,; , = O/w™ and the corollary follows. O

6.2. A commutative algebra criterion and R=T theorem. Let R and S
denote complete local Noetherian O-algebras with residue field F. Suppose that S
is finitely generated as a module over Z, and has no Z-torsion. Write mg and mg
for the maximal ideals of R and S respectively.
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Lemma 6.8. Let x € S be such that #(S/xS) < oo. Then multiplication by = is
injective.

Proof. Consider the exact sequence
0= kerr - S5 S = S/xS — 0.

Since S is finitely generated as a module over Z, we can tensor the exact sequence
with Q, and conclude that since S/zS® Q, = 0, we must also have kerz ® Q, = 0.
Since kerz is a finitely generated Z,-module it must be a finite group. Hence if
a € kerz, p™a = 0 for some m € Zxo. Thus a is a torsion element, which implies
a = 0 by our assumption on S. O

Proposition 6.9. Suppose there exists a surjective O-algebra map ¢ : R — S
inducing identity on the residue fields and an element m € R such that the bottom
map in the following commutative diagram

—S
|
R/mR —— S/¢(m)S

is an isomorphism. If R/TR = O/w" for some positive integer r, then ¢ is an
isomorphism.

Proof. Write © = ¢(m). We have ¢(7*) = x*. First, we are going to show that
R/m*R = S/x* S for every positive integer k. Indeed, the map R/7*R — S/¢(7*)S
is surjective because R — S is. So, it remains to prove injectivity. The map
7" L1R/7*R — 7% R/7**1 R given by multiplication by 7 is clearly surjective, so we
get
#(R/mR) > #(rR/m*R) >
Moreover, we have the short exact sequence
0— 7" 'R/n*R — R/7*R — R/7*'R — 0,

so #(R/m*R) = #(R/7x* 1 R)#(7*'R/x*R). Combining this equation with the
previous sequence of inequalities, we get by induction on k that #(R/m*R) <
(#(R/7R))*. On the other hand, the maps

S/xS 5 xS/228 5 228/aPS S ... 5 akT1S/ak s

are all injective because multiplication by = on S is injective by Lemma 6.8. Thus
we get
#(S/a*S) = #(S/xS)" = #(R/7R)* > #(R/7"R).
This proves injectivity of the map R/7*R — S/z*S.
Hence

lim R/7*R = lim S/"S.
k k
So, it suffices to show that R = lim R/7*R and S = lim S/«*S. The first follows
k K

from Lemma 7.14 on page 197 in [Eis95] since for every power of mpg, say mk
there is a power 7° of m such that (7)* C mk (indeed, take s = k) and for every
power of (), say (m)* there is a power of m$, of mg such that m% C (7)* (indeed,
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since mg = (7, w), we get my, C (), so s = kr works). The situation for S is
analogous. O

We will now state some consequences of Proposition 6.9.
Theorem 6.10. The map r : Ry — Ty in Corollary 4.13 is an isomorphism.

Proof. Write py for the Gg-representation induced by Ry — Tx/Jx. By definition
of Jx and the Chebotarev density theorem we see that trp; = 1 4 ¢,€, hence
r~1(Jg) D I and hence Js D r(Iy). By Proposition 6.2 the ideal I, is principal
and we fix a generator m of I,. Thus the surjection

RE/TFRE —> TE/’I‘(T(')TE —> TE/JE,

must be an isomorphism since Ry/mRs = O/w” with r < n by Proposition 6.5
and #(Tx/Jx) > #0/w"™ by Theorems 4.2 and 4.4. Here n = val, (L™ (0, ¢)).
Hence r induces the commutative diagram in Proposition 6.9 with R = Ry, S = Ty
(note that Ty is Z-torsion-free and finitely generated as a module over Z, since
by definition it acts faithfully on a finite dimensional vector space of characteristic
7€ero). O

Corollary 6.11. Let n = val, (L"(0,$)). Suppose there ewists © € Ils, such that
tr pl (Frobq) = 1 + (¢p€)(Froby) mod w™ for all q € ¥. Then Ry, = Tx = O, i.e.,
Ry, = Ty, is a discrete valuation ring.

Proof. By Corollary 6.7 we have r_1(w"0) = L. So, we see that r, induces the
commutative diagram in Proposition 6.9 with R = Ry, S = O, 7 a generator of
Ie. O

Remark 6.12. Note that Corollary 6.11 implies that if n = val(L™(0,)) > 0
and there exists an automorphic representation m € IIy such that m has Hecke

eigenvalues congruent to the Hecke eigenvalues of an Eisenstein series mod w",
then Iy, = {7}.

6.3. Modularity theorem. In this section we state a modularity theorem which
is a consequence of the results of the previous sections. To make its statement
self-contained, we explicitly include all the assumptions we have made so far.

Theorem 6.13. Let F' be an imaginary quadratic field and p > 3 a rational prime
which splits in F. Fix a prime p of F over p. Assume that p1 # Clp and that any
prime q | discp satisfies ¢ Z £1 (mod p). Let ¢1, ¢2 be Hecke characters of F with
split conductors and of infinity type z and z~' respectively such that ¢ = ¢1 /¢
is unramified. Assume that the conductor My of ¢y is coprime to (p) and that
p 1 #(Op/MM)*. Write Gal(F(¢pe)/F) =T x A with I' = Z, and A a finite
group. Assume p{ F#A.

Let p: Gs, = GLa(E) be a continuous irreducible representation that is ordinary
at all places q | p. Suppose p* = x1 & x2 with x1 = ¢1—,p€, X2 = QﬁTp Set
Xo = Xlxgl. If all of the following conditions are satisfied:

(1) 5 {q|pdpMM, M},
(2) pt#A
(3) xo is X-admissible (cf. Definition 3.1),
(4) det(p) = d12e,
(5) p® (i);;l, is X-minimal,
then p is modular in the sense of Definition 2.5.
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6.4. More consequences of our result. We will now state some corollaries of
the R = T theorem proved in the previous section. As before, we assume that yq
is Y-admissible. We will also discuss how our approach can be used to partially
recover the results of Skinner and Wiles [SW99].

Corollary 6.14. The FEisenstein ideal Jx is a principal ideal and the Hecke algebra
Ty is a complete intersection (and hence Gorenstein).

Proof. The first statement follows immediately from Theorem 6.10 and the fact
that the ideal of reducibility I, (which is principal - see Proposition 6.2) is mapped
exactly onto the Eisenstein ideal Jx; (see proof of Theorem 6.10). The fact that Ty
is Gorenstein follows from Proposition 6.4 in [Bas63]. Note that the proposition
is applicable since the maximal ideal of Ty, is generated by w and a generator of
the ideal of reducibility (see Proof of Proposition 6.9) and p is clearly a non-zero
divisor. Finally since Ry, = Tx, = O[[X]]/I with the ideal I of codimension 1, the
Gorenstein condition is equivalent with principality of I ([Eis95], Corollary 21.20).
Hence Ty is a complete intersection. (I

Remark 6.15. The properties of the Hecke algebra and the Eisenstein ideal stated
in Corollary 6.14 were proved for their counterparts over Q by Mazur ([Maz77],
Theorem 11, and Chapter 2, Section 14). See also a discussion in [CE05] (page 99
and Corollary 3.17) where these properties, like here, are derived as a consequence
of an R =T theorem.

Corollary 6.16. Let the notation be as in Section 5. There exists a X-minimal
upper-triangular deformation of py to GL2(O/w™). Moreover, the O-module

Gal(M(F(.))w /F(¥,)) © O)%"
is isomorphic to O/w™.

Proof. The first statement follows from the isomorphisms Rs /L, = Tx/Jy &
O/w™ combined with Theorem 6.3. The existence of the upper-triangular defor-
mation together with Lemma 5.7 provides an element of Gal(M (F(¥,))w, /F(¥,))
of order p/™/¢l. As in the proof of Theorem 5.11 we see that this element generates
an O-submodule of -

Gal(M (F(¥,))w/F(¥,)) ® O)%
of order #O/w™. Hence the second statement follows from Theorem 5.11. g

Remark 6.17. While the upper bounds on the order of the Galois group in Corol-
lary 6.16 are predicted by the Main Conjecture of Iwasawa Theory, their exact O-
module structure is in general a mystery. Our results show that the upper bounds
are in fact optimal and provide a rather definitive answer to structure question,
however only in the case of a Y-admissible character, where one assumes at the
outset the cyclicity of the group of extensions (see Definition 3.1).

Finally, we will discuss to what extent our method provides an alternative to
the approach of Skinner and Wiles in [SW99] for proving an R = T theorem for
2-dimensional, p-adic, residually reducible, ordinary representations of Gq with
unique non-semisimple reduction which are unramified outside finitely many primes.
First note that the assumptions of [SW99] are weaker than ours, because they only
imply that the group of extensions of 1 by the character as in Definition 3.1 is one-
dimensional, but not so if one reverses the order of 1 and the character. However,
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even with that weaker assumption in place our Proposition 4.10 carries over (with
the same proof) showing that there are no upper-triangular X-minimal deforma-
tions of the residual representation py of [SW99] to GLy(F[X]/X?). Using this we
proceed as in the proof of our Proposition 6.5 to show that the universal deforma-
tion ring (denoted in [SW99] by R{3) has the property that RY% /I = O/w*
for some k € Z; U {oo}, where I, denotes the ideal of reducibility. Note that
by Remark 6.6 it is not necessary to know that R’E’“{g‘ is a quotient of O[[X]].
Since [SW99] in fact do exhibit a E-minimal upper-triangular deformation pg% to
GL>(0), we must have k = oo, i.e., Rgﬁig/fre >~ (. In particular, I, is the kernel
of the map R’E’“{g‘ — O correspoding to pg%, which in [SW99] is denoted by Is.
It follows therefore that the surjection of R{'% onto the (full, not just cuspidal)
Hecke algebra (that in [SW99] is denoted by ng‘) descends to an isomorphism
Rg’i’g}/[re = Tgfg‘/IEiS, where I¥% denotes the Eisenstein ideal (see also Propo-
sition 3.12 in [CEO05] where an analogous statement is proved in the case when
the residual representation is reducible and semi-simple). In particular our method
gives an alternative proof to the statement that every reducible Y-minimal deforma-
tion of pg is modular. However, we cannot apply our commutative algebra criterion
(Proposition 6.9) to conclude that R{}% = Ty First, as mentioned above, the
assumptions of [SW99] are weaker than our assumption of ¥-admissibility, so do
not imply that the ideal of reducibility is principal, and secondly, R%’g /e is not
finite. In [SW99] and [CE05] the R = T statement is proved using the numerical
criterion of Wiles and Lenstra which requires one to compare the size of I../I2
with the size of the quotient of the cuspidal Hecke algebra by I¥%.
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