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Abstract. Let N = pq be a product of two distinct primes. There is an

isogeny J0(N)new → JN defined over Q between the new quotient of J0(N)

and the Jacobian of the Shimura curve attached to the indefinite quaternion
algebra of discriminant N . In the case when p = 2, 3, 5, 7, 13, Ogg made

predictions about the kernels of these isogenies. We show that Ogg’s conjecture

is false in general. Afterwards, we propose a strategy for proving results toward
Ogg’s conjecture in certain situations. Finally, we discuss this strategy in detail

for N = 5 · 13.

1. Introduction

1.1. Ogg’s conjecture. Let N be a product of an even number of distinct primes.
Let J0(N) be the Jacobian of the modular curve X0(N). In [19], Ribet proved the
existence of an isogeny defined over Q between the “new” part J0(N)new of J0(N)
and the Jacobian JN of the Shimura curve XN attached to a maximal order in
the indefinite quaternion algebra over Q of discriminant N . The proof proceeds
by showing that the Q`-adic Tate modules of J0(N)new and JN are isomorphic
as Gal(Q/Q)-modules, which is a consequence of a correspondence between auto-
morphic forms on GL(2) and automorphic forms on the multiplicative group of a
quaternion algebra. The existence of the isogeny J0(N)new → JN defined over Q
then follows from a special case of Tate’s isogeny conjecture for abelian varieties
over number fields, also proved in [19] (the general case of Tate’s conjecture was
proved a few years later by Faltings). Unfortunately, this argument provides no
information about the isogenies J0(N)new → JN beyond their existence.

In [14], Ogg made explicit predictions about the kernel of Ribet’s isogeny when
N = pq is a product of two distinct primes and p = 2, 3, 5, 7, 13. In this case,
J0(N)new is the quotient of J0(N) by the subvariety generated by the images of
J0(q) in J0(N) under the maps induced by the two degeneracy morphismsX0(pq)⇒
X0(q) (note that J0(p) = 0). Let C be the cuspidal divisor group of J0(N), which
is well-known to be a finite abelian subgroup of J0(N)(Q); we refer to [3] for a
complete description of C. Let C be the image of C in J0(N)new. Denote

M = numerator of (q + 1)/12.
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Ogg’s conjecture predicts that there is an isogeny J0(N)new → JN whose kernel K
is a subgroup of C such that

K ∼= Z/M for p = 2, 3, 5,

K ∼= Z/2M for p = 7,(1.1)

K ∼= Z/7⊕ Z/M for p = 13.

The underlying idea behind Ogg’s conjecture is to compare the component
groups of the Néron models of J0(N) and JN at q, which provides some reason-
able guesses for the kernels of Ribet’s isogenies. In fact, Ogg imposes the restriction
p = 2, 3, 5, 7, 13 to be able to carry out the necessary calculations. We briefly sketch
Ogg’s reasoning. For simplicity, we ignore the 2 and 3-primary torsion of the groups
involved in the discussion, and also the case p = 13 where K might not be cyclic.
The component groups of J0(N) for square-free N are relatively easy to describe;
cf. [13, Appendix]. On the other hand, although the component groups of JN

can be computed for a given N by combining a classical method of Raynaud with
a result of Cherednik and Drinfeld about the reduction of XN at q, these groups
do not exhibit any regular patterns so cannot be described using only the prime
decomposition of N (as is the case for J0(N)). One exception is the case when
N = pq and p = 2, 3, 5, 7, 13. In this case (and only in this case), the dual graph
of the special fibre of the Cherednik-Drinfeld model of XN at q has two vertices,
so the component group is easy to compute and turns out to be cyclic of order
(q+1). The component group Φq of J0(N) at q is cyclic of order (q−1). Next, Ogg
considers the canonical specialization C → Φq, and shows that the “old” part of C
arising from the cuspidal divisor group of J0(q) maps surjectively onto Φq, whereas
a specific “new” cuspidal divisor D of order q+ 1 maps to 0 in Φq. Then the kernel
K in (1.1) is predicted to be generated by the image of D in J0(N)new. The fact
that J0(N)new and JN have purely toric reduction at q is implicitly used in this last
step. (Given an abelian variety A over a local field K with purely toric reduction
and a finite constant subgroup H ⊂ A(K), it is possible to describe the component
group of A/H in terms of the component group ΦA of A and the kernel/image of
the canonical specialization H → ΦA; cf. [16, Thm. 4.3].)

Let T ⊂ End(J0(N)) be the Hecke algebra generated over Z by all Hecke corre-
spondences T` with prime indices (including those that divide N). The ring T also
acts on J0(N)new and JN (cf. [18]), and it is implicit in [19] that there is an isogeny
J0(N)new → JN over Q which is T-equivariant (cf. [9, Cor. 2.4]). Since the cus-
pidal divisor group C is annihilated by the Eisenstein ideal of T, Ogg’s conjecture
implies that, in the case when N = pq and p = 2, 3, 5, 7, 13, there is an isogeny
J0(N)new → JN whose kernel is supported on the (new) Eisenstein maximal ideals.
(The Eisenstein ideal E of T is the ideal generated by all T` − (` + 1) for primes
` - N ; the Eisenstein maximal ideals are the maximal ideals containing E .)

In [21], Ribet proved a theorem which implies that the support of the kernel of
a T-equivariant isogeny J0(pq)new → Jpq must, in general, contain maximal ideals
of T which are not Eisenstein, so any construction of such an isogeny must be
relatively elaborate. He then gave a concrete example with p = 11, q = 193 where
this phenomenon occurs. Next, we show that Ribet’s construction can be carried
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out also in some cases when p = 2, 3, 5, 7, 13; thus Ogg’s conjecture (1.1) is false in
general1.

Example 1.1. Let E be the elliptic curve over Q defined by the equation

y2 + y = x3 − x2 − 2x+ 1.

This is the unique, up to isomorphism, elliptic curve of conductor q = 701 (which
is a prime); cf. [4]. In particular, E has no cyclic isogenies defined over Q, so
E[3] is an irreducible Gal(Q/Q)-module. Let ρ : Gal(Q/Q) → Aut(E[3]) be the
corresponding Galois representation. Put p = 7. By [21, Thm. 1], there is a
maximal ideal m C T of residue characteristic 3 such that the kernel J0(pq)[m] of
m on J0(pq)(Q) defines a representation equivalent to ρ. One easily checks either
by hand, or with the help of Magma, that E(Fp) ∼= Z/3 × Z/3. This implies that
ρ(Frobp) = 1. In particular,

Tr(ρ(Frobp)) = 2 ≡ (p+ 1) mod m.

As is explained in [21], the above congruence implies that m is new. By Theorem
2 in [21], dimF3 J0(pq)new[m] = 2. On the other hand, since ρ is unramified at p,
Theorem 3 in [21] applies, so dimF3 J

pq[m] = 4. It easily follows from this that the
kernel of any T-equivariant isogeny J0(pq)new → Jpq must have the non-Eisenstein
m in its support, contrary to Ogg’s conjecture. (Otherwise, by duality, there is a
homomorphism Jpq → J0(pq) with finite kernel whose support does not contain m.
This implies that there is an injection Jpq[m]→ J0(pq)[m], which is absurd.)

A similar construction also works for p = 13 and q = 571. Let E : y2 + y =
x3 + x2 − 4x + 2 be the curve 571 B1 in Cremona’s table [4]. Again, E[3] is
irreducible and the corresponding Galois representation ρ satisfies ρ(Frob13) = −1.
Ribet’s theorems then imply that dimF3

Jpq[m] = 4 and dimF3
J0(pq)new[m] = 2,

from which one obtains a contradiction to (1.1) as before.

Despite the fact that Ogg’s conjecture is false in general, some cases of the con-
jecture for small levels have been proved. The conjecture is easy to verify when
J0(pq)new and Jpq are elliptic curves (there are five such cases). When Xpq is
hyperelliptic of genus 2 or 3, Ogg’s conjecture is verified in [6] and [5] (there are
twelve such cases). The strategy here is to explicitly compute and compare the
period matrices of J0(pq)new and Jpq, which itself relies on a lengthy calculation
of the defining equations of hyperelliptic Shimura curves. When N = 5 · 13, Ogg’s
conjecture is verified in [10], up to 2-primary torsion supported on a maximal Eisen-
stein ideal. In this case, XN has genus 5 and is not hyperelliptic. Our approach in
[10] is completely different from [6, 5] and relies on the Hecke equivariance of Ribet
isogenies and the fact that the Hecke algebra of level 65 is a rather simple ring.

For general N = pq, Yoo [31] proved that, under certain congruence assumptions
on p, q, and `, the kernel of a Ribet isogeny J0(N)new → JN must contain the `-
primary subgroup of the cuspidal divisor group C. This result implies that for
p = 2, 3, 5, 7, 13 and odd ` ≥ 5, ker(π) contains K ⊗ Z` from (1.1), in accordance
with Ogg’s conjecture.

1To be fair, Ogg writes in his paper [14, p. 213] “On devine (deviner est plus faible que

conjecturer) donc qu’on peut prendre K comme noyau de l’isogénie, avec confiance si la partie
ancienne est triviale, i.e. si (q − 1) | 12.” Hence, perhaps, we should have called (1.1) “Ogg’s

guess”.
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1.2. Main result. In this article we continue exploring avenues that lead to partial
results toward Ogg’s conjecture. While we again employ the Hecke algebra, we
propose a different approach from [10] which has the advantage of being applicable
to larger values of N than 65.

Now we outline our approach and state the main results. To simplify the nota-
tion, let J := J0(N) and J ′ := JN . Let S denote the finite set of maximal ideals of
T that are either Eisenstein, or of residue characteristic 2 or 3. There is an element
σS ∈ T such that for any maximal ideal m of T, one has σS ∈ m if and only if
m ∈ S (cf. Lemma 3.2 in [9]). Set TS := T[σ−1

S ].
Jnew and J ′ have purely toric reduction at the primes p and q, and good reduction

everywhere else. For A = Jnew or J ′, denote by Mp(A) = Hom(A0
Fp
,Gm,Fp

) the

character group of A at p. Here A is the Néron model of A over Zp, and A0
Fp

is the

connected component of the identity of the special fibre of A at p. The character
group Mp(A) is a free abelian group of rank equal to dim(A). We similarly define
the character group Mq(A) at q. By the Néron mapping property, T acts on Mp(A)
and Mq(A).

A special case of a result of Helm [9, Prop. 8.13] implies that there is an isomor-
phism of TS-modules

(1.2) Hom(Jnew, J ′) ∼=TS
Hom(Mq(J

′),Mq(J
new)).

On the other hand, a special case of a result of Ribet [18, Thm. 4.1] implies that

(1.3) Mq(J
′) ∼=T Mp(J

new).

Since the cuspidal divisor group of J is annihilated by the Eisenstein ideal of T,
(1.1) combined with (1.2) and (1.3) implies that

(1.4) Mp(J
new) ∼=TS

Mq(J
new).

Conversely, if (1.4) is true, then (1.2) and (1.3) imply that there is an isogeny
π : Jnew → J ′ whose kernel is supported on the maximal ideals in S.

This offers a natural strategy for proving results toward Ogg’s conjecture. First,
one needs to prove (1.4). Since the character groups are free Z-modules, this step
involves only linear algebra calculations, which may be quite daunting in practice
- but we note here that there exist algorithms that allow one to do this at least in
principle; cf. Section 3. The second step comprises classifying isogenies supported
on the maximal ideals in S. This can be achieved by excluding the existence of
certain subgroup schemes in J [ms] for m ∈ S, a problem which in [10] (for N = 65)
was handled by an ad hoc counting argument.

In this paper we offer a more systematic approach for step 2 based on the non-
existence of certain deformations of non-split Galois extensions

(1.5) 0→ Z/`→ ρ→ µ` → 0,

where ` ≥ 5 is a prime. By the results of Ohta and Yoo [15, 30], one knows that the
residue characteristic of an Eisenstein maximal ideal divides either p ± 1 or q ± 1.
We will assume that ` satisfies one of the following conditions:

` | (p+ 1) and ` - (q ± 1),(1.6)

` | (q + 1) and ` - (p± 1).(1.7)

Put m = (Tp + 1, Tq − 1, E , `) in the first case, and m = (Tp − 1, Tq + 1, E , `) in the
second case. Then m is a new Eisenstein maximal ideal of residue characteristic `
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and dimF`
J [m] = 2; cf. [30], [29]. In particular, the action of GQ = Gal(Q/Q) on

J [m] gives rise to an extension

(1.8) 0→ Z/`→ J [m]→ µ` → 0.

This extension does not split. Indeed, by a theorem of Vatsal [25], the extension
(1.8) splits if and only if µ` ⊂ S, where S denotes the Shimura subgroup of J .
Ignoring the 2 and 3-primary torsion, one has #S = (p− 1)(q − 1); cf. [12]. Thus
for ` - (p − 1)(q − 1) we see that µ` 6⊂ S. Hence (1.8) can in fact be viewed as a
non-split extension of Galois modules of the form (1.5). We also note that, ignoring
the 2 and 3-primary torsion, the cuspidal divisor group C of J and the Eisenstein
ideal E satisfy (cf. [3], [15], [30])

T/E ∼= C ∼= Z/(p− 1)(q − 1)⊕ Z/(p+ 1)(q − 1)⊕ Z/(p− 1)(q + 1).

This implies that m is the unique Eisenstein maximal ideal of residue characteristic
` and the constant subgroup scheme of J [m] in (1.8) is C[`].

In Theorem 2.9 (and Corollary 2.10) we prove that under the above assumptions
on `, the Galois representation ρ := J [m] does not admit any (non-trivial) reducible
(Fontaine-Laffaille) deformations of determinant ε, the `-adic cyclotomic character
(or its mod `m reduction). This allows us to prove the following result, which is
the main theorem of the paper.

Theorem 1.2. Assume (1.4) is satisfied, so that there is an isogeny π : Jnew → J ′

with kernel supported on the maximal ideals in S. Assume π is chosen to have
minimal degree. Let ` ≥ 5 be a prime that satisfies either (1.6) or (1.7). Let m ∈ S
be the new Eisenstein maximal ideal of residue characteristic `. Assume further that
Jnew/Jnew[m] ∼= Jnew. Then the `-primary part of kerπ is contained in C[`] ∼= Z/`.

Proof. Let H be the `-primary part of ker(π). Note that Jnew[m] 6⊂ H, since
otherwise π factors through

Jnew → Jnew/Jnew[m] ∼= Jnew π′

→ J ′,

contradicting the minimality of the degree of π. Since m is new and satisfies mul-
tiplicity one, we have J [m] ∼= Jnew[m]. One can consider H as a subgroup scheme
of J [ms] for some s ∈ Z+. We claim that H is a proper subscheme of J [m].
If this is not the case (i.e., H is not a proper subscheme of J [m]) then we see
as in the proof of Proposition 4.5 in [10] that without loss of generality we may
assume that s = 2. The equivalence of (1) and (2) in Lemma 15.1 of [13] im-
plies that since dimF`

J [m] = 2 we get J [m2] ∼= T/m2 ⊕ T/m2 as T-modules.
Hence H = T/ms1 ⊕ T/ms2 , with 0 ≤ s1 ≤ s2. Clearly s1 = 0 since otherwise
H ⊃ H[m] = J [m]. Also s2 = 2 as otherwise H ⊂ J [m]. Hence H is a Galois stable
line (free T/m2-module of rank 1) in J [m2]. Let χ1 be the character by which GQ

acts on this line and write χ2 for the character by which it acts on the quotient
J [m2]/H. Then the Galois representation ρ : GQ → GL2(T/m2) afforded by J [m2]
satisfies the conditions in Corollary 2.10 with {`1, `2} = {p, q}, Σ′ = {p, q, `} (we
note that ρ is in the image of the Fontaine-Laffaille functor since it arises as a
subquotient of the Galois representation afforded by the Tate module of an abelian
variety), so it cannot exist. Thus, H ( J [m]. Finally, because J [m] is non-split, the
only GQ-stable subgroup of J [m] is its constant subgroup Z/` which comes from
the cuspidal divisor group. �
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To conclude the introduction, let us comment on how Theorem 1.2 applies to
Ogg’s conjecture. Assumption (1.4) can be checked using an explicit matrix repre-
sentation of generators of T. In the case N = 65 we carry out this calculation in
Section 3. In fact, in this case, we are able to prove a stronger result, namely that
Mp(J) ∼= Mq(J) as T-modules without inverting σS . (This also shows that (1.2)
is not true without inverting the Eisenstein maximal ideals since the Jacobians J
and J ′ are not isomorphic in this case.)

The assumption Jnew/Jnew[m] ∼= Jnew is essentially equivalent to m being prin-
cipal in Tnew, where Tnew denotes the quotient by which T acts on Jnew. Indeed, if

m = (η)CTnew is principal, then Jnew[m] is the kernel of the isogeny Jnew ·η−→ Jnew.
Conversely, if Jnew/Jnew[m] ∼= Jnew, then Jnew[m] is the kernel of an endomorphism
η of Jnew. If η ∈ Tnew, then m is generated by η. If pq is odd, then [20, Prop. 3.2]
and [26, Cor. 2.4] imply that End(Jnew) = Tnew, so η ∈ Tnew. The assumption
on the principality of m is satisfied for some Eisenstein maximal ideals in Hecke
algebras of small levels, for example, those N = pq for which J = Jnew (equiv.
(p − 1) and (q − 1) divide 12), which is related to the fact that in those cases the
Hecke algebra T ⊗ Q turns out to be a direct product of number fields of class
number 1.

Finally, once we know ker(π) ⊗ Z` ⊂ C[`], the `-primary part of ker(π) can be
determined by comparing the component groups of Jnew and Jnew/C[`] with the
component groups of J ′, as was originally done by Ogg. In the case N = 65, the
prime ` = 7 is the only one which satisfies the conditions of Theorem 1.2 (the other
two Eisenstein primes are 2 and 3). Thus Theorem 1.2 gives an alternative proof
that for N = 65 there is an isogeny π : J → J ′ such that ker(π)⊗ Z` ∼= K ⊗ Z` for
K in (1.1) and ` ≥ 5.

2. Non-existence of certain Galois extensions

Let ` > 2 and Σ := {`1, `2, . . . , `k} be a set of distinct primes such that ` -
`i(`i − 1) for i = 1, . . . , k. Write Σ′ := Σ ∪ {`} and GΣ′ for the absolute Galois
group of the maximal Galois extension of Q unramified outside Σ′.

Consider a representation ρ : GΣ′ → GL2(F`) which is a non-split extension of
the form

ρ =

[
1 ∗

ε

]
,

where ε will denote the `-adic cyclotomic character (but we will also use ε to denote
the reduction of the `-adic cyclotomic character mod `m) and ε its mod ` reduction.

The main result of this section is Theorem 2.9 (and Corollary 2.10) which asserts
the non-existence of certain trace-reducible deformations of ρ. The proof essentially
boils down to showing that there are no (trace-reducible) deformations to Z/`2 as
well as no non-trivial (trace-reducible) deformations to the dual numbers F`[X]/X2.
We begin with the Z/`2-case – the harder of the two (Proposition 2.1 below), which
we prove in a slightly greater generality than needed for our purposes. We fix once
and for all an embedding Q ↪→ Q`. Let m ≥ 2 be an integer.

Proposition 2.1. Suppose val`(`
2
1−1) = m−1 (which is equivalent to val`(`1+1) =

m − 1) and val`(`
2
i − 1) = 0 (equivalent to val`(`i + 1) = 0) for all i = 2, 3, . . . , k.

Then there does not exist a Galois representation ρm : GΣ′ → GL2(Z/`m) such that

(i) ρm is crystalline in the image of the Fontaine-Laffaille functor at `;
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(ii) det ρm = ε;
(iii) tr ρm = χ1 + χ2 for some Galois characters χ1, χ2 : GΣ′ → (Z/`m)× with

χ1 ≡ 1 (mod `) and χ2 ≡ ε (mod `);
(iv) ρm ≡ ρ mod `.

Remark 2.2. Below for brevity we will refer to representations in the image of
the Fontaine-Laffaille functor simply as Fontaine-Laffaille representations. All the
properties of such representations that we will use are stated e.g. in [1].

We prepare the proof of Proposition 2.1 by several lemmas.

Lemma 2.3. We must have χ1 = 1 and χ2 = ε

Proof. It is enough to show that χ1 = 1 as then χ2 = ε by (ii). First note that since
ρm is a Fontaine-Laffaille representation and the category of these is closed under
taking subquotients, so is χ1. Furthermore, χ1 is unramified outside Σ′. Hence to
prove the claim it is enough to show that the trivial character does not admit any
non-trivial Fontaine-Laffaille infinitesimal deformations ψ : GΣ′ → (F[X]/X2)×.
This in turn can be proven as Proposition 9.5 of [1]. �

To prove Proposition 2.1 let us first note that by the main Theorem of [24] if ρm
whose trace splits as in (iii) exists then it can be conjugated to an upper-triangular
representation of the form

ρm =

[
χ1 ∗

χ2

]
.

We can treat ρm as an element of H1(Q, (Z/`m)(χ1χ
−1
2 )) which does not lie in

H1(Q, (`Z/`mZ)(χ1χ
−1
2 )), i.e., is of maximal order. This is so, because the exten-

sion given by ρm reduces mod ` to ρ which is not split.
For the moment we will work in a slightly greater generality and assume that

χ1 = 1 and χ2 = χ = εn for n 6≡ 0 mod (` − 1), however we apply it only in the
case when n = 1. Set

T = Z`(−n) = Z`(ε
−n), V = Q`(−n), W = Q`/Z`(−n)

and

WM := `−MZ`/Z`(−n) = Z`/`
MZ`(−n) = W [`M ],

where by W [s] we mean the s-torsion. For a place v of Q, and M = V,W or WM ,
set H1

ur(Qv,M) = ker(H1(Qv,M)→ H1(Iv,M)). Then, following [22], section 1.3,
we set

H1
f (Qv, V ) :=

{
H1

ur(Qv, V ) if v 6= `

ker(H1(Qv, V )→ H1(Qv, V ⊗Qv
Bcris)) if v = `.

We define H1
f (Qv,W ) as the image of H1

f (Qv, V ) in H1(Qv,W ). For the finite set

Σ of finite places of Q, we then define the global Selmer group (cf. [22], Definition
1.5.1):

SΣ(Q,W ) := ker(H1(Q,W )→
⊕
v 6∈Σ

H1(Qv,W )

H1
f (Qv,W )

).

One defines SΣ(Q,WM ) similarly (cf. [22], p. 22).

Lemma 2.4. One has SΣ(Q,WM ) = SΣ(Q,W )[`M ].
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Proof. By Lemma 1.5.4 of [22], we get that there is a natural surjection of the
left-hand side onto the right-hand side. However, the proof of that lemma uses the
exact sequence in Lemma 1.2.2(i) in [22] and in our case WGQ = 0 as n 6≡ 0 mod
(`− 1), which shows that the surjection is in fact an isomorphism. �

Let us first relate SΣ(Q,Wm) to S∅(Q,Wm).

Lemma 2.5. Suppose val`(`
n+1
1 − 1) = m − 1 and val`(`

n+1
i − 1) = 0 for all

i = 2, 3, . . . , k. Then one has

#SΣ(Q,Wm) ≤ `m−1#S∅(Q,Wm).

Proof. Fix s ∈ {1, 2, . . . , k}. Since W is unramified at `s we get H1
ur(Q`s ,W ) =

H1
f (Q`s ,W ) (by Lemma 1.3.5(iv) in [22]) as well as H1

ur(Q`s ,Wm) = H1
f (Q`s ,Wm)

(by Lemma 1.3.8(ii) in [22]) and

(2.1) H1(I`s ,Wm) = Hom(Z`(1),Wm) = Wm(−1).

This gives an upper bound of `m on the order of the quotientH1(Q`s ,Wm)/H1
f (Q`s ,Wm).

However, let us now show that the upper bound is in fact `m−1 (resp. 1) if s = 1
(resp. s 6= 1). Indeed, this will follow if we show that the map H1(Q`s ,Wm) →
H1(I`s ,Wm) is not surjective (resp. is the zero map) if s = 1 (resp. s 6= 1). To do
so consider the inflation-restriction sequence (where we set G := Gal(Qur

`s
/Q`s)):

H1(G,Wm)→ H1(Q`s ,Wm)→ H1(I`s ,Wm)G → H2(G,Wm).

The last group in the above sequence is zero since G ∼= Ẑ and Ẑ has cohomological
dimension one. This means that the image of the restriction map H1(Q`s ,Wm)→
H1(I`s ,Wm) equals H1(I`s ,Wm)G. Let us show that the latter Z`-module is a
proper submodule of H1(I`s ,Wm) (resp. is the zero module) if s = 1 (resp. s 6= 1).
Indeed,

H1(I`s ,Wm)G = HomG(Z`(1),
1
`mZ`

Z`
(−n)) = HomG(Z`,

1
`mZ`

Z`
(−n− 1)).

So, φ ∈ H1(I`s ,Wm) lies in H1(I`s ,Wm)G = HomG(Z`,
1

`m Z`

Z`
(−n− 1)) if and only

if φ(x) = φ(gx) = g · φ(x) = ε−n−1(g)φ(x) for every x ∈ I`s and every g ∈ G, i.e.,
if and only if

(2.2) (ε−n−1(g)− 1)φ(x) ∈ Z` for every x ∈ I`s , g ∈ G.

Since Frob`s topologically generates G, we see that (2.2) holds if and only if it holds
for every x ∈ I`s and for g = Frob`s . We have ε−n−1(Frob`s) − 1 = `−n−1

s − 1 =
1−`n+1

s

`n+1
s

. Since `n+1
s ∈ Z×` , condition (2.2) becomes

(2.3) (1− `n+1
s )φ(x) ∈ Z` for every x ∈ I`s .

By our assumption val`(1− `n+1
s ) = m− 1 (resp. val`(1− `n+1

s ) = 0) if s = 1 (resp.
s 6= 1), which implies that (2.3) is equivalent to `m−1φ(x) = 0 (resp. φ(x) = 0) in
Wm if s = 1 (resp. s 6= 1). Using the isomorphism (2.1) we see that this implies
that H1(I`s ,Wm)G is a proper Z`-submodule of H1(I`s ,Wm) as Wm(−1) certainly
contains elements not annihilated by `m−1.

Now, by Theorem 1.7.3 in [22] we have an exact sequence

(2.4) 0→ S∅(Q,Wm)→ SΣ(Q,Wm)→
k⊕
i=1

H1(Q`i ,Wm)

H1
f (Q`i ,Wm)

.
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As shown above the order of the module on the right is bounded from above by
`m−1. This gives the desired inequality. �

Let us record here one consequence of the above proof.

Lemma 2.6. Suppose S∅(Q,Wm) = 0. Assume val`(`
n+1
1 − 1) = m − 1 and

val`(`
n+1
i − 1) = 0 for all i = 2, 3, . . . , k. Then SΣ(Q,Wm) is a cyclic Z`-module,

i.e., SΣ(Q,Wm) ∼= Z/`s. Furthermore, dimF`
SΣ(Q,W1) = 1.

Proof. From (2.4) (and the first isomorphism theorem for modules) we get SΣ(Q,Wm) ⊂
H1(Q`1

,Wm)

H1
ur(Q`1

,Wm)
∼= I, where I is the image of the restriction map H1(Q`1 ,Wm) →

H1(I`1 ,Wm) ∼= Wm. The last module is cyclic. The one-dimensionality statement
follows from this and Lemma 2.4. �

From now on set n = 1, so W = Q`/Z`(−1).

Proposition 2.7. The Selmer group S∅(Q,Wm) is trivial.

Proof. It is enough to show that the group S∅(Q,W1) is trivial. Indeed, Lemma
2.4 shows S∅(Q,Wm) = S∅(Q,W )[`m]. So it suffices to show that S∅(Q,W ) = 0.
Since the latter module is divisible, it is enough to show that it has no `-torsion, i.e.,
that S∅(Q,W )[`] = S∅(Q,W1) = 0. It follows from Fontaine-Laffaille theory that
H1
f (Q`,W1) = H1

ur(Q`,W1) so that S∅(Q,W1) = Hom(ClQ(µ`),W1)Gal(Q(µ`)/Q).
The latter module is zero by Herbrand’s Theorem since the relevant Bernoulli num-
ber B2 = 1/6 (see e.g., Theorem 6.17 in [28]). �

Proof of Proposition 2.1. Assume that ρm as in the proposition exists. We can
treat ρm as an element of H1(Q, (Z/`m)(χ1χ

−1
2 )) which is not annihilated by `m−1

because its mod ` reduction is non-split. By Lemma 2.3 we have χ1 = 1 and χ2 = ε.
Also note that Z/`m(ε−1) ∼= Wm. The extension given by ρm being unramified
away from Σ′ and Fontaine-Laffaille (at `) in fact gives rise to an element inside
SΣ(Q,Wm) ⊂ H1(Q,Wm) not annihilated by `m−1. However, combining Lemma
2.5 applied in the case n = 1 with Proposition 2.7 we see that SΣ(Q,Wm) is
annihilated by `m−1 which leads to a contradiction. �

Proposition 2.8. Let ρ′ : GΣ′ → GL2(F`[X]/X2) be a representation such that

(i) ρ′ is Fontaine-Laffaille;
(ii) det ρ′ = ε;

(iii) tr ρ′ = χ1 + χ2 for some Galois characters χ1, χ2 : GΣ′ → (F`[X]/X2)×

with χ1 ≡ 1 mod X and χ2 ≡ ε mod X;
(iv) ρ′ ≡ ρ mod X.

Then ρ′ is isomorphic to ρ viewed as an F`[X]/X2[GΣ′ ]-module via the natural
inclusion GL2(F`) ↪→ GL2(F`[X]/X2).

Proof. Using again the main theorem of [24] we conclude that ρ′ can be conjugated

to a representation of the form

[
χ1 ∗

χ2

]
. Hence χ1 and χ2 as subquotients of ρ′

are also Fontaine-Laffaille. Again arguing as in the proof of Proposition 9.5 in [1]
we get that 1 and ε do not admit any non-trivial infinitesimal Fontaine-Laffaille
deformations, so we must have χ1 = 1 and χ2 = ε. This puts us in the setup
of section 6 of [1] with Assumption 6(ii) satisfied. Hence the claim follows from
Proposition 7.2 of [1], using Lemma 2.6 above to see that Assumption 6(i) is also
satisfied. �
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Let L be the category of local complete Noetherian Z`-algebras with residue field
F`. Consider deformations ρ′ : GΣ′ → GL2(A) of ρ for A an object of L which are
such that:

• det ρ′ = ε;
• ρ′ is Fontaine-Laffaille at `.

Since ρ has scalar centralizer the above deformation problem is representable (cf.
[17], p. 270) by a universal deformation ring R. We write σ : GΣ′ → GL2(R) for
the universal deformation.

Let I be the ideal of reducibility of the universal deformation σ, i.e., I is the
smallest ideal I ′ ⊂ R such that tr σ is a sum of characters χ1 and χ2 mod I ′ with
the property that χ1 reduces to 1 and χ2 reduces to ε modulo the maximal ideal
mR of R.

Theorem 2.9. Suppose val`(`
2
1− 1) = 1 and val`(`

2
i − 1) = 0 for all i = 2, 3, . . . , k.

Then I = mR.

Proof. It follows from Proposition 2.1 (and universality of R) that R/I does not
admit a surjection to Z/`2. Similarly it follows from Proposition 2.8 that R/I does
not admit a surjection to F[X]/X2. Thus I is the maximal ideal by Lemma 3.5 in
[2]. �

Let us explain one consequence of Theorem 2.9. If A is any object in L and
ρ : GΣ′ → GL2(A) is a continuous representation such that

(i) ρ is Fontaine-Laffaille;
(ii) det ρ = ε;
(iii) tr ρ = χ1 + χ2 for some Galois characters χ1, χ2 : GΣ′ → A× with χ1 ≡ 1

mod mA and χ2 ≡ ε mod mA;
(iv) ρ = ρ mod mA,

then the Z`-algebra map φ : R → A whose existence follows from universality of

R factors through (by the definition of I) a Z`-algebra map R � F` = R/I
φ−→ A

such that ρ is isomorphic to ρ viewed as a A[GΣ′ ]-module via φ.

Corollary 2.10. Let k = 2. Suppose val`(`
2
1−1) = 1 and val`(`

2
2−1) = 0. Let T be

the Hecke algebra as in Section 1 and m a maximal Eisenstein ideal as in Theorem
1.2. Then there does not exist a Galois representation ρ : GΣ′ → GL2(T/m2) such
that ρ satisfies (i)-(iv) as above with A = T/m2.

Proof. Suppose ρ as in the statement exists. Note that T/m2 is an object of L.
Then by universality of R we get a Z`-algebra map φ : R→ T/m2. Let us first see
that this map is surjective. Indeed, viewing T as the Hecke algebra acting on the
space of weight 2 cusp forms of level Γ0(`1`2) we first complete it at the ideal m
and note that Tm is an element of L (since Tm/mTm = T/mT = F`). For every
minimal prime P of Tm we have a canonical map Tm � Tm/P given by sending
operators Tr and Ur to the eigenvalues of the corresponding cusp form. It follows
from Proposition A.2.3 and A.2.2(2) in [27] that the algebra Tm is generated by the
operators Tr for r - ``1`2. Indeed, our assumptions on the valuations of the `i imply
that the Atkin-Lehner signature denoted in [27] by ε equals (−1, 1) - this is forced by
the condition that the constant term of the relevant Eisenstein series (cf. equation
(1.3.1) in [27]) vanishes modulo `. In other words our Hecke algebra Tm equals

the Hecke algebra denoted in [27] by T(−1,1),0
U , which in turn equals T(−1,1),0 by
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Proposition A.2.3 in [27]. It then follows from Proposition A.2.2 that this last Hecke
algebra is generated by Tr for r - ``1`2. Thus the intersection of all the minimal
primes

⋂
P P equals 0 as it consists of all the operators T such that Tf = 0 for all

eigenforms f of Tm. Hence in particular Tm injects into
∏

P Tm/P = T̃m, where

T̃m is the normalization of Tm.
We claim that the combined map R →

∏
P Tm/P = T̃m ⊃ Tm surjects onto

Tm. This is a standard argument, which we summarize here in our situation. First
arguing as in the proof of Proposition 7.13 in [1] using Theorem 2.9 above for the
cyclicity of R/I we conclude that R is generated by the set {tr σ(Frobr) | r 6∈ Σ′}.
Since each of these traces is mapped to Tr under the map R→ T̃m we see that the
image is contained in Tm. In fact, it equals Tm as we showed above that Tm is
generated by Tr with r - ``1`2.

Having established the surjectivity of R → Tm we now use (iii) above and the
definition of I to conclude that the induced surjection φ : R � T/m2 factors

through a Z`-algebra map R � R/I
φ−→ T/m2. However, R/I ∼= F` by Theorem

2.9 implying that m = m2, which is absurd. �

3. Character groups of J0(65) as Hecke modules

In this section J := J0(65). In this case, J = Jnew. Let Mp denote the character
group of J at p as defined in the introduction. For p = 5, 13, Mp is a free abelian
group of rank dim(J) = 5. By the Néron mapping property, the action of the Hecke
algebra T on J extends canonically to an action on the Néron model J of J over
Zp. For p = 5, 13, T acts faithfully on J 0

Fp
, and hence also on Mp (because J has

purely toric reduction at p). The main result of this section is the fact that M5

and M13 are isomorphic as T-modules. The proof is based on explicit calculations
with Brandt matrices; cf. [7].

Remark 3.1. The algebra T ⊗ Q is semi-simple of dimension 5 over Q. Since
T⊗Q acts faithfully on Mp⊗Q, p = 5, 13, which is also 5-dimensional over Q, one
easily concludes that Mp⊗Q is free over T⊗Q of rank 1. Thus, M5⊗Q ∼= M13⊗Q
as T-modules, but the isomorphism over Z is more subtle.

Proposition 3.2. There are isomorphisms of T-modules M5
∼= M13

∼= T.

Proof. The following Magma routine computes the action of Tn on M5 for a given
positive integer n:
> B5:= BrandtModule(5, 13);

> M5:= CuspidalSubspace(B);

> Sn:=HeckeOperator(M5, n);

The result is an explicit matrix Sn ∈M5(Z). Repeating the same process with the
roles of 5 and 13 interchanged, we get another matrix S′n ∈ M5(Z) by which Tn
acts on M13 (with respect to implicit Z-bases chosen by the program).

A calculation with discriminants shows that T, as a free Z-module of rank 5, is
generated by the Hecke operators T1, T2, T3, T5, T11; cf. [10, Sec. 3]. We have

S1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , S2 =


−1 −1 1 0 0
−1 −1 0 1 0

2 −1 0 0 −1
−1 2 0 0 −1

0 0 0 0 −1

 ,
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S3 =


0 −1 0 1 −1
−1 0 1 0 −1
−1 2 1 0 −2

2 −1 0 1 −2
0 0 0 0 −2

 , S5 =


0 1 0 0 −1
1 0 0 0 −1
0 0 0 1 −1
0 0 1 0 −1
0 0 0 0 −1

 ,

S11 =


0 3 0 −1 0
3 0 −1 0 0
1 −2 −1 2 1
−2 1 2 −1 1

0 0 0 0 2

 .
In Magma, the action of Hecke operators on Mp is defined to be from the right, i.e.,
as on row vectors. Let v = [1, 0, 0, 0, 0] ∈M5, and

A :=


vS1

vS2

vS3

vS5

vS11

 =


1 0 0 0 0
−1 −1 1 0 0

0 −1 0 1 −1
0 1 0 0 −1
0 3 0 −1 0

 .
One easily verifies that det(A) = 1, hence

M5 = ZvS1 + ZvS2 + ZvS3 + ZvS5 + ZvS11 = vT.

Thus, M5
∼= T is a free T-module of rank 1. A similar calculation with M13, gives

A′ :=


vS′1
vS′2
vS′3
vS′5
vS′11

 =


1 0 0 0 0
0 2 0 −1 −1
−1 0 1 0 −1

0 −1 0 0 0
1 −2 −1 0 2

 .
In this case, det(A) = −1, hence again M13 = vT. �

Remark 3.3. The fact that M5 and M13 are free T-modules is a coincidence (a
priori, we don’t see a reason for this to happen). To emphasize this point, we note
that the dual M∗5 = Hom(M5,Z) of M5 with induces action of T is not a free
T-module. (On M∗5 the Hecke operator Tn acts by the transpose of the matrix by
which it acts on M5). Indeed, otherwise we get T ∼= Hom(T,Z), which implies that
the localization of T at any maximal ideal is Gorenstein in contradiction to [10,
Prop. 3.7].

Remark 3.4. The proof of Proposition 3.2 is rather ad hoc. Suppose more gener-
ally that we are given two T-modules M,M ′ for a Hecke algebra of some level N
such that M,M ′ are free of the same finite rank over Z and M ⊗ZQ ∼=T M ′⊗ZQ.
Also, suppose we are able to compute efficiently the matrices Sn, S

′
n by which

Tn acts on M and M ′, respectively. The question of the integral isomorphism
M ∼=T(N) M

′ is equivalent to the existence of an invertible matrix S ∈ GLr(Z)

such that SSnS
−1 = S′n for all n ≥ 1; here r = rankZ(M). In fact, it is enough

to find such S that works for all n up to an explicit bound depending on N (the
Sturm bound). Despite the elementary nature of this question, computationally it
is challenging. The problem of integral conjugacy of matrices is a classical problem
related to class groups of orders in number fields (see [11]), and there are algorithms
that solve this problem (see [23], [8]), but at the time of writing of this article these
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algorithms do not seem to be implemented in any of the standard computational
programs, such as Magma. (Given two m ×m matrices A and B with rational or
integral entries, Magma currently can test whether A is conjugate to B in GLm(Z)
only if m = 2.)
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