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Abstract. Let f ∈ Sκ(Γ0(N)) be a Hecke eigenform at p with eigen-
value λf (p) for a prime p - N . Let αp and βp be complex numbers
satisfying αp + βp = λf (p) and αpβp = pκ−1. We calculate the norm of
f
αp
p (z) = f(z)−βpf(pz) as well as the norm of Upf , both classically and

adelically. We use these results along with some convergence properties
of the Euler product defining the symmetric square L-function of f to
give a ‘local’ factorization of the Petersson norm of f .

1. Introduction

Let κ ≥ 2 and N ≥ 1 be integers and p an odd prime with p - N . Let
f ∈ Sκ(Γ0(N)) be a newform. It is well-known that the Petersson norm
〈f, f〉 serves as a natural period for many L-functions of f [7, 15].

In this paper we focus on related periods 〈fαpp , f
αp
p 〉 (defined below) for

αp a Satake parameter of f . When f is ordinary at p, the forms f
αp
p arise

naturally in the context of Iwasawa theory as the objects which can be
interpolated into a Hida family. It is in fact in the context of ‘p-adic in-
terpolation’ of some automorphic lifting procedures (between two algebraic
groups, one of them being GL2) that these calculations arise (see [1] for
example); however, our results apply in a more general setup as specified
below.

Let f ∈ Sκ(Γ0(N)) be an eigenform for the Tp-operator with eigenvalue
λf (p). Let αp and βp be the pair of complex numbers satisfying αp + βp =

λf (p) and αpβp = pκ−1. We set f
αp
p (z) = f(z) − βpf(pz). In the case that

f is ordinary at p, we can choose αp and βp so that αp is a p-unit and βp is
divisible by p. In this special case f

αp
p is the p-stabilized ordinary newform

of tame level N attached to f .
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Since f
αp
p = p1−κβp(Up− βp)f , calculating 〈fαpp , f

αp
p 〉 is in fact equivalent

to calculating 〈Upf, Upf〉. While computation of any of these inner products
does not present any difficulties (see Section 2), it is an accident resulting
from the relative simplicity of the Hecke algebra on GL2, where the Tp and
the Up operators differ by a single term. It turns out that in the higher-
rank case it is the calculation of the latter inner product that provides the
fastest route to computing the Petersson norm of various p-stabilizations.
With these future applications in mind we present an alternative approach
to calculating 〈Upf, Upf〉, this time working adelically (see Sections 3 and
4), as this is the method that generalizes to higher genus most readily (see
[1], where this is done for the group GSp4).

It is well-known that the Petersson norm 〈f, f〉 is closely related to the
value L(κ,Sym2 f) at κ of the symmetric square L-function of f . The ab-
solutely convergent Euler product defining this L-function for Re(s) > κ
converges (conditionally) to the value L(s, Sym2 f) when Re(s) = κ (this
and in fact a more general result is proved in the appendix by Keith Con-
rad). On the other hand our computation of 〈fαpp , f

αp
p 〉 shows that this inner

product differs from 〈f, f〉 by essentially the p-Euler factor of L(κ,Sym2 f).
Combining these facts we exhibit a (conditionally convergent) factorization
of 〈f, f〉 into local components defined via the inner products 〈fαpp , f

αp
p 〉 (for

details, see Section 5).
The authors would like to thank Henryk Iwaniec, and Keith Conrad would

like to thank Gergely Harcos, for helpful email correspondence.

2. Classical calculation of 〈fp, fp〉 and 〈Upf, Upf〉

Let N be a positive integer. Let Γ0(N) ⊂ SL2(Z) denote the subgroup
consisting of matrices whose lower-left entry is divisible by N . For a holo-

morphic function f on the complex upper half-plane h and for γ =

[
a b
c d

]
∈

GL+
2 (R), where + denotes positive determinant, and κ ∈ Z+ we define the

slash operator as

(f |κγ)(z) =
det(γ)κ/2

(cz + d)κ
f

(
az + b

cz + d

)
.

If κ is clear from the context we will simply write f |γ instead of f |κγ. We
will write Sκ(Γ0(N)) for the C-space of cusp forms of weight κ and level
Γ0(N) (i.e., functions f as above which satisfy f |κγ = f for all γ ∈ Γ0(N)
and vanish at the cusps - for details see [11]).

The space Sκ(Γ0(N)) is endowed with a natural inner product (the Pe-
tersson inner product) defined by

〈f, g〉N =

∫
Γ0(N)\h

f(z)g(z)yκ−2dxdy
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for z = x + iy with x, y ∈ R and y > 0. If Γ ⊂ Γ0(N) is a finite index
subgroup we also set

〈f, g〉Γ =

∫
Γ\h

f(z)g(z)yκ−2dxdy.

From now on let p be a prime which does not divide N . Set η =

[
p 0
0 1

]
.

We have the decomposition

(2.1) Γ0(N)

[
1 0
0 p

]
Γ0(N) =

p−1⊔
j=0

Γ0(N)

[
1 j
0 p

]
t Γ0(N)η.

Recall the pth Hecke operator acting on Sκ(Γ0(N)) is given by

Tpf = pκ/2−1

p−1∑
j=0

f |κ
[
1 j
0 p

]
+ f |κη


and the pth Hecke operator acting on Sκ(Γ0(Np)) is given by

Upf = pκ/2−1

p−1∑
j=0

f |κ
[
1 j
0 p

] .

As we will be viewing f ∈ Sκ(Γ0(N)) as an element of Sκ(Γ0(Np)), we use
Tp and Up to distinguish the two Hecke operators at p defined above.

Let f ∈ Sκ(Γ0(N)) be an eigenfunction for Tp with eigenvalue λf (p).
There exist (up to permutation) unique complex numbers αp and βp sat-
isfying λf (p) = αp + βp and αpβp = pκ−1. We consider the following two
forms:

f
αp
p (z) = f(z)− βpp−κ/2(f |κη)(z),

f
βp
p (z) = f(z)− αpp−κ/2(f |κη)(z).

One immediately obtains that f
αp
p ∈ Sκ(Γ0(Np)) and that f

αp
p is an eigen-

function for the operator Up with eigenvalue αp. Furthermore, if f is also
an eigenform for T` for a prime ` 6= p, then so is f

αp
p and it has the same T`-

eigenvalue as f . The analogous statements for f
βp
p hold as well. Note that if

f is ordinary at p, then one can choose αp and βp so that ordp(αp) = 0 and
then f

αp
p is the p-stabilized newform associated to f , see [16] for example.

Theorem 2.1. Let f ∈ Sκ(Γ0(N)) be defined as above, where p - N . We
have

〈Upf, Upf〉Np
〈f, f〉Np

= pκ−2 +
(p− 1)λf (p)2

p+ 1

and
〈fαpp , f

αp
p 〉Np

〈f, f〉Np
=

p

p+ 1

(
1−

α2
p

pκ

)(
1−

β2
p

pκ

)
.
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Proof. The definition of f
αp
p and the fact that Upf = Tpf − pκ/2−1f |η im-

mediately give

〈fαpp , f
αp
p 〉Np = (1 + |βp|2p−κ)〈f, f〉Np − p−κ/2(βp〈f |η, f〉Np + βp〈f |η, f〉Np)

and

〈Upf, Upf〉Np = (pκ−2 + λf (p)2)〈f, f〉Np − pκ/2−1λf (p)(〈f |η, f〉Np + 〈f |η, f〉Np).

Let us now compute 〈f |η, f〉Np. Observe that by the definition of Tp we
have

〈Tpf, g〉Np = pκ/2−1

p−1∑
j=0

〈
f |
[
1 j
0 p

]
, g

〉
Np

+ 〈f |η, g〉Np

 .

Using the decomposition (2.1) we can find aj , bj ∈ Γ0(N) so that aj

[
1 j
0 p

]
bj =[

1 0
0 p

]
, and a, b ∈ Γ0(N) so that a

[
1 0
0 p

]
b =

[
p 0
0 1

]
. Using this and the

fact that f, g ∈ Sκ(Γ0(N)), we have

p1−κ/2〈Tpf, g〉Np =

p−1∑
j=0

〈
f | aj

[
1 j
0 p

]
, g|b−1

j

〉
Np

+ 〈f |η, g〉Np

=

p−1∑
j=0

〈
f | aj

[
1 j
0 p

]
bj , g

〉
Np

+ 〈f |η, g〉Np

= p

〈
f |
[
1 0
0 p

]
, g

〉
Np

+ 〈f |η, g〉Np

= p

〈
f | a

[
1 0
0 p

]
, g|b−1

〉
Np

+ 〈f |η, g〉Np

= (p+ 1)〈f |η, g〉Np.

Thus, setting g = f we obtain

〈f |η, f〉Np = p1−κ/2λf (p)

p+ 1
〈f, f〉Np.

We can now easily conclude that

〈fαpp , f
αp
p 〉Np

〈f, f〉Np
= 1 + |βp|2p−κ − p1−κ(βp + βp)

λf (p)

p+ 1

and
〈Upf, Upf〉Np
〈f, f〉Np

= pκ−2 +
(p− 1)λf (p)2

p+ 1
.

Using the fact that Tp is self-adjoint with respect to the Petersson inner
product we have αp + βp = λf (p) ∈ R. We note by Lemma 4.2 below that
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αp = βp. Thus |αp|2 = |βp|2 = |αp||βp| = pκ−1 and βp + βp = λf (p). This

allows us to simplify the formula for
〈fαpp ,f

αp
p 〉Np

〈f,f〉Np to

〈fαpp , f
αp
p 〉Np

〈f, f〉Np
= 1 +

1

p
− p1−κλf (p)2

p+ 1
.

Again using that λf (p) = αp + βp we obtain

〈fαpp , f
αp
p 〉Np

〈f, f〉Np
=

1

p+ 1

(
p+ 1 +

p+ 1

p
− p1−κ(α2

p + β2
p + 2pκ−1)

)
=

p

p+ 1

(
1−

α2
p

pκ

)(
1−

β2
p

pκ

)
.

�

Corollary 2.2. We have

lim
p→∞

p is prime

〈fαpp , f
αp
p 〉Np

p+ 1
= 〈f, f〉N .

Proof. Using Theorem 2.1 and the fact that 〈f, f〉Np = (p + 1)〈f, f〉N , we
have for every prime p - N that

〈fαpp , f
αp
p 〉Np

p+ 1
=

p

p+ 1

(
1−

α2
p

pκ

)(
1−

β2
p

pκ

)
〈f, f〉N .

Since |αp|2 = |βp|2 = pκ−1, we see that the first three factors on the right
tend to 1 as p tends to infinity. �

3. Relation between the classical and adelic inner products

While the classical calculations for 〈Upf, Upf〉 are rather elementary, it
is also useful to note that one can perform these calculations adelically.
The problem of calculating 〈Upf, Upf〉 is one that is local in nature, so it
lends itself nicely to such an approach. Moreover, in a higher genus setting
such as when working with Siegel modular forms, it is the adelic approach
that generalizes most readily [1]. In this section we provide the necessary
background relating the adelic and classical inner products that is needed
to relate the adelic inner product calculated in Section 4 to the calculation
given in the previous section.

In this and the following sections p will denote a prime number and v will
denote an arbitrary place of Q including the Archimedean one, which we
will denote by ∞. Let G = GL2 and fix N ≥ 1. By strong approximation
(see for example [2, Theorem 3.3.1, p. 293]) we have

(3.1) G(A) = G(Q)G(R)
∏
p

Kp,
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where Kp is a compact subgroup of G(Qp) such that detKp = Z×p . One
example would be to take Kp = K0(N)p, where

K0(N)p =

{[
a b
c d

]
∈ G(Zp) : c ≡ 0 mod N

}
.

Note that K0(N)p = G(Zp) if p - N . We will also set

K0(N) :=

{[
a b
c d

]
∈ G(Ẑ) : c ≡ 0 mod N

}
=
∏
p

K0(N)p.

The decomposition (3.1) implies that

(3.2) G(Q) \G(A) = G+(R)
∏
p

Kp,

where + indicates positive determinant.
Let Z ⊂ G denote the center. For every p there is a unique Haar mea-

sure dgp on G(Qp) normalized so that the volume of any maximal compact
subgroup of G(Qp) is one. We use the standard Haar measure on G(R)
as defined in [2, § 2.1]. Define the adelic analogue of the Petersson inner
product:

〈φ1, φ2〉 =

∫
Z(A)G(Q)\G(A)

φ1(g)φ2(g)dg,

where φ1 and φ2 lie in L2(Z(A)G(Q) \ G(A)) and have the same central
character and dg is the Haar measure on Z(A)G(Q) \G(A) corresponding
to our choice of local Haar measures.

Let f ∈ Sκ(Γ0(N)) be an eigenform. For g = γg∞k ∈ G(A) with γ ∈

G(Q), g∞ =

[
a b
c d

]
∈ G+(R) and k ∈ K0(N), set

(3.3) φf (g) =
(det g∞)κ/2

(ci+ d)κ
f(g∞i).

Then φf is an automorphic form on G(A) and it is easy to see (using the
bijection in [5, Equation 5.13]) that one has

(3.4) 〈φf , φf 〉 =
1

[SL2(Z) : Γ0(N)]
〈f, f〉N .

Let πf ∼= ⊗πf,v be the automorphic representation generated by φf . If
f is a newform, then we can write φf = ⊗vφf,v for φf,v ∈ πf,v and φf,v
are spherical vectors for all v - N , v 6= ∞. For every v we can choose a
G(Qv)-invariant inner product 〈·, ·〉v (and any two such are scalar multiples
of each other) so that 〈φf,v, φf,v〉v = 1 for all v - N , v 6= ∞. It follows that
there is constant c so that

(3.5) 〈φf , φf 〉 = c
∏
v

〈φf,v, φf,v〉v.
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We are now in a position to relate the ratio
〈Upf,Upf〉Np
〈f,f〉Np to something that

can be calculated locally. In fact since we are only interested in this ratio,
the precise value of the constant c in (3.5) will be irrelevant.

Fix p - N . As noted above, we normalize our Haar measure so that
vol(K0(1)p) = 1. For a vector vp inside the space of πf,p, we set

Tpvp =

∫
K0(1)p

[
p 0
0 1

]
K0(1)p

πf,p(g)vpdg

and

Vpvp =

∫
[

1 0
0 p

]
K0(1)p

πf,p(g)vpdg.

Note that we have the decompositions

(3.6) K0(1)p

[
p 0
0 1

]
K0(1)p =

p−1⊔
b=0

[
p b
0 1

]
K0(1)p t

[
1 0
0 p

]
K0(1)p

and

(3.7) K0(p)p

[
p 0
0 1

]
K0(p)p =

p−1⊔
b=0

[
p b
0 1

]
K0(p)p.

The adelic operator corresponding to the Up-operator acting on classical
modular forms as defined in Section 2 is given by

Upvp := Tpvp − Vpvp.

Lemma 3.1. We have

〈U cl
p f, U

cl
p f〉Np

〈f, f〉Np
= pκ−2〈Upφf,p, Upφf,p〉p

for any local inner product pairing 〈, 〉p so that 〈φf,p, φf,p〉p = 1 and U cl
p is

the classical Up-operator as defined in Section 2.

Proof. If we set Upφf := (Upφf,p) ⊗ ⊗v 6=pφf,v then it follows by the same
argument as the one in the proof of [5, Lemma 3.7] that

(3.8) φUcl
p f

= pκ/2−1Upφf .

The lemma is now immediate from (3.4) and (3.5). �

It only remains to calculate 〈Upφf,p, Upφf,p〉, which is done in the next
section.
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4. Local calculation of 〈Upφf,p, Upφf,p〉

We will now give a calculation that, when combined with the results of
the previous section, provides a local way to calculate 〈Upf, Upf〉 in terms
of 〈f, f〉. As in the previous section we fix f ∈ Sk(Γ0(N)) a newform and
a prime p not dividing N . We again let πf = ⊗vπf,v be the automorphic
representation associated to f . Note that since p - N , we can take the
principal series representation πp(χ1, χ2) to be the model for πf,p and for
functions ψ,ψ′ ∈ πp(χ1, χ2) define the local inner product by

〈ψ,ψ′〉p :=

∫
K0(N)p

ψ(g)ψ′(g)dg,

where the Haar measure is normalized so that vol(K0(N)p) = 1. Then the
vector φf,p ∈ πp corresponds to the function (which we will also denote by
φf,p ∈ πp(χ1, χ2)) which can be described explicitly as

φf,p

([
a ∗
0 b

]
k

)
= χ1(a)χ2(b)|ab−1|1/2p ,

where | · |p denotes the standard p-adic norm (|p|p = p−1) and k ∈ K0(N)p.
As this section is focused on the calculation of 〈Upφf,p, Upφf,p〉, we will

from now on write φ for φf,p and K0(1) (resp., K0(p)) for K0(1)p (resp.,
K0(p)p).

Remark 4.1. We note here that the calculation which follows can also be
performed using the MacDonald formula for matrix coefficients (see [3, §
4]). However, in the relatively simple case of GL2 the elementary approach
which we present below does not add any computational difficulty and is
perhaps more transparent.

Set

B :=

{[
p b
0 1

]
: b ∈ {0, 1, . . . , p− 1}

}
, B′ := B ∪

{[
1 0
0 p

]}
.

If g ∈ K0(1) and β ∈ B′, there is a permutation σg of B′ and elements
k(g, β) ∈ K0(1) such that gβ = σg(β)k(g, β). Furthermore, note that if g ∈

K0(1)−K0(p), then the corresponding permutation cannot fix

[
1 0
0 p

]
. This

implies that for such a g, there exists β ∈ B such that σg(β) =

[
1 0
0 p

]
. Since

in the computation of Upφ only matrices in B are used, we are interested in
the restriction of σ to B. For such a g there are p−1 matrices in the image of
σg which have (p, 1) on the diagonal and one that has (1, p) on the diagonal.
Set B1(g) = {β ∈ B : σg(β) ∈ B} and B2(g) = {β ∈ B : σg(β) ∈ B′ − B}. So
for g ∈ K0(1)−K0(p) we have (note that our φ is right-K0(1)-invariant and
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vol(K0(1)) = 1)

(Upφ)(g) = vol(K0(1))
∑
β∈B

φ(gβ)

=
∑
β∈B

φ(σg(β)k(g, β))

=
∑

β∈B1(g)

φ(σg(β)) +
∑

β∈B2(g)

φ(σg(β))

= (p− 1)χ1(p)p−1/2 + χ2(p)p1/2.

If g ∈ K0(p), then the permutation σ fixes

[
1 0
0 p

]
, hence we obtain

(Upφ)(g) = vol(K0(1))
∑
β∈B

φ(gβ) =
∑
β∈B

φ(σ(β)) = pχ1(p)p−1/2 = χ1(p)p1/2.

Now let us compute the integral:

〈Upφ,Upφ〉K0(1) =

∫
K0(p)

Upφ(g)Upφ(g)dg +

∫
K0(1)−K0(p)

Upφ(g)Upφ(g)dg.

We have ∫
K0(p)

Upφ(g)Upφ(g)dg =

∫
K0(p)

p|χ1(p)|2dh

= vol(K0(p))p|χ1(p)|2

=
p|χ1(p)|2

p+ 1

(4.1)

and, since vol(K0(1)−K0(p)) = p/(p+ 1),

(4.2)

∫
K0(1)−K0(p)

Upφ(g)Upφ(g)dg

=

∫
K0(1)−K0(p)

[
(p− 1)2

p
|χ1(p)|2 + (p− 1)tr (χ1(p)χ2(p)) + p|χ2(p)|2

]
dg

=
p

p+ 1

[
(p− 1)2

p
|χ1(p)|2 + (p− 1)tr (χ1(p)χ2(p)) + p|χ2(p)|2

]
.

Putting (4.1) and (4.2) together we get

〈Upφ,Upφ〉 =
p2 − p+ 1

p+ 1
|χ1(p)|2 +

p2

p+ 1
|χ2(p)|2 +

p2 − p
p+ 1

tr (χ1(p)χ2(p)).

(4.3)

Lemma 4.2. We have χj(p) = psj for j = 1, 2, where sj is a purely imag-
inary number. In particular, |χj(p)| = 1 for j = 1, 2. Moreover, we have
αp = βp.
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Proof. The first part follows from [5, p. 92] and is a direct consequence of
the fact that cusp forms on GL2 satisfy the Ramanujan conjecture. Observe
that αp = p(κ−1)/2χ1(p) and βp = p(κ−1)/2χ2(p). Using that αpβp = pκ−1,
we obtain χ1(p)χ2(p) = 1. This, combined with the fact that χj(p) = psj

with sj purely imaginary implies χ1(p) = χ2(p). Thus αp = βp. �

Using Lemma 4.2 we can simplify (4.3) to

〈Upφ,Upφ〉 =
2p2 − p+ 1

p+ 1
+
p2 − p
p+ 1

tr (χ1(p)χ2(p)).

Moreover using that αp = p(κ−1)/2χ1(p), βp = p(κ−1)/2χ2(p) and χ1(p) =

χ2(p) we have

tr (χ1(p)χ2(p)) = (χ1(p) + χ2(p))2 − 2χ1(p)χ2(p) = p1−κλf (p)2 − 2.

Thus we obtain

〈Upφ,Upφ〉 =
p+ 1

p+ 1
+
p(p− 1)p1−kλf (p)2

p+ 1

= 1 +
(p− 1)λf (p)2

p+ 1
p2−k,

hence we see that by Lemma 3.1 this recovers the classical formula from
Theorem 2.1.

5. Applications to L-values

Let f ∈ Sκ(Γ0(N)) be a newform. In this section we apply the results of
the previous sections to give a ‘local’ decomposition of the Petersson norm
of f . This depends on showing that value LN (k, Sym2 f) obtained by mero-
morphic continuation of L(s, Sym2 f) can be expressed as a conditionally
convergent Euler product.

Recall that the (partial) symmetric square L-function of f is defined by
the Euler product

(5.1) LN (s, Sym2 f) =
∏
p-N

1

Lp(s, Sym2 f)
,

where

Lp(s, Sym2 f) :=

(
1−

α2
p

ps

)(
1− αpβp

ps

)(
1−

β2
p

ps

)
.

The product (5.1) converges absolutely for Re s > κ. It is well-known that
LN (s, Sym2 f) admits meromorphic continuation to the entire complex plane
with possible poles only at s = κ and κ − 1, of order at most one [14,
Theorem 1]. In our case (since f is assumed to have trivial character), the
L-function does not have a pole at s = κ [14, Theorem 2]. We will continue
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to denote this extended function by LN (s, Sym2 f). Using that αpβp = pκ−1

we conclude that

(5.2)
〈fαpp , f

αp
p 〉Np

〈f, f〉Np
=

p2

p2 − 1

1

Lp(κ,Sym2 f)
=

ζp(2)

Lp(κ,Sym2 f)
,

where ζp(s) = 1/(1− 1/ps).

Corollary 5.1. We have

〈fαpp , f
αp
p 〉Np = 〈fβpp , f

βp
p 〉Np.

Set

〈f, f〉(p)N :=
〈f, f〉Np
〈fαpp , f

αp
p 〉Np

=
〈f, f〉Np
〈fβpp , f

βp
p 〉Np

.

We will now show that 〈f, f〉(p)N can in some sense be regarded as a ‘local’
(at p) period for the symmetric square L-function.

Theorem 5.2. The value LN (κ,Sym2 f) given by the meromorphic contin-
uation is equal to the conditionally convergent Euler product∏

p-N

1

Lp(κ,Sym2 f)

when we order the factors according to increasing p.

Proof. Let φf be defined as in (3.3) and let χ1(p) = αp/p
(κ−1)/2 and χ2(p) =

βp/p
(κ−1)/2 be its Satake parameters for p - N as in Section 4. For p - N

define

Lp(s, Sym2 φf ) :=

(
1− χ1(p)2

ps

)(
1− 1

ps

)(
1− χ2(p)2

ps

)
and note that Lp(s, Sym2 φf ) = Lp(s + κ − 1,Sym2 f). Thus the Euler
product

LN (s, Sym2 φf ) :=
∏
p-N

1

Lp(s, Sym2 φf )

converges absolutely for Re s > 1 and inherits all the corresponding prop-
erties (in particular the meromorphic continuation and the lack of a pole
at s = 1) from LN (s, Sym2 f). As before we will continue to denote this
extended function by LN (s, Sym2 φf ).

Let π be the automorphic representation of GL2(A) associated with φf .
It is known [6, Theorem 9.3] that there exists an automorphic representation
σ of GL3(A) such that the (partial) standard L-function LN (s, σ) coincides
with LN (s, Sym2 π) := LN (s, Sym2 φf ). Also LN (s, σ) does not vanish on
the line Re s = 1 by a result of Jacquet and Shalika (see [8, Theorem 1]; see
also [9]). Finally note that by Lemma 4.2, we have |χ1(p)| = |χ2(p)| = 1
if p - N . Thus we are in a position to apply Theorem A.1 in the appendix
with K = Q and d = 3 to LN (s, Sym2 φf ) and the theorem follows. �
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By Theorem 5.2 and (5.2) we have

LN (κ,Sym2 f)∏
p-N 〈f, f〉

(p)
N

= ζN (2),

where the superscript means that we omit the Euler factors at primes di-
viding N , and the product

∏
p-N (here and below) is ordered according to

increasing p. Using [7, Theorem 5.1] we have

LN (κ,Sym2 f) =
∏
p|N

(
1−

λf (p)2

pκ

)
× 22κπκ+1

(κ− 1)!δ(N)Nφ(N)
〈f, f〉N ,

where δ(N) = 2 or 1 according as N ≤ 2 or not. Using this we obtain
the following corollary that can be viewed as a factorization of the ‘global’

period 〈f, f〉N in terms of the ‘local’ periods 〈f, f〉(p)N .

Corollary 5.3. We have

〈f, f〉N =
(κ− 1)!δ(N)Nφ(N)ζN (2)

22κπκ+1

∏
p|N

1

1− λf (p)2/pκ

∏
p-N

〈f, f〉(p)N .

Appendix A. Convergence of Euler products on Re(s) = 1
by Keith Conrad3

Let K be a number field. A degree d Euler product over K is a product

L(s) =
∏
p

1

(1− αp,1Np−s) · · · (1− αp,dNp−s)
,

where |αp,j | ≤ 1 for all nonzero prime ideals p in the integers of K and
1 ≤ j ≤ d. On the half-plane Re(s) > 1 this converges absolutely and is
nonvanishing. Combining factors at prime ideals lying over a common prime
number, L(s) is also an Euler product over Q of degree d[K : Q].

We want to prove a general theorem about the representability of L(s)
by its Euler product on the line Re(s) = 1. If L(s) is the L-function of a
nontrivial Dirichlet character, this is in [4, pp. 57–58], [10, § 109], and [12,
p. 124] if s = 1 and [10, § 121] if Re(s) = 1.

Theorem A.1. If L(s) is a degree d Euler product over K and it admits
an analytic continuation to Re(s) = 1 where it is nonvanishing, then L(s) is
equal to its Euler product on Re(s) = 1 when factors are ordered according
to prime ideals of increasing norm: if Re(s) = 1 then

L(s) = lim
x→∞

∏
Np≤x

1

(1− αp,1Np−s) · · · (1− αp,dNp−s)
.

The proof is based on the following lemma about representability of a
Dirichlet series on the line Re(s) = 1.
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Lemma A.2. Suppose g(s) =
∑

n≥1 bnn
−s has bounded Dirichlet coeffi-

cients. If g(s) admits an analytic continuation from Re(s) > 1 to Re(s) ≥ 1,
then g(s) is still represented by its Dirichlet series on the line Re(s) = 1.

Proof. See [13]. �

Here is the proof of Theorem A.1.

Proof. We will apply Lemma A.2 to a logarithm of L(s), namely the abso-
lutely convergent Dirichlet series

(logL)(s) :=
∑
p

∑
k≥1

αkp,1 + · · ·+ αkp,d
kNpks

,

where Re(s) > 1. The coefficient of 1/Npks has absolute value at most
d/k ≤ d, so if we collect terms and write (logL)(s) as a Dirichlet series
indexed by the positive integers, say

∑
n≥1 cn/n

s, then cn = 0 if n is not

a prime power and |cn| ≤ d[K : Q] if n is a prime power. Therefore the
coefficients of (logL)(s) as a Dirichlet series over Z+ are bounded.

Since L(s) is assumed to have an analytic continuation to a nonvanishing
function on Re(s) ≥ 1, (logL)(s) has an analytic continuation to Re(s) ≥ 1,
so Lemma A.2 implies that

(A.1) (logL)(s) =
∑
pk

αkp,1 + · · ·+ αkp,d
kNpks

for Re(s) = 1, where the terms in the series are collected in order of increas-
ing values of N(pk).

Although a rearrangement of terms in a conditionally convergent series
can change its value, one particular rearrangement of the series in (A.1)
doesn’t change the sum:

(A.2)
∑
pk

αkp,1 + · · ·+ αkp,d
kNpks

=
∑
p

∑
k≥1

αkp,1 + · · ·+ αkp,d
kNpks

when Re(s) = 1, where the sum on the left is in order of increasing values
of N(pk) and the outer sum on the right is in order of increasing values of
N(p). To prove (A.2), we rewrite it as

(A.3)
∑

N(pk)≤x

αkp,1 + · · ·+ αkp,d
kNpks

=
∑

N(p)≤x

∑
k≥1

αkp,1 + · · ·+ αkp,d
kNpks

+ o(1)

as x → ∞, and we will prove (A.3) when Re(s) > 1/2, not just Re(s) = 1.
For Re(s) = 1 we can pass to the limit in (A.3) as x → ∞ and conclude
(A.2).
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The sum on the right in (A.3) the sum on the left in (A.3) is equal to∑
N(p)≤x

∑
k≥2

N(p)k>x

αkp,1 + · · ·+ αkp,d
kNpks

,

which is equal to

(A.4)
∑

√
x<N(p)≤x

∑
k≥2

αkp,1 + · · ·+ αkp,d
kNpks

+
∑

N(p)≤
√
x

∑
k≥3

N(p)k>x

αkp,1 + · · ·+ αkp,d
kNpks

.

The absolute value of the first sum in (A.4) is bounded above by∑
√
x<N(p)≤x

∑
k≥2

∣∣∣∣∣αkp,1 + · · ·+ αkp,d
kNpks

∣∣∣∣∣ ≤ ∑
√
x<N(p)≤x

∑
k≥2

d

kNpkσ
where σ = Re(s)

<
d

2

∑
√
x<N(p)≤x

∑
k≥2

1

Npkσ

=
d

2

∑
√
x<N(p)≤x

1

Npσ(Npσ − 1)

<
d

2

∑
√
x<N(p)≤x

4

Np2σ
since N(p)σ >

√
2 >

4

3
,

which tends to 0 as x→∞ since
∑

p 1/Np2σ converges. The absolute value

of the second sum in (A.4) is bounded above by∑
N(p)≤

√
x

∑
k≥3

N(p)k>x

d

kNpkσ
<

∑
N(p)≤

√
x

∑
k≥3

N(p)k>x

d

logNp(x)Npkσ

=
∑

N(p)≤
√
x

d log N(p)

log x

∑
k≥3

N(p)k>x

1

Npkσ
.

Letting n be the least integer above logNp(x),∑
k≥3

N(p)k>x

1

Npkσ
=

1/N(p)nσ

1− 1/N(p)σ
<

1/xσ

1/4
=

4

xσ
,

so ∑
N(p)≤

√
x

∑
k≥3

N(p)k>x

d

kNpkσ
<

∑
N(p)≤

√
x

4d log N(p)

xσ log x
= O

( √
x

xσ log x

)
,

which tends to 0 as x→∞ since σ > 1/2.
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Now that we established (A.2), take the exponential of the right side: if
Re(s) = 1, then

∏
p

exp

∑
k≥1

αkp,1 + · · ·+ αkp,d
kNpks

 =
∏
p

1

(1− αp,1Np−s) · · · (1− αp,dNp−s)
,

where the products run over p in order of increasing norms and the last cal-
culation is justified since |αp,j/N(p)s| ≤ 1/N(p) < 1. Since L(s) = e(logL)(s)

for Re(s) ≥ 1, by (A.1) and (A.2) we have

L(s) =
∏
p

1

(1− αp,1Np−s) · · · (1− αp,dNp−s)

for Re(s) = 1, where the product is in order of increasing values of Np. �

Example A.3. Let L(s) be the L-function of the elliptic curve y2 = x3− x
over Q. For Re(s) > 3/2 it has an Euler product over the odd primes of the
form

(A.5) L(s) =
∏
p 6=2

1

1− app−s + p · p−2s
=
∏
p 6=2

1

(1− αpp−s)(1− βpp−s)
,

where |αp| =
√
p and |βp| =

√
p for p 6= 2. Since y2 = x3 − x has CM by

Z[i], L(s) is also the L-function of a Hecke character χ on Q(i) such that

|χ((α))| = |α| = |N(α)|1/2 for all nonzero α in Z[i] with odd norm. Therefore
L(s) also has an Euler product over the nonzero prime ideals of Z[i] of odd
norm: for Re(s) > 3/2,

(A.6) L(s) =
∏

(π)6=(1+i)

1

1− χ(π)/N(π)s
.

The function L(s) is entire and is nonvanishing on the line Re(s) = 3/2,
so L(s + 1/2) fits the conditions of Theorem A.1 using K = Q and d = 2
for (A.5), and K = Q(i) and d = 1 for (A.6). Therefore (A.5) and (A.6)
are both true on the line Re(s) = 3/2. For instance, L(3/2) ≈ .826348,
the partial Euler product for (A.5) at s = 3/2 over prime numbers up to
100,000 is ≈ .826290, and the partial Euler product for (A.6) at s = 3/2
over nonzero prime ideals in Z[i] with norm up to 100,000 is ≈ .826480.
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