
AN R = T THEOREM FOR IMAGINARY QUADRATIC FIELDSTOBIAS BERGER1 AND KRZYSZTOF KLOSIN2Abstract. We prove the modularity of certain residually reducible p-adic Ga-lois representations of an imaginary quadratic �eld assuming the uniquenessof the residual representation. We obtain an R = T theorem using a new com-mutative algebra criterion that might be of independent interest. To apply thecriterion one needs to show that the quotient of R by its ideal of reducibilityis cyclic Artinian of order no greater than the order of the congruence mod-ule T=J , where J is an Eisenstein ideal in the local Hecke algebra T. Theinequality is proven by applying the Main conjecture of Iwasawa Theory forHecke characters and using a result of [Ber09]. This strengthens our previ-ous result [BK09] to include the cases of an arbitrary p-adic valuation of theL-value, in particular, cases where R is not a discrete valuation ring. As aconsequence we show that the Eisenstein ideal is principal and that T is acomplete intersection. 1. IntroductionLet K be a number �eld and � : Gal(K=K)! GL2(Qp) a continuous irreduciblerepresentation. It has been a subject of much interest and e�ort lately to deter-mine which such Galois representations are modular, i.e., which such �'s have theirL-function equal to an L-function of an automorphic representation of GL2(AK).Since the ground-breaking work of Wiles there has been a lot of progress in an-swering this question [Wil95, TW95, BCDT01, SW97, Fuj99, SW99, SW01, Tay02,Kis07].This article is a continuation of our e�orts to prove the modularity of continuousrepresentations of Gal(K=K) for K an imaginary quadratic �eld. This case issubstantially di�erent from other situations for which modularity has been proven sofar since the associated symmetric space is a hyperbolic 3-manifold, so in particulartools from algebraic geometry are not available.In a previous paper [BK09] we proved modularity of irreducible Galois repre-sentations of an imaginary quadratic K (in the minimal case) when the residualrepresentation �0 (i.e., the composite of � with the map Zp “ Fp after choosing anintegral lattice in the space of �) is reducible under an additional condition that acertain L-value associated to the determinant of � has small p-adic valuation. Aswe showed in [BK09] this condition implies that the universal deformation ring of�0 is a discrete valuation ring. This article removes this condition.We achieve this by developing a new commutative algebra criterion to prove \R =T" theorems, applicable also in other situations (see Remark 1.2 and the discussionDate: 22 November 2009.2000 Mathematics Subject Classi�cation. 11F80, 11F55.Key words and phrases. Galois representations, automorphic forms, deformations, ideal ofreducibility, Eisenstein ideal, imaginary quadratic.1



2 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2at the end of Section 6.4). For this �x a reducible, non-semisimple residual two-dimensional Galois representation and study its minimal ordinary deformationswith corresponding universal deformation ring R and universal deformation �R.Following [BC06, Cal06] we de�ne the ideal of reducibility Ire to be the smallestideal I in R such that tr(�R) mod I is the sum of two characters.Assuming that there is only one (up to isomorphism) non-split extension of thetwo characters (in either order) which are the constituents of the semisimpli�cationof the residual representation [BC06, Cal06] prove that Ire is principal. In this caseour new commutative algebra criterion allows us to prove that R is isomorphic toT, a Hecke algebra, provided that R=Ire is a cyclic Artinian module and its order isno greater than the order of T=J for J an Eisenstein ideal of T (see Proposition 6.9and Theorem 6.10). Lower bounds for the order of T=J have been proven in manycases starting with Mazur and Wiles [MW84]. For our case of imaginary quadratic�elds we refer to [Ber09] which bounds valp(#T=J) from below by the p-valuation(say n) of a Hecke L-value. Since we can rule out non-trivial reducible in�nitesimaldeformations by the uniqueness of our residual representation the cyclicity of R=Ireand an upper bound for its p-order (which again equals n) can be obtained usingthe Main Conjecture for Hecke characters of imaginary quadratic �elds, proven byRubin.There are several consequences of the R = T theorem for both the Hecke alge-bra and the universal deformation ring. On the one hand the principality of thereducibility ideal implies that the Eisenstein ideal is also principal. On the otherhand using our knowledge of the structure of the universal deformation ring we con-clude that the Hecke algebra is a complete intersection (Corollary 6.14). Finally,the lower bound on the size of the Hecke congruence module translates under theisomorphism R �= T into a statement about cyclicity of a certain Galois group andthe existence of certain reducible deformations (Corollary 6.16).To give a more precise account, let c be the non-trivial automorphism of F , andlet p > 3 be a prime split in the extension F=Q. Fix embeddings F ,! Q ,! Qp ,!C. Let F� be the maximal extension of F unrami�ed outside a �nite set of places� and put G� = Gal(F�=F ). Suppose F is a �nite �eld of characteristic p and that�0 : G� ! F� is anticyclotomic (in general a weaker assumption of �-admissibilityis enough - see Section 3) character rami�ed at the places dividing p. Suppose alsothat �0 : G� ! GL2(F) is a continuous representation of the form(1.1) �0 = �1 �0 �0�and having scalar centralizer. In [BK09] we proved that under certain conditionson �0 and � the residual representation �0 is unique up to isomorphism. We recallthe relevant details in Section 3.Following Mazur [Maz97] we study ordinary deformations of �0. Let O be thering of integers in a �nite extension of Qp. An O-deformation of �0 is a local com-plete Noetherian O-algebra A with residue �eld F and maximal ideal mA togetherwith a strict equivalence class of continuous representations � : G� ! GL2(A) sat-isfying �0 = � mod mA. An ordinary deformation is a deformation that satis�es�jDq

�= ��1 �0 �2�



AN R = T THEOREM 3for q j p, where �ijIq
= �ki with integers k1 � k2 depending on q and � is thep-adic cyclotomic character. Here Dq and Iq denote the decomposition group andthe inertia group of q j p.A part of our approach rests on studying possible reducible deformations of �0and showing that there are indeed not \too many" of those. As we have alreadyshown in [BK09] the uniqueness of �0 itself implies that there are no non-trivialreducible in�nitesimal deformations of �0. In the current paper we go further andcarefully study reducible deformations of �0 to other Artinian local rings.To exhibit modular irreducible deformations we apply the cohomological congru-ences of [Ber09] and the Galois representations constructed by Taylor et al. usingthe strengthening of Taylor's result in [BH07]. We also make use of a result ofUrban [Urb05] who proves that ��jDq

is ordinary at q j p if � is ordinary at q. Thistogether with the non-existence of a non-trivial reducible in�nitesimal deformationimplies the existence of an O-algebra surjection(1.2) R “ T;where R is the universal �-minimal deformation ring (cf. De�nition 4.8) and T isa Hecke algebra acting on cuspidal automorphic forms of GL2(AF ) of weight 2 and�xed level.Remark 1.1. As we remarked already in [BK09] the approach of [SW97] (wherean analogous problem is studied for representations of Gal(Q=Q)) breaks down inthe imaginary quadratic case because of the non-existence of an ordinary reduciblecharacteristic 0 deformation (cf. [BK09], Corollary 5.22). In [BK09] we assumedthat the p-valuation of a Hecke L-value was small such that by the Main Conjec-ture there were even no reducible deformations to any Artinian rings larger thanthe residue �eld, which implied that the ideal of reducibility Ire of the universaldeformation ring R was maximal. This simpli�ed the proof of \R = T", because itfollows from the results of Bellaiche-Chenevier [BC06] and Calegari [Cal06] that ifR surjects onto a characteristic 0 ring (in our case T) and the ideal Ire is maximal,then R is a discrete valuation ring.In this paper we exploit that in all cases there is, in fact, a surjection R=Ire “T=J by the de�nitions of the Eisenstein ideal J and the ideal of reducibility Ire.By �nding bounds on the orders of both sides we show that this map must be anisomorphism. Indeed, if we write n for the $-valuation1 of a normalised HeckeL-value (for a Hecke character that gives rise to �0 in (1.1)), then the order of thecongruence module T=J is bounded from below by #O=$n by the full result of[Ber09]. On the deformation side we �rst bound the dimension of R in Section5.1 by using the �ltration of ad�0 by 1-dimensional pieces, similar to a calculationin [SW97]. Strengthening an argument of [BK09] and using a result of Urbanwe show in Section 5.2 that the Main Conjecture of Iwasawa Theory implies thatthere are no reducible ordinary deformations to O=$m for m > n. Together withthe non-existence of non-trivial reducible in�nitesimal deformations this impliesthat R=Ire = O=$m for m � n (see Proposition 6.5). We therefore have thatthe surjection R=Ire “ T=J is an isomorphism, from which we deduce (using ourcommutative algebra criterion - Proposition 6.9) that R �= T in Theorem 6.10.using the principality of Ire.1Here $ denotes a uniformizer of O.



4 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2Remark 1.2. As suggested to us by Frank Calegari our commutative algebracriterion allows one to replace the condition pkB2;!k�2 from [Cal06] Theorem 2.3by p j B2;!k�2 , which proves an R = T result for certain residually reduciblerepresentations of GQ. More precisely, if T denotes the (classical) cuspidal Heckealgebra of weight 2 and level �1(p) generated by T` for ` 6= p, write J the maximalideal of T containing T` � 1 � `k�1 for all ` 6= p. Under the assumption that the�1�k-eigenspace (where � : GQ ! Z�p denotes the p-adic cyclotomic character) ofthe class group of Q(�p) is cyclic, Calegari considers deformations of the uniquenon-split representation � = �1 �0 �k�1� mod pwith � unrami�ed over Q(�p). He requires that the deformations � be unrami�edoutside p, of determinant �!k�2, where ! is the Teichm�uller lift of � mod p, andsuch that the restriction of � to Gal(Qp=L) arises as a generic �ber of a �nite 
atgroup scheme over the ring of integers of L. Here L stands for the completion at p ofthe maximal real sub�eld of Q(�p). If one denotes by R the corresponding universaldeformation ring, the arguments of our Sections 5.2 and 6.1 can be adapted, using[Cal06] Lemmas 4.2 and 4.5 and the Main conjecture proven by Mazur and Wiles[MW84], to prove the cyclicity and an upper bound for R=Ire in terms of the p-valuation of the relevant Bernoulli number. The lower bound by the same numberon the size of the quotient of TJ by the Eisenstein ideal generated by T`�1�`k�1 forall ` 6= p is stated, for example, as Proposition 5.1 in [SW97]. By the commutativealgebra criterion (Proposition 6.9) we can therefore conclude R = TJ .The authors would like to thank Frank Calegari, Ga�etan Chenevier, Haruzo Hidaand Ravi Ramakrishna for helpful discussions and comments.2. Notation and terminology2.1. Galois groups. Let F be an imaginary quadratic extension of Q of discrimi-nant dF 6= 3; 4 and p > 3 a rational prime which splits in F . We �x once and for alla prime p of F lying over p and write p for the prime of F such that (p) = pOF = pp.Let ClF denote the class group of F . We assume that p - #ClF and that any primeq j dF satis�es q 6� �1 (mod p):For a �eld K write GK for the Galois group Gal(K=K). If K is a �nite extensionof Q` for some rational prime `, we write OK (respectively $K , and FK) for thering of integers of K (respectively for a uniformizer of K, and OK=$KOK).If K � F is a number �eld, OK will denote its ring of integers. If q is a placeof K, we write Kq for the completion of K with respect to the absolute value j � jqdetermined by q and set OK;q = OKq
(if q is archimedean, we set OK;q = Kq). Wealso write $q for a uniformizer of Kq, Pv for the maximal ideal of OK;q, and kqfor its residue �eld.Fix once and for all compatible embeddings iq : F ,! F q and F q ,! C, for everyprime q of F , so we will often regard elements of F q as complex numbers withoutexplicitly mentioning it. If w is a place of K � F , it determines a place v of F ,and we always regard Kw as a sub�eld of F v as determined by the embedding iv.This also allows us to identify GKw with the decomposition group Dv � GK of aplace v of F . We will denote that decomposition group by Dq. Abusing notation



AN R = T THEOREM 5somewhat we will denote the image of Dq in any quotient of GK also by Dq. Wewrite Iq � Dq for the inertia group.Let � be a �nite set of places of K. Then K� will denote the maximal Galoisextension of K unrami�ed outside the primes in �. We also write G� for GF� .Moreover, for a positive integer n, denote by �n the group of nth roots of unity.2.2. Hecke characters. For a number �eld K, denote by AK the ring of ade-les of K and set A = AQ. By a Hecke character of K we mean a continuoushomomorphism � : K� nA�K ! C�:For a place q ofK write �(q) for the restriction of � toKq and �(1) for the restrictionof � to Qqj1Kq. The latter will be called the in�nity type of �. We also usuallywrite �($q) to mean �(q)($q). Given � there exists a unique ideal f� of K largestwith respect to the following property: �(q)(x) = 1 for every �nite place q of Kand x 2 O�K;q such that x� 1 2 f�OK;q. The ideal f� is called the conductor of �.If K = F , there is only one archimedean place, which we will simply denote by 1.For a Hecke character � of F , one has �(1)(z) = zmzn with m;n 2 R. If m;n 2 Z,we say that � is of type (A0). We always assume that our Hecke characters are oftype (A0). Write L(s; �) for the Hecke L-function of �.Let � be a Hecke character of in�nity type za � zz �b with conductor prime to p.Assume a; b 2 Z and a > 0 and b � 0. PutLalg(0; �) := 
�a�2b� 2�pdF �b �(a+ b) � L(0; �);where 
 is a complex period. In most cases, this normalization is integral, i.e., liesin the integer ring of a �nite extension of Fp. See [Ber08] Theorem 3 for the exactstatement. Put Lint(0; �) = (Lalg(0; �) if valp(Lalg(0; �)) � 01 otherwise:For z 2 C we write z for the complex conjugate of z. The action of complexconjugation extends to an automorphism of A�F and we will write x for the imageof x 2 A�F under that automorphism.For a Hecke character � of F , we denote by �c the Hecke character of F de�nedby �c(x) = �(x).2.3. Galois representations. For a �eld K and a topological ring R, by a Galoisrepresentation we mean a continuous homomorphism � : GK ! GLn(R). If n = 1we usually refer to � as a Galois character. We write K(�) for the �xed �eld of ker�and call it the splitting �eld of �. If � is a Galois character and M is an R-module,we denote by M(�) the R[GK ]-module M with the GK -action given by �. If Kis a number �eld and q is a �nite prime of K with inertia group Iq we say that� is unrami�ed at q if �jIq
= 1. If � is a �nite set of places of K such that � isunrami�ed at all v 62 �, then � can be regarded as a representation of GK� .Let E be a �nite extension ofQp. Every Galois representation � : GK ! GLn(E)can be conjugated (by an element M 2 GLn(E)) to a representation �M : GK !GLn(OE). We denote by �M : GK ! GLn(FE) its reduction modulo $EOE . Itis sometimes called a residual representation of �. The isomorphism class of itssemisimpli�cation �ssM is independent of the choice of M and we simply write �ss.



6 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2Let � : GF ! Z�p denote the p-adic cyclotomic character. For any subgroupG � GF we will also write � for �jG. Our convention is that the Hodge-Tate weightof � at p is 1.Let � be a Hecke character of F of type (A0) and �� = fq j pf�g. We de�ne(following Weil) a p-adic Galois character�p : G�� ! F�
passociated to � by the following rule: For a �nite place q - pf� of F , put �p(Frobq) =ip(i�11 (�($q))) where Frobq denotes the arithmetic Frobenius at q. It takes valuesin the integer ring of a �nite extension of Fp.De�nition 2.1. For a topological ring R we call a Galois representation � : G� !GL2(R) ordinary if �jDq

�= ��1 �0 �2�for q j p, where �ijIq
= �ki with integers k1 � k2 depending on q.2.4. Automorphic representations of AF and their Galois representations.Set G = ResF=QGL2. For Kf an open compact subgroup of G(Af ), denote byS2(Kf ) the space of cuspidal automorphic forms of G(A) of weight 2, right-invariantunder Kf (for more details see Section 3.1 of [Urb95]). For  a �nite order Heckecharacter write S2(Kf ;  ) for the forms with central character  . This is isomor-phic as a G(Af )-module to L�Kff for automorphic representations � of a certainin�nity type (see Theorem 2.2 below) with central character  . Here �f denotesthe restriction of � to GL2(Af ) and �Kff stands for the Kf -invariants.For g 2 G(Af ) we have the usual Hecke action of [KfgKf ] on S2(Kf ) andS2(Kf ;  ). For primes q such that the vth component of Kf is GL2(OF;v) wede�ne Tq = [Kf �$q 1�Kf ].Combining the work of Taylor, Harris, and Soudry with results of Friedberg-Ho�stein and Laumon/Weissauer, one can show the following (see [BH07] for gen-eral case of cuspforms of weight k):Theorem 2.2 ([BH07] Theorem 1.1). Given a cuspidal automorphic represen-tation � of GL2(AF ) with �1 isomorphic to the principal series representationcorresponding to �t1 �t2� 7! � t1jt1j�� jt2jt2 �and cyclotomic central character  (i.e.,  c =  ), let �� denote the set consistingof the places of F lying above p, the primes where � or �c is rami�ed, and theprimes rami�ed in F=Q.Then there exists a �nite extension E of Fp and a Galois representation�� : G�� ! GL2(E)such that if q 62 ��, then �� is unrami�ed at q and the characteristic polynomialof ��(Frobq) is x2 � aq(�)x +  ($q)(#kq); where aq(�) is the Hecke eigenvaluecorresponding to Tq. Moreover, �� is absolutely irreducible.



AN R = T THEOREM 7Urban studied in [Urb98] the case of ordinary automorphic representations �, andtogether with results in [Urb05] on the Galois representations attached to ordinarySiegel modular forms showed:Theorem 2.3 (Corollary 2 of [Urb05]). Let q be a prime of F lying over p. If � isunrami�ed at q and ordinary at q, i.e., jaq(�)jq = 1, then the Galois representation�� is ordinary at q. Moreover ��jDq

�= �	1 �	2� ;where 	2jIq
= 1 and 	1jIq

= det ��jIq
= �:We conjecture that the assumption on the central character, inherent to themethod of proof of Theorem 2.2, is not necessary (see also [CD06] Conjecture 3.2).Conjecture 2.4. Let � be a cuspidal automorphic representation as in Theorem2.2 but without the assumption on the central character. Then the representation�� exists as above and the conclusion of Theorem 2.3 remains valid for it.De�nition 2.5. Let E be a �nite extension of Fp and � : G� ! GL2(E) a Galoisrepresentation for a �nite set of places �. We say that � is modular if there existsa cuspidal automorphic representation � as in Theorem 2.2, such that � �= ��(possibly after enlarging E).From now on we �x a �nite extension E of Fp which we assume to be su�cientlylarge (see Section 4.2 and Remark 4.5, where this condition is made more precise).To simplify notation we put O := OE , F = FE and $ = $E .3. Uniqueness of a residual Galois representationLet p = pp as before be a split prime. Let � be a �nite set of �nite primes of Fcontaining p. In this paper we will be studying deformations of a certain class ofresidual Galois representations which we now describe.From now on let �0 : G� ! GL2(F)be a Galois representation satisfying both of the following conditions:(Red): �0 = �1 ��0� for a Galois character �0 : G� ! F�;(Sc): �0 has scalar centralizer.De�nition 3.1. We will say that a Galois character �0 : G� ! F� is �-admissibleif (1) �0 is rami�ed at p and at p;(2) if q 2 �, then either �0 is rami�ed at q or �0(Frobq) 6= (#kv)�1 (as elementsof F);(3) dimF(H1(G�;F(�0))) = dimF(H1(G�;F(��10 ))) = 1:Remark 3.2. It follows from the global Euler characteristic formula ([Mil06] The-orem 5.1), that the cohomology spaces in condition (3) of De�nition 3.1 are at leastone-dimensional.An important consequence of �-admissibility of �0 is the uniqueness of �0 up toisomorphism. We record this fact as a proposition.



8 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2Proposition 3.3. Suppose �0 : G� ! GL2(F) is a Galois representation satisfyingcondition (Red) and (Sc) for a �-admissible character �0. Then �0 �= �0.Proof. As �0 and �0 correspond to non-zero elements in ExtFp[G�](1; �0) �= H1(G�;Fp(��10 )),the proposition follows from condition (3) in De�nition 3.1. ˜We will be interested in studying deformations of a representation �0 satisfyingconditions (Red) and (Sc) for a �-admissible character �0.Let us shortly explain the signi�cance of these assumptions to the deformationproblem we study in the coming sections. Condition (Sc) is necessary to ensurethat the deformation functor studied in the following sections is representable.The assumption that �0 is �-admissible is crucial for our method. On the onehand Proposition 3.3 guarantees that modular Galois representations which weconstruct (and which are de�ned only up to semisimpli�cation) are deformations of�0. On the other hand, �-admissibility of �0 is essential for ensuring that the idealof reducibility of the universal deformation is principal, which is crucial for ourcommutative algebra criterion (Proposition 6.9) that we use to prove modularity of�-minimal deformations of �0 (Theorem 6.10).We will now formulate some conditions (see Theorem 3.5 below) that ensure �-admissibility of a Galois character (for details see [BK09], Section 3). At the sametime we want to emphasize that there is no reason why every �-admissible charactershould satisfy all of these conditions, however, it is in the context of Theorem 3.5that we were able to construct examples of �-admissible characters (see Remark 3.7below). Also, it is only under condition (3) of Theorem 3.5 that one can relate (bytwisting, see [Ber09] Lemma 8) to cusp forms with cyclotomic character for whichone knows how to attach Galois representations to automorphic forms on GL2(AF )by Theorem 2.2. Conjecturally, however, this condition should be unnecessary (seeConjecture 2.4).De�nition 3.4. Let R be a commutative ring, J � R an ideal,M a free R-moduleand N a submodule of M . We will say that N is saturated with respect to J ifN = fm 2M j mJ � Ng:Let �0 : G� ! F� be a Galois character. Let Sp be the set of primes of F (�0)lying over p. Write M�0 for Qq2Sp(1 + Pv) and T�0 for its torsion submodule.The quotient M�0=T�0 is a free Zp-module of �nite rank. Let E�0 be the closurein M�0=T�0 of the image of E�0 , the group of units of the ring of integers of F (�0)which are congruent to 1 modulo every prime in Sp.In [BK09] the authors proved the following theorem (see Theorem 3.5 and theproof of Corollary 3.6 in [loc. cit.]).Theorem 3.5. Let �0 : G� ! F� be a Galois character. Assume that �0 satis�esall of the following conditions:(1) �0 is rami�ed at p;(2) if q 2 �, then either �0 is rami�ed at q or �0(Frobq) 6= (#kq)�1 (aselements of F);(3) �0 is anticyclotomic, i.e., �0(c�c) = �0(�)�1 for every � 2 G� and c thegenerator of Gal(F=Q);(4) the Zp-submodule E�0 �M�0=T�0 is saturated with respect to the ideal pZp,(5) The ��10 -eigenspace of the p-part of ClF (�0) is trivial.



AN R = T THEOREM 9Then �0 is �-admissible.Remark 3.6. Note that conditions (1) and (3) of Theorem 3.5 imply that �0 isalso rami�ed at p. Observe that �0 satis�es conditions (1)-(5) of Theorem 3.5 if andonly if so does ��10 . Indeed, conditions (1)-(4) in Theorem 3.5 are invariant undertaking the inverse. Moreover, since �0 is anticyclotomic, the extension F (�0)=Q isGalois, hence the ��10 -eigenspace of the p-part of ClF (�0) vanishes if and only if the�0-eigenspace does.Remark 3.7. Condition (4) in Theorem 3.5 implies that every � 2 E�0 which is apth power of an element of M�0=T�0 must be a pth power of an element of E�0 . Inparticular the map E�0 
Zp Fp ! (M�0=T�0)
Zp Fpis injective. One way to check condition (4) in practice is to compute the p-part Cof the class group of F (�0)(�p) as a Gal(F (�0)(�p)=F (�0))-module. In particular,if ! denotes the character of Gal(F (�0)(�p)=F (�0)) giving the action on �p, thenKummer theory implies that Condition (4) is satis�ed if the !-part of C is trivial.In [BK09], Section 6, the authors exhibited an example of a Galois representationwhose mod $-reduction satis�ed conditions (Red) and (Sc) for a Galois charactersatisfying conditions (1)-(5) of Theorem 3.5.4. Deformations of �0In this section we will �x a residual representation �0 arising as the reductionof modular Galois representations � : G� ! GL2(O) and de�ne a deformationproblem.4.1. Eisenstein congruences. Let �1; �2 be two Hecke characters with in�nitytypes �(1)1 (z) = z and �(1)2 (z) = z�1. Put 
 = �1�2.Denote by S the �nite set of places where both �i are rami�ed, but � is unram-i�ed. Write Mi for the conductor of �i. For an ideal N in OF and a �nite place qof F put Nq = NOF;q. We de�neK1(Nq) = ��a bc d� 2 GL2(OF;q) j a� 1; c � 0 mod Nq

� ;and U1(Nq) = fk 2 GL2(OF;q) j det(k) � 1 mod Nqg:Now put(4.1) Kf := Y
q2S

U1(M1;q)Y
q=2S

K1((M1M2)q) � G(Af ):From now on, let � be a �nite set of places of F containingS� := fq jM1Mc1M2Mc2g [ fq j pdF g:We denote by T(�) the O-subalgebra of EndO(S2(Kf ; 
)) generated by theHecke operators Tq for all places q 62 �. Following [Tay88] (p. 107) we de�ne idem-potents ep and ep, commuting with each other and with T(�) acting on S2(Kf ; 
).They are characterized by the property that any element h 2 X := epep S2(Kf ; 
)which is an eigenvector for Tp and Tp satis�es jap(h)jp = jap(h)jp = 1, where ap(h)(resp. ap(h)) is the Tp-eigenvalue (resp. Tp-eigenvalue) corresponding to h. Let



10 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2Tord(�) denote the quotient algebra of T(�) obtained by restricting the Heckeoperators to X .Let J(�) � T(�) be the ideal generated byfTq � �1($q) �#kq � �2($q) j q 62 �g:De�nition 4.1. Denote by m(�) a maximal ideal of Tord(�) containing the imageof J(�). We set T� := Tord(�)m(�). Moreover, set J� := J(�)T�. We refer to J�as the Eisenstein ideal of T�.Theorem 4.2 ([Ber05], Theorem 6.3, [Ber09] Theorem 14). Let � be an unrami�edHecke character of in�nity type �(1)(z) = z2. There exist Hecke characters �1; �2with �1=�2 = � such that their conductors are divisible only by rami�ed primes orinert primes not congruent to �1 mod p and such that#(T�=J�) � #(O=(Lint(0; �))):Proof. [Ber09] Theorem 14 states this inequality for the Hecke algebra T(�). How-ever, the Eisenstein cohomology class used in the proof of [Ber09] Theorem 14 isordinary because by [Ber08] Lemma 9 its Tp-eigenvalue (resp. Tp-eigenvalue) is thep-adic unit p�1(p) + �2(p) (resp. p�1(p) + �2(p)). Therefore one can prove thestatement for the ordinary cuspidal Hecke algebra. ˜Remark 4.3. If � is unrami�ed then �p� is anticyclotomic (see [Ber09] Lemma1). The condition on the conductor of the auxiliary character �1 together with ourassumption on the discriminant of F therefore ensure that for �0 = �p� conditions(1)-(3) of Theorem 3.5 are automatically satis�ed for � = S�.The assumption on the rami�cation of � can be relaxed. For example, Propo-sition 16 and Theorem 28 of [Ber08] and Proposition 9 and Lemma 11 of [Ber09]imply the following:Theorem 4.4. Let �1, �2 be as at the start of this section with p - #(OF =M1M2)�.Assume both M1 and M2 are coprime to (p) and the conductor of � := �1=�2 anddivisible only by primes split in F=Q. Suppose L(0;�)L(0;�) 2 O. If the torsion part ofH2c (SKf ;Zp) is trivial, whereSKf = G(Q)nG(A)=KfU(2)C�then #(T�=J�) � #(O=(Lint(0; �1=�2))):Remark 4.5. In fact, by replacing Zp by the appropriate coe�cient system, theresult is true for characters �1; �2 of in�nity type zz�m and z�m�1, respectively,for m � 0. For Theorems 4.2 and 4.4, the �eld E needs to contain the values of the�nite parts of �1 and �2 as well as Lint(0; �1=�2).We will from now on assume that we are either in the situation of Theorem 4.2or 4.4 and �x the characters �1; �2 and � = �1=�2, with corresponding conditionson the set � and de�nitions of Kf , T�, and J�. We also assume from now on thatvalp(Lint(0; �)) > 0, however our main result (Theorem 6.13) remains vacuouslytrue when Lint(0; �) is a p-adic unit (see Remark 5.10). Put �0 = �p� and assumethat �0 is �-admissible. If we are in the situation of Theorem 4.4 then supposealso that M1 and M2 are not divisible by any primes q such that #kq � 1 mod p.(This last assumption is only used in the proof of Theorem 4.9.)



AN R = T THEOREM 114.2. De�nition of �0. WriteS2(Kf ; 
)m(�) = M�2�� �Kfffor a �nite set �� of ordinary cuspidal automorphic representations with centralcharacter 
, such that �Kff 6= 0. The set �� is non-empty by Theorem 4.2 underour assumption that valp(Lint(0; �)) > 0.Let � 2 ��: Let �� : G� ! GL2(E) be the Galois representation attached to �by Conjecture 2.4 (This is another point where we assume that E is large enough).If we assume that �c = � then the condition on the central character in Theorem2.2 can be satis�ed (after possibly twisting with a �nite character), see [Ber09]Lemma 8, so we do not need to refer to Conjecture 2.4 in this case.The representation �� is unrami�ed at all q =2 S�, and satis�estr ��(Frobq) = aq(�)and det ��(Frobq) = 
($q) �#(kq):By de�nition, T� injects into Q�2�� EndO(�Kf ). Since Tq acts on � by multi-plication by aq(�) 2 O the Hecke algebra T� embeds, in fact, into B =Q�2�� O(in particular T� has no Z-torsion).Observe that (tr ��(�))�2�� 2 T� � B for all � 2 G�. This follows from theChebotarev Density Theorem and the continuity of �� (note that T� is a �niteO-algebra).Fix � 2 �� for the rest of this subsection. De�ne �0� := �� 
 ��12;p. Then �0�satis�es tr �0�(Frob q) � 1 + (�p�)(Frob q) (mod $) for q =2 S�;and det �0� = 
 � ��22;p � � = �p�:By choosing a suitable lattice � one can ensure that �0� has image inside GL2(O).The Chebotarev Density Theorem and the Brauer-Nesbitt Theorem imply that(�0�)ss �= 1� �p�:By Theorem 2.2 �0� is irreducible, and by Theorem 2.3 �0� is ordinary so a stan-dard argument (see e.g. Proposition 2.1 in [Rib76]) shows the lattice � may bechosen in such a way that �0� is not semi-simple and(4.2) �0� = �1 ��p��and is ordinary. We put(4.3) �0 := �0�:Note that the isomorphism class of �0 is in fact independent of the choice of � 2 ��by Proposition 3.3.Remark 4.6. The representation �0 satis�es conditions (Red) and (Sc) of Section3. The fact that �0� is ordinary combined with (4.2) implies that(4.4) �0�jDp

�= �1 (�p�)jDp

� :



12 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2Note that in fact (4.4) together with condition (2) in De�nition 3.1 implies that theextension F (�0)=F (�0) is unrami�ed away from p.Remark 4.7. In Remark 4.6 of [BK09] we pointed out that the extension F (�0)=F (�0)under the conditions of Theorem 3.5 is totally rami�ed at p, so, in particular, thereexists � 2 Ip such that �0(�) = �1 11� :This implies that no twist of �0 by a character is invariant under c 2 Gal(F=Q)and so no character twists of �0 arise from base change. However, we would liketo withdraw our additional statement in Remark 4.6 of [BK09] (and correspondingremark in Section 4.6 of [Ber09]) that this implies that (twists of) deformations of �0cannot arise from base change. TheG�-invariant lattice in E2 that we consider neednot be invariant under complex conjugation. In fact, Hida proved in [Hid82] theexistence of deformations of a twist of �0 for anticyclotomic characters �0 startingfrom congruences of CM forms over Q.4.3. Deformation problem. Recall that (p) = pp is split. Let �, �, �0 and �0 beas above. Recall that we have assumed that �0 is �-admissible and have shown inSection 4.2 that �0 satis�es conditions (Red) and (Sc) of Section 3. Hence by Propo-sition 3.3, �0 is unique up to isomorphism. By (4.4) the extension F (�0)=F (�0)splits at p. In this section we study deformations of �0.Denote the category of local complete Noetherian O-algebras with residue �eldF by LCN(E). An O-deformation of �0 is a pair consisting of A 2 LCN(E) and astrict equivalence class of continuous representations � : G� ! GL2(A) such that�0 = � (mod mA), where mA is the maximal ideal of A. As is customary we willdenote a deformation by a single member of its strict equivalence class. Note thatthe Hodge-Tate weights of �p� are �1 at p and +1 at p.Following [SW97] we make the following de�nition:De�nition 4.8. We say that an O-deformation � : G� ! GL2(A) of �0 is �-minimal if � is ordinary, det � = �p�;and for all primes q 2 � such that #kq � 1 (mod p) one has�jIq

�= �1 �pjIq

� :Note that by our assumption on the conductor of �, we in fact have �pjIq
= 1 for

q as above. Also the ordinarity condition means in this case that�jIp

�= �1 ���1�and �jIp

�= �� �1� :Note that �0 satis�es all the conditions in De�nition 4.8. Since �0 has a scalarcentralizer and �-minimality is a deformation condition in the sense of [Maz97],there exists a universal deformation ring which we will denote by R� 2 LCN(E),and a universal �-minimal O-deformation ��;O : G� ! GL2(R�) such that for ev-ery A 2 LCN(E) there is a one-to-one correspondence between the set of O-algebra



AN R = T THEOREM 13maps R� ! A (inducing identity on F) and the set of �-minimal deformations� : G� ! GL2(A) of �0.The arguments from Section 4.2 together with the uniqueness of �0 (Proposition3.3 - recall that we are all the time assuming that �0 is �-admissible) can now bereinterpreted as:Theorem 4.9. For any � 2 �� there is an O-algebra homomorphism r� : R� “ Oinducing �0�.Proof. The only property left to be checked is �-minimality. This is clear since�� is unrami�ed away from S�, and no q 2 S� satis�es #kq � 1 (mod p) byconstruction (if we are in the case of Theorem 4.2) or assumption (in the case ofTheorem 4.4). ˜The next three propositions were proved in [BK09] (see Propositions 5.4, 5.5 andLemma 5.6 in [loc. cit.]).Proposition 4.10. There does not exist any non-trivial upper-triangular �-minimaldeformation of �0 to GL2(F[x]=x2).Proposition 4.11. The universal deformation ring R� is generated as an O-algebra by traces.Proposition 4.12. The image of the map R� !Q�2�� O given by x 7! (r�(x))�is T�.Corollary 4.13. There exists a surjective O-algebra homomorphism r : R� “ T�.Proof. This is a direct consequence of Proposition 4.12. ˜5. Galois cohomology calculationsIn this section we bound the Krull dimension of the universal deformation ringR� via its tangent space. We conclude that R� is a quotient of O[[X ]], which willlater allow us to prove that R� is a complete intersection (see Corollary 6.14). Wealso study reducible deformations of �0 to O=$n.5.1. The Krull dimension of R� is less than 3. Let �0 be as in Section 4 andlet U be the representation space for �0. Then U is a two-dimensional F-vectorspace with a G�-stable �ltration 0 � U1 � U ;where U1 is the 1-dimensional F-vector space on which G� acts trivially. Thequotient U2 = U=U1 is a 1-dimensional F-vector space on which G� acts via �0.Let W = ad�0 = HomF(U ;U) be the adjoint representation, and letWSel = ff 2 W : f(U) � U1; f(U1) = 0g:Recall that �0 splits when restricted to Ip (cf. (4.4)). De�ne the Ip-submoduleWSel;t = ff 2 W : f(U) � U2; f(U2) = 0g:For q 2 � let Hq =8>><>>: H1(Ip;W=WSel) if q = p;H1(Ip;W=WSel;t) if q = p;H1(Iq;W) if #kq � 1 mod p;0 otherwise.



14 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2De�ne the following Selmer group:H1�(F;W) = ker(H1(G�;W)!M
q2�Hq):Proposition 5.1. dimFH1�(F;W) � 1:Proof. We proceed in a similar manner to the proof of Proposition 3.1 in [SW97]Section 3. Let �1 � � comprise those primes in � such that #kq � 1 mod p,together with p and p. Let W1 = HomF(U2;U), and let W2 = HomF(U1;U). Thereis a commutative diagram of G�-modules0 // W1 //

››

W //

››

W2 //

››

00 // F // W=WSel // W2 // 0having exact rows. Similarly, we have a commutative diagram of Ip-modules0 // W1 //

››

W //

››

W2 //

››

00 // W1 // W=WSel;t // F // 0having exact rows. (The third vertical arrow is induced by a splitting of the ex-act sequence for W2 as Ip-modules below.) Together these induce the followingcommutative diagram of cohomology groups:0 // H1(G�;W1) //�
››

H1(G�;W) //�
››

H1(G�;W2)

››0 // X //

L
q2�1 Hq // Y ;

where X = H1(Ip;F)� M
q2�1nfpgH1(Iq;W1)and Y = H1(Ip;F)� M

q2�1nfpgH1(Iq;W2):Note that the rows in the diagram are exact. Indeed, the only thing to check is theexactness on the left, which can be veri�ed easily by observing that the H0-termsform a short exact sequence in each of the cases. Hence by the snake lemma thereis an exact sequence0! ker(�)! ker(�) = H1�(F;W)! ker(
):We claim now that ker(�) = 0 so that ker(�) ,! ker(
). First observe that W1 �tsinto the short exact sequence0!WSel !W1 f�! F! 0:



AN R = T THEOREM 15SinceW1 �= �0
��10 , it is clear that WG�1 = 0 and hence the associated long exactcohomology sequence yields the exact sequence0! F! H1(G�;WSel)! H1(G�;W1) H1(f)����! H1(G�;F):Since WSel �= F(��10 ), it follows from the �-admissibility of �0 that the secondarrow is surjective. Hence H1(f) is injective.Lemma 5.2. ker(�) ,! ker(H1(G�;F)! M
q2�1H1(Iq;F))) = 0:Proof. Consider the following diagramH1(G�;W1) H1(f)

//�
››

H1(G�;F)�:=�q2�1 resq
››X f 0

//
Lq2�1 H1(Iq ;F)where f 0 is the identity on H1(Ip;F) and is induced by f on the rest of the compo-nents. By de�nitions of the maps involved it is clear that the diagram is commuta-tive. Since H1(f) is injective as observed above, if c 2 ker�, its image must lie inker�, hence the inclusion of the kernels in the statement of the lemma follows. Nowconsider c 2 ker�, i.e., c is unrami�ed at all q 2 �1. But since F is a p-power orderabelian group, we see that c is also unrami�ed at all q 62 �1. Hence it is unrami�edeverywhere. Since H1(G�;F) = Hom(G�;F) and by our assumption p - #ClF it isclear that c = 0. ˜Similarly, W2 �ts into the short exact sequence0! F!W2 ! Hom(U1; U2) �= F(�0)! 0:The associated long exact cohomology sequence yields the commutative diagramH1(G�;F) ffl � //f1

››

H1(G�;W2) //

››

H1(G�;F(�0))f2
››L

q2�1 H1(Iq;F) ffl � // Y //

L
q2�1nfpgH1(Iq;F(�0))having exact rows. As above we see that ker(f1) = 0 and thereforeker(
) ,! ker(f2) � H1(G�;F(�0)):Since the character �0 is �-admissible we have that dimFH1(G�;F(�0)) = 1. Thisconcludes the proof of Proposition 5.1. ˜Proposition 5.3. We haveH1�(F; ad0 �0) = Hom(mR�=(m2R� +$R�);F) = HomO�alg(R�;F[x]=x2):Proof. See for example [dS97], Theorem 15 which together with Lemma 5.4 yieldsthe Proposition. ˜Lemma 5.4. Hp is the cohomological condition corresponding to ordinarity at p ofan in�nitesimal deformation, i.e., a deformation to GL2(F[X ]=X2).



16 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2Proof. Let � be an in�nitesimal deformation of �0 with det(�) = 	 = �0. Write�(g)�0(g)�1 = 1 + �c�(g):Then c de�nes a 1-cocycle with values in ad0�0. For g 2 Ip, we have for a suitablebasis (with respect to which �0 splits and � is lowertriangular)c�(g) 2 ��0 0� 0�� =WSel;t;so the image of [c�] in Hp is zero, as desired. Conversely, if this condition is satis�edthen �jIp
is lower-triangular , hence so is �jDp

and � is ordinary at p. ˜Corollary 5.5. We have R� = O[[X ]]=I for an ideal I.Proof. This is an application of Nakayama, see e.g. [dS97] Theorem 15 or [Til96],Lemma 5.1. Note that we have H1�(F; ad �0) = H1�(F; ad0 �0) since p - #ClF byour assumption. ˜5.2. No reducible deformation beyond p-valuation of L-value. Set 	 := �p�and write 	r for 	 mod $r with r > 0. Note that Gal(F (	)=F ) = � � � with� �= Zp and � a �nite abelian group. Assume p - #�. Set ~�0 := 	j�.For a �nite abelian extension K of F write M(K) for the maximal abelian pro-p-extension of K unrami�ed away from the primes lying over p. For a character' : Gal(K=F ) ! O� write M(K)' for the maximal abelian pro-p-extension ofK unrami�ed away from the primes lying over p such that Gal(K=F ) acts onGal(M(K)'=K) via '�1.Lemma 5.6. Any �-minimal uppertriangular deformation �r of �0 to O=$r musthave the form �r = �1 �	r� :Proof. We will prove this by induction on r. It is true for r = 1, so assume thisholds for r = k. So, we can write�k+1 = �1 + �$k bd� ;where � : G� ! F is a group homomorphism (the group operation on F beingaddition). Arguing as in the proof of Proposition 5.4 of [BK09] we see that � canonly be rami�ed at p and p. Ordinarity at p (respectively at p) forces �k+1jIp(respectively �k+1jIp
) to have a free O=$k+1-submodule (respectively quotient)on which Ip (respectively Ip) acts trivially. This together with the fact that �0is rami�ed at p and at p easily imply that �jIp

= �jIp
= 0. Finally, using theassumption that p - #ClF we conclude that � = 0. Since det �k+1 = 	k+1, we getd = 	k+1. ˜Write e for the rami�cation index of O over Zp. Note that the exponent of O=$ris pdr=ee, where for a real number �, d�e denotes the smallest integer n � �. By aslight abuse of terminology we will say that a deformation � of �0 is upper-triangularif there exists a member of the strict equivalence of � that is upper-triangular.Lemma 5.7. Suppose there exists a �-minimal uppertriangular deformation �r of�0 to GL2(O=$r). Then there exists a surjective map of groupsGal(M(F (	r))	r=F (	r)) “ Z=pdr=ee:



AN R = T THEOREM 17Proof. Consider the b-entry of �r as a function b : G� ! O=$r. Suppose thatthe restriction bjGal(F (�r)=F (	r)) 2 $O=$rO. This means that the mod $ reduc-tion of b is zero after we split 	r, so that F (�0) � F (	r), but this is impos-sible as F (�0)=F is non-abelian. So, we get that bjGal(F (�r)=F (	r)) 62 $O=$rO.Hence Gal(F (�r)=F (	r)) has a cyclic quotient of order pdr=ee. Since F (�r) �M(F (	r)	r ), we are done. ˜Write Lint(0; �) = u$n, where u is a unit. One has valp($) = 1=e. We also havefor any x 2 O, that valp(x) = 1e val$(x).Remark 5.8. Note that we have the following sequence of equalities:(5.1) #O=Lint(0; �) = #O=$n = pn[O:Zp]e = pn[F:Fp] == pval$(Lint(0;�))[F:Fp] = pvalp(Lint(0;�))[O:Zp]:Proposition 5.9. Let n be as above. There is no upper-triangular �-minimaldeformation �n+1 : G� ! GL2(O=$n+1).Proof. Suppose �n+1 exists. By Lemma 5.7 there exists an elementx 2 Gal(M(F (	n+1))	n+1=F (	n+1))of order pd(n+1)=ee. Note that since p - #�, the character ~�0 is the Teichm�uller liftof a character with values in F�. Let F0 be the smallest sub�eld Fp � F0 � Fsuch that the image of (the reduction of) ~�0 is contained in F�0 . Let O0 be thecorresponding extension of Zp, i.e., Zp � O0 � O. Note that we can assumewithout loss of generality that O0 is unrami�ed over Zp. By Lemma 5.6, �n+1 :G� ! GL2(O=$n+1) has the form�n+1(�) = �1 b(�)	n+1(�)� :Let y 2 � be a generator (note that � is cyclic as a group isomorphic to a sub-group of F�0 ). Then it is easy to see that ~��10 (yk)b(x) are all elements of orderpd(n+1)=ee, and they generate a subgroup H of b(Gal(F (�n+1)=F (	n+1)) of order(pd(n+1)=ee)[F0:Fp] = (pd(n+1)=ee)[O0:Zp] - the last equality is true because O0=Zp isunrami�ed. (This subgroup still has exponent only pd(n+1)=ee.)Now we have(H 
Zp O)~��10 = (H 
Zp O0 
O0 O)~��10 = (H 
Zp O0)~��10 
O0 O;and hence(5.2)#(H 
Zp O)~��10 = (#(H 
Zp O0)~��10 )[O:O0] � (#H)[O:O0] = pd(n+1)=ee[O:Zp] =pd(n+1)=eee[F:Fp] � p(n+1)[F:Fp] = #O=$n+1:But the group H can be regarded as a subgroup of Gal(F (�n+1)=F (	n+1)). Wehave F (�n+1) � M(F (	n+1))	, hence we arrive at a contradiction by Theorem5.11 below. ˜Remark 5.10. Note that the proof of Proposition 5.9 is valid also for n = 0. Henceit shows that in the case when Lint(0; �) is a p-adic unit, �0 as in Section 3 is not�-minimal.



18 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2This implies that when n = 0 Theorem 6.13 remains vacuously true, since con-dition (5) in that theorem can never be satis�ed.Theorem 5.11. One has#(Gal(M(F (	n+1))	=F (	n+1))
O)~��10 � #O=Lint(0; �) = #(O=$n):Proof. One estimates the order of the left hand side by relating it to the Selmergroup of a Hecke character. Using standard methods one can bound the order ofthe latter from above by the L-value applying the main conjecture proven by Rubin.For details see Lemma 5.14 and 5.15 of [BK09], where this is done for n = 1. Theproofs of both of these lemmas generalize easily to arbitrary n. ˜6. R� = T�In this section we will prove the main result which asserts that the surjection inCorollary 4.13 is an isomorphism. As a consequence we obtain a result on mod-ularity of Galois representations and deduce some properties of the Hecke algebraand cyclicity of a certain Galois group. As in Section 5.2 in what follows we assumethat p - #�. As before, throughout this section we assume that �0 is �-admissible.6.1. The ideal of reducibility. We brie
y recall some general facts about Eisen-stein representations from Section 3 of [Cal06] and Section 2 of [BC06]: Let (R;mR;F)be a local p-adically complete ring. Let G be a topological group and consider acontinuous representation � : G ! GL2(R) such that tr (�) mod mR is the sum oftwo distinct characters �i : G! F�; i = 1; 2. Moreover, assume thatdimF Ext1cts;F[G](�1; �2) = dimF Ext1cts;F[G](�2; �1) = 1:De�nition 6.1. The ideal of reducibility of R is the smallest ideal I of R such thattr (�) mod I is the sum of two characters. We will denote the ideal of reducibilityof R� by Ire.Proposition 6.2. The ideal Ire is principal.Proof. See [Cal06], Proof of Lemma 3.4. This uses in a crucial way condition (3)of �-admissibility of �0 (see De�nition 3.1). ˜Theorem 6.3 (Urban). Let (R;mR;F) be a local Artinian ring. Let �1, �2, and� be three representations of a topological group G with coe�cients in R (with �having image in GLm(R)). Assume the following are true:� � and �1 � �2 have the same characteristic polynomials;� The mod mR-reductions �1 and �2 of �1 and �2 respectively are absolutelyirreducible and non-isomorphic;� The mod mR-reduction � of � is indecomposable and the subrepresentationof � is isomorphic to �1.Then there exists g 2 GLm(R) such that�(h) = g ��1(h) ��2(h)� g�1for all h 2 G.Proof. This is Theorem 1 in [Urb99]. ˜



AN R = T THEOREM 19Corollary 6.4. Let R 2 LCN(E) and suppose � : G� ! GL2(R) is a �-minimaldeformation of �0. Let I � R be an ideal such that R=I 2 LCN(E) and is an Artinring. Then I contains the ideal of reducibility of R if and only if � mod I is anupper-triangular deformation of �0 to GL2(R=I).Proof. If �mod I is isomorphic to an upper-triangular deformation of �0 to GL2(R=I),then clearly tr � mod I is a sum of two characters (which are distinct, since theymust reduce to �0 and 1 modulo mR), so I contains the ideal of reducibility. Theconverse is an easy consequence of Theorem 6.3. ˜Proposition 6.5. Assume n = val$(Lint(0; �)) > 0. Then one has R�=Ire =O=$r where 0 < r � n.Proof. Write S for R�=Ire. Then S is a local complete ring. Moreover, by Corol-lary 5.5 we have that S is a quotient of O[[X ]], and hence R�=$R� (and thusS=$S) is a quotient of F[[X ]]. But F[[X ]] is a dvr, so S=$S = F[[X ]]=Xm forsome m 2 Z+ [ f1g. (By F[[X ]]=X1 we mean F[[X ]].) We will �rst show thatm = 1. Suppose m 6= 1. Then HomO�alg(R�; S=$S) contains at least two el-ements - the map R� “ F ,! S=$S and the surjection R� “ S=$S. Thesetwo elements give rise to two distinct elements in HomO�alg(R�;F[X ]=X2), thetrivial one and the surjection R� “ S=$S “ F[X ]=X2. By the de�nition of R�there is a one-to-one correspondence between the deformations to F[X ]=X2 and el-ements of HomO�alg(R�;F[X ]=X2). The trivial element corresponds to the trivialdeformation to F[X ]=X2, i.e., with image contained in GL2(F), which is clearlyupper-triangular. However, the deformation corresponding to the surjection mustalso be upper-triangular by Corollary 6.4 since ker(R� “ S=$S “ F[X ]=X2) con-tains Ire and F[X ]=X2 is Artinian. But we know by Proposition 4.10 that �0 doesnot admit any non-trivial �-minimal upper-triangular deformations to F[X ]=X2.Hence we must have m = 1.Thus by the complete version of Nakayama's Lemma ([Eis95], Exercise 7.2) weknow that S is generated (as a O-module) by one element. So S = O=$r withr 2 Z+ [ f1g. Finally we must have 0 < r � n, r 6= 1 since by Corollary 6.4 ifr > n or r = 1, then there would be an upper-triangular �-minimal deformationof �0 to O=$n+1, which is impossible by Proposition 5.9. ˜Remark 6.6. Note that the fact that S is a quotient of O[[X ]] is actually notnecessary for the proof of Proposition 6.5. Indeed, it su�ces to know that S (andhence S=$S) is topologically �nitely generated as an O-algebra. It is an easy factthat then S=$S = F if and only if S=$S has no quotient isomorphic to F[X ]=X2.Corollary 6.7. Let n = val$(Lint(0; �)) > 0. Suppose there exists � 2 �� suchthat tr �0�(Frobq) = 1 + (�p�)(Frobq) mod $n for all q 62 �. Write r�;n for thecomposite R� “ O “ O=$n (the �rst arrow being r�). Then Ire = ker r�;n.Proof. By the de�nition of the ideal of reducibility we have Ire � ker r�;n. But, byProposition 6.5, R�=Ire = O=$r for 0 < r � n, so we have O=$r = R�=Ire “R�= ker r�;n = O=$n and the corollary follows. ˜6.2. A commutative algebra criterion and R=T theorem. Let R and Sdenote complete local Noetherian O-algebras with residue �eld F. Suppose that Sis �nitely generated as a module over Zp and has no Z-torsion. Write mR and mSfor the maximal ideals of R and S respectively.



20 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2Lemma 6.8. Let x 2 S be such that #(S=xS) < 1. Then multiplication by x isinjective.Proof. Consider the exact sequence0! kerx! S �x�! S ! S=xS ! 0:Since S is �nitely generated as a module over Zp we can tensor the exact sequencewith Qp and conclude that since S=xS
Qp = 0, we must also have kerx
Qp = 0.Since kerx is a �nitely generated Zp-module it must be a �nite group. Hence ifa 2 kerx, pma = 0 for some m 2 Z�0. Thus a is a torsion element, which impliesa = 0 by our assumption on S. ˜Proposition 6.9. Suppose there exists a surjective O-algebra map � : R “ Sinducing identity on the residue �elds and an element � 2 R such that the bottommap in the following commutative diagramR �
//

››

S
››R=�R // S=�(�)Sis an isomorphism. If R=�R = O=$r for some positive integer r, then � is anisomorphism.Proof. Write x = �(�). We have �(�k) = xk. First, we are going to show thatR=�kR = S=xkS for every positive integer k. Indeed, the map R=�kR! S=�(�k)Sis surjective because R ! S is. So, it remains to prove injectivity. The map�k�1R=�kR! �kR=�k+1R given by multiplication by � is clearly surjective, so weget #(R=�R) � #(�R=�2R) � : : : :Moreover, we have the short exact sequence0! �k�1R=�kR! R=�kR! R=�k�1R! 0;so #(R=�kR) = #(R=�k�1R)#(�k�1R=�kR). Combining this equation with theprevious sequence of inequalities, we get by induction on k that #(R=�kR) �(#(R=�R))k. On the other hand, the mapsS=xS �x

“ xS=x2S �x
“ x2S=x3S �x

“ : : : �x“ xk�1S=xkSare all injective because multiplication by x on S is injective by Lemma 6.8. Thuswe get #(S=xkS) = #(S=xS)k = #(R=�R)k � #(R=�kR):This proves injectivity of the map R=�kR “ S=xkS.Hence lim �k R=�kR = lim �k S=xkS:So, it su�ces to show that R = lim �k R=�kR and S = lim �k S=xkS. The �rst followsfrom Lemma 7.14 on page 197 in [Eis95] since for every power of mR, say mkRthere is a power �s of � such that (�)s � mkR (indeed, take s = k) and for everypower of (�), say (�)k there is a power of msR of mR such that msR � (�)k (indeed,



AN R = T THEOREM 21since mR = (�;$), we get mrR � (�), so s = kr works). The situation for S isanalogous. ˜We will now state some consequences of Proposition 6.9.Theorem 6.10. The map r : R� “ T� in Corollary 4.13 is an isomorphism.Proof. Write �J for the G�-representation induced by R� ! T�=J�. By de�nitionof J� and the Chebotarev density theorem we see that tr �J = 1 + �p�, hencer�1(J�) � Ire and hence J� � r(Ire). By Proposition 6.2 the ideal Ire is principaland we �x a generator � of Ire. Thus the surjectionR�=�R� “ T�=r(�)T� “ T�=J�;must be an isomorphism since R�=�R� = O=$r with r � n by Proposition 6.5and #(T�=J�) � #O=$n by Theorems 4.2 and 4.4. Here n = val$(Lint(0; �)).Hence r induces the commutative diagram in Proposition 6.9 with R = R�, S = T�(note that T� is Z-torsion-free and �nitely generated as a module over Zp sinceby de�nition it acts faithfully on a �nite dimensional vector space of characteristiczero). ˜Corollary 6.11. Let n = val$(Lint(0; �)). Suppose there exists � 2 �� such thattr �0�(Frobq) = 1 + (�p�)(Frobq) mod $n for all q 62 �. Then R� = T� = O, i.e.,R� = T� is a discrete valuation ring.Proof. By Corollary 6.7 we have r�1� ($nO) = Ire. So, we see that r� induces thecommutative diagram in Proposition 6.9 with R = R�, S = O, � a generator ofIre. ˜Remark 6.12. Note that Corollary 6.11 implies that if n = val$(Lint(0; �)) > 0and there exists an automorphic representation � 2 �� such that � has Heckeeigenvalues congruent to the Hecke eigenvalues of an Eisenstein series mod $n,then �� = f�g.6.3. Modularity theorem. In this section we state a modularity theorem whichis a consequence of the results of the previous sections. To make its statementself-contained, we explicitly include all the assumptions we have made so far.Theorem 6.13. Let F be an imaginary quadratic �eld and p > 3 a rational primewhich splits in F . Fix a prime p of F over p. Assume that p - #ClF and that anyprime q j discF satis�es q 6� �1 (mod p): Let �1, �2 be Hecke characters of F withsplit conductors and of in�nity type z and z�1 respectively such that � := �1=�2is unrami�ed. Assume that the conductor M1 of �1 is coprime to (p) and thatp - #(OF =M1)�. Write Gal(F (�p�)=F ) = � � � with � �= Zp and � a �nitegroup. Assume p - #�:Let � : G� ! GL2(E) be a continuous irreducible representation that is ordinaryat all places q j p. Suppose �ss �= �1 � �2 with �1 = �1;p�, �2 = �2;p. Set�0 := �1��12 . If all of the following conditions are satis�ed:(1) � � fq j pdFM1Mc1g,(2) p - #�(3) �0 is �-admissible (cf. De�nition 3.1),(4) det(�) = �1�2�,(5) �
 ��12;p is �-minimal,then � is modular in the sense of De�nition 2.5.



22 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN26.4. More consequences of our result. We will now state some corollaries ofthe R = T theorem proved in the previous section. As before, we assume that �0is �-admissible. We will also discuss how our approach can be used to partiallyrecover the results of Skinner and Wiles [SW99].Corollary 6.14. The Eisenstein ideal J� is a principal ideal and the Hecke algebraT� is a complete intersection (and hence Gorenstein).Proof. The �rst statement follows immediately from Theorem 6.10 and the factthat the ideal of reducibility Ire (which is principal - see Proposition 6.2) is mappedexactly onto the Eisenstein ideal J� (see proof of Theorem 6.10). The fact that T�is Gorenstein follows from Proposition 6.4 in [Bas63]. Note that the propositionis applicable since the maximal ideal of T� is generated by $ and a generator ofthe ideal of reducibility (see Proof of Proposition 6.9) and p is clearly a non-zerodivisor. Finally since R� = T� = O[[X ]]=I with the ideal I of codimension 1, theGorenstein condition is equivalent with principality of I ([Eis95], Corollary 21.20).Hence T� is a complete intersection. ˜Remark 6.15. The properties of the Hecke algebra and the Eisenstein ideal statedin Corollary 6.14 were proved for their counterparts over Q by Mazur ([Maz77],Theorem 11, and Chapter 2, Section 14). See also a discussion in [CE05] (page 99and Corollary 3.17) where these properties, like here, are derived as a consequenceof an R = T theorem.Corollary 6.16. Let the notation be as in Section 5. There exists a �-minimalupper-triangular deformation of �0 to GL2(O=$n). Moreover, the O-moduleGal(M(F (	n))	=F (	n))
O)~��10is isomorphic to O=$n.Proof. The �rst statement follows from the isomorphisms R�=Ire �= T�=J� �=O=$n combined with Theorem 6.3. The existence of the upper-triangular defor-mation together with Lemma 5.7 provides an element of Gal(M(F (	n))	n=F (	n))of order pdn=ee. As in the proof of Theorem 5.11 we see that this element generatesan O-submodule of Gal(M(F (	n))	=F (	n))
O)~��10of order #O=$n. Hence the second statement follows from Theorem 5.11. ˜Remark 6.17. While the upper bounds on the order of the Galois group in Corol-lary 6.16 are predicted by the Main Conjecture of Iwasawa Theory, their exact O-module structure is in general a mystery. Our results show that the upper boundsare in fact optimal and provide a rather de�nitive answer to structure question,however only in the case of a �-admissible character, where one assumes at theoutset the cyclicity of the group of extensions (see De�nition 3.1).Finally, we will discuss to what extent our method provides an alternative tothe approach of Skinner and Wiles in [SW99] for proving an R = T theorem for2-dimensional, p-adic, residually reducible, ordinary representations of GQ withunique non-semisimple reduction which are unrami�ed outside �nitely many primes.First note that the assumptions of [SW99] are weaker than ours, because they onlyimply that the group of extensions of 1 by the character as in De�nition 3.1 is one-dimensional, but not so if one reverses the order of 1 and the character. However,



AN R = T THEOREM 23even with that weaker assumption in place our Proposition 4.10 carries over (withthe same proof) showing that there are no upper-triangular �-minimal deforma-tions of the residual representation �0 of [SW99] to GL2(F[X ]=X2). Using this weproceed as in the proof of our Proposition 6.5 to show that the universal deforma-tion ring (denoted in [SW99] by Rmin�;O) has the property that Rmin�;O=Ire �= O=$kfor some k 2 Z+ [ f1g, where Ire denotes the ideal of reducibility. Note thatby Remark 6.6 it is not necessary to know that Rmin�;O is a quotient of O[[X ]].Since [SW99] in fact do exhibit a �-minimal upper-triangular deformation �Eis�;O toGL2(O), we must have k = 1, i.e., Rmin�;O=Ire �= O. In particular, Ire is the kernelof the map Rmin�;O “ O correspoding to �Eis�;O, which in [SW99] is denoted by I�.It follows therefore that the surjection of Rmin�;O onto the (full, not just cuspidal)Hecke algebra (that in [SW99] is denoted by Tmin�;O ) descends to an isomorphismRmin�;O=Ire �= Tmin�;O =IEis, where IEis denotes the Eisenstein ideal (see also Propo-sition 3.12 in [CE05] where an analogous statement is proved in the case whenthe residual representation is reducible and semi-simple). In particular our methodgives an alternative proof to the statement that every reducible �-minimal deforma-tion of �0 is modular. However, we cannot apply our commutative algebra criterion(Proposition 6.9) to conclude that Rmin�;O = Tmin�;O . First, as mentioned above, theassumptions of [SW99] are weaker than our assumption of �-admissibility, so donot imply that the ideal of reducibility is principal, and secondly, Rmin�;O=Ire is not�nite. In [SW99] and [CE05] the R = T statement is proved using the numericalcriterion of Wiles and Lenstra which requires one to compare the size of Ire=I2rewith the size of the quotient of the cuspidal Hecke algebra by IEis.ReferencesBas63. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8{28.BC06. J. Bella��che and G. Chenevier, Lissit�e de la courbe de Hecke de GL2 aux points Eisen-stein critiques, J. Inst. Math. Jussieu 5 (2006), no. 2, 333{349.BCDT01. C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curvesover Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843{939 (elec-tronic).Ber05. T. Berger, An Eisenstein ideal for imaginary quadratic �elds, Thesis, University ofMichigan, Ann Arbor, 2005.Ber08. , Denominators of Eisenstein cohomology classes for GL2 over imaginary qua-dratic �elds, Manuscripta Math. 125 (2008), no. 4, 427{470.Ber09. Tobias Berger, On the Eisenstein ideal for imaginary quadratic �elds, Compos. Math.145 (2009), no. 3, 603{632.BH07. T. Berger and G. Harcos, l-adic representations associated to modular forms overimaginary quadratic �elds, Int. Math. Res. Not. IMRN (2007), no. 23, Art. ID rnm113,16.BK09. T. Berger and K. Klosin, A deformation problem for Galois representations over imagi-nary quadratic �elds, Journal de l'Institut de Math. de Jussieu 8 (2009), no. 4, 669{692.Cal06. F. Calegari, Eisenstein deformation rings, Compos. Math. 142 (2006), no. 1, 63{83.CD06. F. Calegari and N. M. Dun�eld, Automorphic forms and rational homology 3-spheres,Geom. Topol. 10 (2006), 295{329 (electronic).CE05. F. Calegari and M. Emerton, On the rami�cation of Hecke algebras at Eisensteinprimes, Invent. Math. 160 (2005), no. 1, 97{144.dS97. E. de Shalit, Hecke rings and universal deformation rings, Modular forms and Fer-mat's last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 421{445. MRMR1638487Eis95. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, GraduateTexts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.
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